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Setting the Context 
 

The battles are between computing 
community and challenges in application 

strong scaling 
 

Not between CPUs and GPUs 
Not between vendors 

 
The GPU computing community are on the 

frontline today. 
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GPU computing is catching on. 
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GPU Computing Gems  
280 Submissions, 90 chapters 
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A Common GPU Usage Pattern 

• Use GPUs to accelerate the most time-
consuming aspects of a computational problem 
– Kernels in CUDA or OpenCL 
– Refactor host code to better support kernels and 

data transfer 
– Convolution filtering (e.g. bilateral Gaussian 

filters), De Novo gene assembly, etc. 
– … 

 
• Rethink the domain problem 
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CURRENT VICTORIES 
HPC applications 

CANDE 2011 



NAMD Released GPU Features and 
Future Plans (100,000 users) 

NAMD 2.8 
• CUDA features supported -

full electrostatics with 
PME and most simulation 
features (not alchemical 
methods), NBFIX 
parameters 

• 100M-atom capability 
functional on CUDA 

 
 

NAMD 2.9 
• Alchemical free energy perturbation 
• Locally enhanced sampling 
• Methods that modify nonbonded 

interactions for small sets of atoms 
• New multi-level summary method (MSM) 

Longer Term 
• Specialized methods such as Lowe-

Anderson thermostat, Go potentials, and 
tabulated nonbonded interactions 

• Various performance improvements, 
including reduce CPU-side performance 
bottlenecks such as shifting various 
calculations to GPUs 
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Pushing Limits of Innovation with NAMD 

Test Platform: 1 Node, Dual Tesla M2070 GPU (6GB), Dual Intel 4-core Xeon (2.4 GHz), NAMD 2.8, CUDA 4.0, ECC On. 
Visit www.nvidia.com/simcluster for more information on speed up results, configuration and test models. 

F1-ATPase 
327,506 Atoms 

ns/Day 
1.08 

ns/Day 
0.22 

GPU+CPU CPU

STMV 
1,066,628 Atoms 

ns/Day 
0.28 

ns/Day 
0.05 

GPU+CPU CPU

ApoA-1 
92,224 Atoms 

ns/Day 
2.81 

ns/Day 
0.68 

GPU+CPU CPU
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GPU Scaling on NAMD 
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• NAMD run on Tsubame 2.0 from 64 to 189 nodes. 
• Using 1 or 2 Fermi GPUs per node 
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QCD Strong Scaling using GPUs 
• General Problem : as core counts increase, the ratio of communication to local computation tends to grow.  For a 

sufficient number of cores, the problem becomes communications bound (vs. computation) 
• Solution : solvers that minimize communication, such as “domain-decomposition” solvers.  An additive Schwarz 

domain-decomposed preconditioner with a Generalized Conjugate Residual solver (GCR-DD) successfully 
demonstrates strong scaling 

• Results : Strong scaling to 256 GPUs on 323x256 lattice in Chroma (Wilson-clover fermions) 
• Results : Strong scaling to 256 GPUs on 643x256 lattice in MILC (improved staggered fermions) 

Sustained strong-scaling performance in 
Chroma 3.41.0 using Schwarz generalized 
conjugate residual solver (GCR-DD).  
BiCGstab is the reference Krylov solver. 

Sustained strong-scaling performance in MILC 
7.6.3 using mixed-precision conjugate gradient 
solver (parallelized along multiple dimensions) 

* Guochun Shi (NCSA), Bálint Joó (Jefferson Labs), Ron Babich (BU), Mike Clark (Harvard), Rich Brower (BU), Steve Gottlieb (Indiana), “Scaling Lattice QCD 
beyond 100 GPUs,” SC11, ACM (Nov 2011) 
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USQCD Software GPU Roadmap 
• ETA September 2011 : exploiting GPU Direct (QUDA 0.4.0 doesn’t currently support 

peer-to-peer transfers to minimize inter-GPU communication. 
• ETA Q3/Q4 2011 : Multi-GPU DWF fermions. 
• ETA fall 2011 : Adaptive multigrid (MG), expected to deliver O(10)-fold speedup over 

current solvers. 
• ETA Q4 2011 / Q1 2012 : Refinement of domain-decomposition algorithms.  Currently 

simple block Jacobi.  Expect significant speedup from overlapping blocks, 
multiplicative Schwarz (e.g. block Gauss-Seidel). 

