
EDA,
or the art of trading off

apples, peaches and oranges

CANDE Workshop
November 10, 2011

Patrick Groeneveld
Chief Technologist, Magma Design Automation

Kevin Trudeau, the king of Quacks

As seen
at

CANDE

Trading off Apples, Peaches and Oranges…

Design Effort vs Quality tradeoff in EDA

We’ll settle for a common-sense point, given budget
 - back off, if there is not enough budget.

quality

 d
es

ig
n

ef
fo

rt,
 to

ol
 ru

nt
im

e,
 c

os
t

Speed, Area, Power, etc.

Budget

S
y

n
th

e
sis

Synthesis is from Mars, Analysis is from Venus

Synthesis

Analysis

Patrick Groeneveld
•  Implementation

tools:
• RTL synthesis,

Placement,
Routing,
Optimization,
Humans

• Poor accuracy
• Lean, mean
• Tough to

parallelize

•  Is the ‘hacker’
Need to make this ‘marriage’ work

A
n

a
ly

si
s   Sign-off

tools:
  Verification,

Extraction,
STA,
spice, DRC,
LVS

  Highly accurate
  Big and slow
  Parallelizable

  Is the ‘whiner’

How design really works…

  Avoid loops:

  Correct-by-construction
methods

  ABC flow

  Speed up loop by:
  Reducing analysis accuracy
  Running tasks in parallel
  Take away walls between

tools: Sign-off timer in the
loop

Gate rewiring

Detailed placer

Global router

Track router

Detailed router

Gate resizing

Gate buffering

Global placer

Mapping

Detailed opt.

Global-level
timer

Sign-off
DRC checker

Timer &
Extractor

Tekton
Sign-off

Timer

Buffering

Clock Tree S.

Finesim-
Spice

Formal
Verification Iterate:

Building a Design Flow

Observation 3:
Synthesis algorithms cannot deliver
good multi-objective trade-offs

Gate rewiring

Detailed placer

Global router

Track router

Detailed router

Gate resizing

Gate buffering

Global placer

Mapping

Detailed opt.

Global-level
timer

Sign-off
DRC checker

Timer &
Extractor

Sign-off
Timer

Buffering

Clock Tree S.

Finesim-
Spice

Formal
Verification

Observation 4:
Optimizing a single objective often
makes other objectives worse.

Observation 1:
Need gradual refinement flow
using many algorithms

Observation 2:
Synthesis algorithms need
highly simplified models of reality

The ABC of a solid EDA Design Flow

A: Avoid
Use pessimism to make problem
unlikely, ‘Correct by Construction’

B: Build
Synthesize using an algorithm

C: Correct
Fix each objective by incremental
modifications (ECOs).

Example ABC: Combating crosstalk delay

  Avoid: using ‘pessimism’:
  Size up all drivers: Costs cell area and power
  Force double spacing NDR on many nets: Costs congestion = area

 Build:
  Some routing tricks to spread & jog wires

 Correct using ECO:
  gate re-sizing, buffering
  Re-routing

Gate input
cap:
4fF

Wire cap:
50fF, of which
30-80% is to
neighbors

‘C’ routing improvement: pushing neighbors away

Not always successful

Might make other
nets worse

Effect of this physical ECO on timing

better worse

better

worse

A
ct

ua
l w

ire
 d

el
ay

As reported by
Tekton STA
Crosstalk = on

Average:
-12% Neighbor length
-13% Delay

Controlling the amount of correction

  Relax the objective

  More Avoidance (pessimism)
  Which might deteriorate other objectives

fail pass

Probability
Distribution
Function

Run flow

designer

Objectives

EDA
Design
Flow

Needs Correction

Avoidance vs. Correction: masks

  Avoid:
  DRC deck with ‘hard’ rules

  Build:
  Dijkstra grid expansion + hacks

  Correct:
  Analyze using DRC, CAA, LPC
  Fix incrementally using R&R

  How many failures are
acceptable?
  < 100 violations: Manual fixes are feasible
  1000-10000 violations: Automatic ECO-

style fixes, rip-up and reroute
  > 10,000 violations ???????

1,000,000,000
Transistors
2 miles of wire

Routing

Optimization

Global routing

Placement

Logic Synthesis

Floorplanning

GDS2

CAA LPC CMP

P
hysical S

ynthesis S
ystem

How to tune the EDA flow?

  Tuning of the TCL script
  First time:

  Poor local optimum, bugs,
mistakes

  Tune flow+data
  Better local optimum.

  But:
  Loop is slow
  Tool talks gibberish
  Result depend on experience

of engineer.
  Hacks are design-specific

Run tool
flow

Analyze results

run.tcl Design
data

Timing
report

Debugging: finding what’s wrong
1	
 line	
 of	
 RTL	
 caused	
 16	
 gates	
 in	
 cri5cal	
 path	

Can	
 RTL	
 Designer	
 change	
 this	
 to	
 help?	

Produc5ve	
 debugging	
 	

between	
 teams	

Confiden5al	
 -­‐	
 Do	
 Not	
 Duplicate	
 16

Local Optima the Design Flow

Routing
Optimization

Global routing
Placement

Logic Synthesis
Floorplanning

Solution
Cost

The EDA Design Flow as a Pachinko Machine

  Run flow:
  End up an one of the local optima.

  Re-run:
  typically get same results

  (Multi-processing alert!!)
  Re-run with small change

  Could be significant difference
  Changes:

  Irrelevant order changes
  Additional steps/algorithms
  Changing constraints, tuning, etc.