• Active R&D 2012 : Exploitation of cache locality (e.g. more efficient use of shared 
memory to reduce memory traffic).  Better scaling for GPU cores vs. GPU memory 
bandwidth. 

• ETA 2012 : Full Hybrid Monte Carlo (e.g. gauge generation) on GPUs.  Includes 
support for high-order symplectic symmetric integrators which improves the volume 
scaling from HMC, which will result in substantial computational cost reduction at 
large volumes. 

• Beta 1H 2012 : Complete deployment of QCD applications (e.g. Chroma) on GPUs 
by implementing the domain specific language (QDP++) in CUDA.   Currently pre-
alpha, Jlab R&D (Jie Chen), Frank Winter (Edinburgh). 

• R&D 2012, Deployment 2013 : Combine HMC and MG on GPUs. 
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CURRENT VICTORIES 
Available Kernels 
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Solid Scalable Kernels 
• Dense SGEMM/DGEMM, LU, Triangular solvers 

(CUBLAS, CULA, MAGMA) 
• Sparse Matrix Vector Multiplication, Tridiagonal 

solvers (CUSP, QUDA, PARBOIL) 
• FFTs, Convolutions (CUFFT, Parboil) 
• N-Body (NAMD/VMD, FMM BU, PARBOIL) 
• Histograms (PARBOIL) 
• Some PDE solvers (CURRENT, PARBOIL) 
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Example: Tridiagonal Solver 
• Implicit finite difference methods, cubic spline 

interpolation, preconditioners 
• An algorithm to find a solution of Ax = d, where A 

is an n-by-n tridiagonal matrix and d is an n-
element vector 

CANDE 2011 

Presenter
Presentation Notes
TDS is one of the core function for many mathematical algorithms. Just to name a few, it is used for

- Cubic spline interpolation
  - Empirical Mode Decomposition (EMD) Library for nonlinear and nonstationary time frequency analysis

- Alternating direction implicit method for finite difference method
- Poisson solvers
Semi-coarsening for multi-grid method
Preconditioners for iterative linear solvers




Thomas Algorithm 
• Special two-way Gaussian elimination 

 

Forward reduction 

Backward substitution 

CANDE 2011 

Presenter
Presentation Notes
Multiply by –a2/b1 and add to the second row to cancel a2.
Until Xn is solved.
After you get the solution of the last row, you use the result to solve remaining rows by plug in the value.
Sequential, due to data dependency across the problem.




Parallel Cyclic Reduction(PCR) 
• Simultaneous reduction of odd and even rows – 

a.k.a. forward reduction only CR 
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Summary of Previous Approaches 

Complexity Number of 
operations 

Number of 
processing 

steps with n-
parallelism 

machine 

Thomas O(n) 2n 2n 

CR O(n) 2.7 * 2n 2log n – 1 

PCR O(n log n) 12 n log n log n 
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Scalable Method 
• A hybrid of PCR and parallel Thomas 

– PCR as parallelism excavating frontend 
– P-Thomas as an efficient and parallel solver 
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 Parallelization of Tiled PCR 
(Owens) 

• Exponential growth of halo elements and 
subsequent reductions 

Redundant loads 

Redundant 
computations 

1-step PCR 

2-step PCR CANDE 2011 

Presenter
Presentation Notes
Parallelization is possible for PCR by grouping fixed number of rows into groups and processing them independently, which is shown in this figure.
Bars indicate the tiling boundary and each tile has four elements in it.

One problem from this idea is that there would be lots of inefficiencies. First, redundant memory accesses.
In this particular example of 1-step PCR, e3 is loaded during processing tile T which would be loaded again when processing tile T-1.
In case of 2-step PCR, it becomes more serious as 1 + 2 rows from the left tile boundary needs to be brought in.
We call this redundant as they will be loaded when processing tile T-1.

On top of that, there is also redundant computation to produce immediately available dependency from the memory loads.
In case of 2-step PCR, for example, e’2 and e’3 should be computed from e1 to e4 to finally calculate e’’4 and e’’5.
But they are redundant as they will also be computed once again when processing tile T-1.

Both grows exponentially which becomes major obstacle for parallelizing PCR.

With small tiling, more parallelism is possible but the redundancy overwhelms the benefit of this approach.
Large tiling, on the contrary, it amortizes the tiling cost. But it would fall into either of two scenarios.

One is otherwise it would suffer from global synchronization, where each step advances lock step.
The performance will suffer from the global synch.

More sophisticated case is when shared memory is used for the entire processing of a tile.
In this case, Fully occupied shared memory will limit the parallelism, at the same time thread synchronization takes place upon each step of PCR.




Hierarchical Tiling 

... 

Parallel 1st level tile 

2nd level tile processed 
Sequentially using the 
sliding window 

Mapping onto GPU 
1st level tile One per thread block 

2nd level tile Collaborative streaming  
within thread block 

2nd level tile buffer Shared memory 
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Tiled PCR using Sliding Window 
Cached 

Reduction steps of PCR 

Cached Reduction steps of PCR 
CANDE 2011 

Presenter
Presentation Notes
Here we propose caching and reusing such dependencies that span across tile boundaries which is described using this example.
In this example, a tile mapped onto shared memory will go through complete PCR steps.

If you look closer to what is really needed for processing tile T, you can see that e3,e’2 and e’3 from left and e8, e’8 and e’9 in case of 2-step PCR.
So the idea is to cache them by the time they are computed and reuse them later.

But this scheme is infeasible, as computing the cached rows would also require redundancy from tile T.

So, we skewed this figure so that caching is always done from the previously processed tiles and the cached rows can be used for a tile that is currently being processed.

For this change, we introduced a direction for processing tiles, from left to right, in this particular example.

While the size of cached rows is the same as we have seen above, the contents is different as it is filled with previously computed rows.

In some sense, this is thread coarsening and shared memory tiling.




Scalable in size and # systems 

M := number of systems / x-axis := number of unknowns CANDE 2011 

Presenter
Presentation Notes
Liwen: what are k’s for all of the cases?




Using GPU kernels is also 
becoming easier. 

• Python PyCUDA interface 
• MatLab Jacket and Mathematica interfaces 
• Thrust C++ interface for CUDA 
• Microsoft C++ Accelerated Massive Parallelism 
• Java does not currently have an easy way of 

using CUDA or OpenCL kernels 
– Especially for Android platforms 
– JavaCUDA project in Illinois 
– Renderscript from Google 

• GMAC for data sharing between host and device 
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COMING BATTLES 
Hardware trends 
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Important GPU Architecture Trends 
• CPU/CPU fusion architectures 

– For reduced part count and data movement 
– Reduced hand-off granularity 
– Larger GPU accessible memory 

• Emphasis on energy efficiency 
– By reducing data movement and control flow 

overhead  
• More general forms of parallelism 

– To accommodate algorithm and locality needs  
• Even higher degree of SIMD 

– Due to increasing width of memory interface 
 CANDE 2011 



DRAM Trends 
• Increased minimum DRAM burst size to meet the 

increasing interface/core clock gap 
– 8 in GDDR5 

• # of banks per chip also increases to increase 
parallelism 
– Usually 4 in GDDR2 
– 4 or 8 in GDDR3  
– Usually 8 in GDDR4/5 
– More  

• Intel/Micron  
Hybrid Memory Cube 
(HMC) 

 
 Courtesy: Micron, Challenges and Solutions for Future Main Memory, 2009 

CANDE 2011 



DRAM Trend Implications 

• More DRAM banks: 
– Need well-distributed DRAM requests (high bank-

level parallelism)  
• Wider bursts 

– Size of DRAM request ≥ min burst size (high 
SIMD/SIMT parallelism) 

• Holistic approaches to meet the challenge 
– From algorithm-level transformation to micro-

architecture 
– E.g. data layout transformation in applications + 

thread scheduling in runtime + memory coalescing 
hardware in GPUs 
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COMING BATTLES 
Scalable Kernels 
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There is a critical need for 
scalable kernel libraries 

• Both CPUs and GPUs require scalable parallel 
kernel libraries 
– GPU needs are more urgent 

 
• Only a small percentage of the Intel Math Kernel 

Library (MKL) functions have scalable forms. 
 