  Good/bad results depend on:
  ‘ease’ of the design
  Flow set-up/tuning
  Design structure (e.g. data paths)
  Coincidence

A donkey doesn’t bump into the same stone twice

19

Bad ideas that EDA keeps on bumping into

  Cloud computing (formerly: Internet CAD)
  Model based DRC & DFM
  Common CAD frameworks (Plug & play EDA

tools)
  Thermal placement
  X-architecture
  Structured placement
  Multi-core EDA
  GPU’s and OpenCL and CUDA, hybrid

20

EDA is Dumber than a Donkey, example #1

  Structured Datapath Placement

21

#2 Donkey moment example: Multi-core

22 MAGMA CONFIDENTIAL – DO NOT COPY

Amdahl’s law: Why parallelization gain tapers off

  Runtime = R

P * R	

(1-P) * R	

(P * R)/N	

(1-P) * R	

O	

•  Run time = R/((1-P) + P/N)

P	

 Maximum speedup 	

50%	

 2x	

80%	

 5x	

90%	

 10x	

95%	

 20x	

P = Parallelizable
part

Non Parallelizable
part

Parallelization
Overhead:
Distribution,
Locks,
contention,
Assembly

+ O	

Reality	

0.8x	

2.0x	

2.5x	

2.8x	

Parallelizing a single step in the flow

thread1

(P * R)/N	

(1-P) * R	

O	

of processors

R
el

at
iv

e
sp

ee
du

p

2 4 5 8 10 12 14 16 18 20 22 24

2x

4x

6x

8x

10x

12x

14x

16x

18x

20x

26 28 30 32

thread2

thread3 thread4

P = 75%

P = 90%

P = 95%

Parallelizing the flow: Can we break the barrier?

Synthesis	

Placement	

STA	

Extraction	

Global	

Routing	

of processors

R
el

at
iv

e
sp

ee
du

p

1 2 3 4 5 6 7 8 9 10 11 12

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

13 14 15 16

Dream

Detailed	

Routing	

Opto	

Reality

Parallel locking

Don’t
route

Is
happy

Is
keep

Is
scan

Is
power

Net properties

Don’t
route

Is
happy

Is
keep

Is
scan

Is
power

Clever idea: reorder after read: popular objects get in front

Since read messes with the list, I need a lock
on EVERY read

Unlocking parallel potential

  Locks can easily kill potential
multithread gains.

  Avoid locks: Duplicate contended data
  Sledge hammer: duplicate all data (OS

support for that)
  Costs time and memory
  Complicates code

  Avoid locks: by construction
  Work on non-overlapping data

Best: have zero interaction between threads

Parallelization requires extremely low overhead

  Resource bottlenecks
  Bandwidth to memory or disk
  Many EDA problems have poor data

locality due to design size

  Design partitioning and
re-assembly
  Non-trivial for EDA problems

  Interactions between threads
  Data dependencies between

threads kill speedup
  No locks!!

thread1 thread2 thread3 thread4

5 6 7 8

9 10 11 12

13 14 15 16

Partitioning is Evil for synthesis

  Why is it evil?
  Overall quality suffers

  Cannot optimize across boundaries
  Partitioning problem is proven tough
  Good partitions take (non-parallelizable)

effort!
  Algorithmic
  Need to duplicate data Partitioning:

A necessary evil
for the sake
of parallelism?

How to partition a problem for parallelism?

  Observation 1:
  Analysis tools are much easier to parallelize
  They do not change design state

  Observation 2:
  Synthesis tools change design state
  Design changes while its being

worked on.

Issue: Load distribution

  Load is not
predictable

thread1 thread2 thread3 thread4

5 6 7 8

9 10 11 12

13 14 15 16

4-core: Effective
utilization:

95%

16-core: Effective
utilization:10%

Issue: Repeatablity: parallelism's silent killer

  4 processors, 16
jobs to do.

thread1 thread2 thread3 thread4

5 6 7 8

9 10 11 12

13 14 15 16

In case jobs are
100%
independent

Need to
sync

CUDA & EDA: What’s wrong with this picture??

Why Friends don’t let Friends program OpenCL/CUDA

34 MAGMA CONFIDENTIAL – DO NOT COPY

GPU only
applies to
the leaf

level

Run!

  Hybrid solutions are bad ideas

35 MAGMA CONFIDENTIAL – DO NOT COPY

Medical tools vs. EDA tools

  New drug
  Biological model of cause,

actions and side-effects

  Develop it
  Test tube test
  Test on animals

  Efficacy,
  side effects

  Clinical trials
  Large double-blind placebo-

controlled tests

  FDA-approval
  Deployment

•  New flow component
• Based on electrical/

physical plausibility
•  Program it (C++/TCL)
•  Unit test
•  Test on small testcases

• Debug program
• Efficacy, side effects

•  Deployment
• Go for it!

“Engineers: think it, build it, demo it, declare victory”

Lack of Evidence = Quackery

EDA
is not exempt:

• Structured
placement
• Thermal-driven
placement
• DFM-driven design
• Plug ‘n play tool
interoperability
• Hybrid GPU/CPU
EDA tools.
• Gridless routing
• X-Architecture

Skeptical wisdom for EDA

  “Humans are amazingly good at self-deception”

  This looks soooo good, therefore this must work

  “If it has no side effects, it probably has no effects either”
  Example: improving temperature gradients will cost timing you!

Are you really willing to pay based on the evidence?

  “Do not confuse association with causation”
  “I took this airborne pill, and I did not get sick”
  “I used this DFM optimizer, and the chip yields!

  “The plural of ‘anecdote’ is ‘anecdotes’, not ‘data’”
  Result could be a random effect, or another side effect
  No substitute for unbiased placebo-controlled tests
  Only large data sets are statistically relevant

39