• Software lasts through many hardware 
generations and needs to be scalable to be 
economically viable 
 
 
 

CANDE 2011 



Example of kernel Needs 
• Sparse LU factorization, Cholesky factorization, 

Triangular, and related inverse solvers 
• Sparse eigen solvers and related eigen analysis  
• Graph partitioning (Metis) 
• … 
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Four Challenges 
• Computations with no known scalable parallel 

algorithms 
– Shortest path, Delaunay triangulation, … 

• Data distributions that cause catastrophical load 
imbalance in parallel algorithms 
– Scale-free graphs, MRI compressed sensing 

• Computations that have little data reuse 
– Matrix vector multiplication, … 

• Algorithm optimizations that are hard and labor 
intensive 
– Locality and regularization transformations 
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Example - Dynamic Data Extraction 
• The data to be processed in each phase of 

computation need to be dynamically determined 
and extracted from a bulk data structure 
– Harder to organize for massively parallel access 
 

• Graph algorithms are popular examples that deal 
with dynamic data extraction 
– Widely used in EDA and large scale optimizations 
– Breadth-First Search (BFS) as an example 
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Dynamic Data Extraction using 
Queues 

• Input data extraction is done by many-threads in 
parallel 
– Must have a systematic way to avoid contention 

in assembling extracted data  
 

• Obvious approach is queues with privatization 
– Replicate queues to reduce contention 
– Combine queues with concatenation 
– Works only when global order does not matter 

(queue insertion is commutative) 
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Three-level Queue Hierarchy 

CANDE 2011 

w-queue 

b-queue 

g-queue 

b-queue 

• At the end of each the kernel 
– Threads cooperate to assemble b-queue 
– Multiple threads collaborate to merge b-queue contents 

into g-queue  
– Fast atomic operation helps 

Scratchpad memory 

Global memory 



Hierarchical Kernels 
• Customize kernels based on the size of frontiers. 
• Use fast barrier synchronization when the frontier is 

small. 
 

Kernel 1: Intra-block Sync. 
  

Kernel 2: Inter-block Sync. 
             

Kernel 3: Kernel re-launch 

One-level parallel propagation 
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Experimental Evaluation 
• CPU implementation 

– The classical BFS algorithm (O(V+E)) 
– dual socket dual core 2.4 Ghz Opteron processor 

with 8GB memory. 
• GPU: NVIDIA GeForce GTX280 
• Benchmarks  

– Near-regular graphs (degree = 6) up to 10X  
– Real world graphs (avg. degree = 2, max degree 

= 9) up to 5X 
– Scale free graphs, slow down 

• 0.1% of the vertices: degree = 1000 
• The remaining vertices: degree = 6 

 CANDE 2011 



COMING BATTLES 
tools 
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How a mathematician writes 
matrix multiplication 

How a smart CUDA programmer 
writes matrix multiplication 

#define TILE_N 16 
#define TILE_TB_HEIGHT 8 
#define TILE_M (TILE_N*TILE_TB_HEIGHT) 
__global__ void mysgemmNT( const float *A, int lda, const float *B, 
        int ldb, float* C, int ldc, int k, float alpha, float beta ){ 
{ 
  float c[TILE_N]; 
  for (int i=0; i < TILE_N; i++) c[i] = 0.0f; 
  int mid = threadIdx.y * blockDim.x + threadIdx.x; 
  int m = blockIdx.x * TILE_M + mid; 
  int n = blockIdx.y * TILE_N + threadIdx.x; 
  __shared__ float b_s[TILE_TB_HEIGHT][TILE_N]; 
  for (int i = 0; i < k; i+=TILE_TB_HEIGHT) { 
    float a; 
    b_s[threadIdx.y][threadIdx.x]=B[n + (i+threadIdx.y)*ldb]; 
    __syncthreads(); 
    for (int j = 0; j < TILE_TB_HEIGHT; j++) { 
      a = A[m + (i+j)*lda]; 
      for (int kk = 0; kk < TILE_N; kk++) c[kk] += a * b_s[j][kk]; 
    } 
    __syncthreads(); 
  } 
  int t = ldc*blockIdx.y * TILE_N + m;  
  for (int i = 0; i < TILE_N; i++) { 
    C[t+i*ldc] = C[t+i*ldc] * beta + alpha * c[i];  
  } 
} 
... 
dim3 grid( m/TILE_M, n/TILE_N ), threads( TILE_N, TILE_TB_HEIGHT ); 
mysgemmNT<<<grid, threads>>>( A, lda, B, ldb, C, ldc, k, alpha, beta);  
... CANDE 2011 



IMPACT Tools for Heterogeneous 
Parallel Programming 

Late 

Early 

Writing optimizable, 
portable, kernels 
 ► Pyon 
Shared memory model & 
multi-GPU copy support 
 ► GMAC 

Higher-level Interfaces for 
Programmability,  
Portability, and Performance 

Performance portability, 
Analysis, optimization 
(with collaboration with  
DSLs – Hanrahan/Keutzer) 

CANDE 2011 

Performance tools 
 ►  ADAPT  
 ►  Thread Coarsening 
 ►  DL (Data Layout) 
 ►  MCUDA 

Presenter
Presentation Notes
Pyon provides a means for programmers to write very concise Python syntax source code with typing information to enable multi-kernel optimizations and data oriented transformations. Comparable or better quality information can also be generated from Domain Specific Language systems. So, the performance tools can potentially be interfaced to a DSL such as Liszt for PDE solvers. We already have some PDE use cases in Pyon, GMAC, and all performance tools so this will be our next natural step.



Writing efficient code is complicated. 

• Choose data structures 
 
 

 
 
• Decompose work into tasks 
• Schedule tasks to threads 

• Memory allocation 
• Data movement 
• Pointer operations 
• Index arithmetic 

 
 

• Kernel dimensions 
• Thread ID arithmetic 
• Synchronization 
• Temporary data structures 

Planning how to execute an algorithm Implementing the plan 

GMAC 

Data 
Layout 

Thread 
coarsening 

Tools can provide focused help 
or broad help 

MCUDA 

Pyon 
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Example - DL (Data Layout)  
• DRAM bursts are formed differently in a 

heterogeneous system 
– From last level cache misses on CPUs 
– From SIMD-ized memory accesses on many-core 

architectures like GPUs 
• Data layout transformation can mitigate the gap 

– E.g.: Array-of-structure / Discrete-arrays 
– Bridging divergent layout requirements 

between CPU cores and GPU cores 
– Transparent and efficient marshaling 

 CANDE 2011 



Structure of Array: [e][z][y][x] 
 

Data Layout Alternatives 

Array of Structure: [z][y][x][e] 

y=0 y=1 

y=0 y=1 y=0 y=1 y=0 y=1 

CANDE 2011 Array of Structure of Tiled Array (ASTA)  [z][y31:4][x31:4][e][y3:0][x3:0  

Presenter
Presentation Notes
CFD calculation differ from Coulombic Potential in that each grid point contains a lot more state: 20X more in LBM.



ASTA (Sung et al 
• Array-of-Structure-of-Tiled-Arrays: preserving 

locality while gaining coalesced memory access 
– A[x].foo  A[x/4].foo[x%4] for ASTA(4) 

0 2 4 6
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Discrete Array

ASTA(512)
ASTA(256)
ASTA(128)

ASTA(64)
ASTA(32)
ASTA(16)

LBM Layouts (ATI Radeon 
5870) 

Speedup
over AOS

0 2 4 6

AOS
Discrete Array

ASTA(256)
ASTA(128)

ASTA(64)
ASTA(32)
ASTA(16)

LBM Layouts (NVIDIA 
GTX480) 

Speedup
over AOS
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DL for OpenCL 
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Data layout improves performance 
even with marshaling. 

CANDE 2011 

0 2 4 6 8 10

MersenneTwister

Box-Muller

LBM

Black-Scholes

3D Stencil (Heat)

Speedup on NVIDIA GTX480 

Manually Transformed

DL-Transformed

Baseline



Related Kernel Development 
Tools 

• OpenMP Accelerator Pragmas 
– Wider use of GPU in large applications but less 

performance in each kernel 
– Cray and others 

 
• Portland Group FORTAN compiler 

 
• Intel Array Building Block (Cilk) 
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Conclusion and Outlook 
• We have enjoyed some victories 

– Good initial set of applications and kernels 
– Good deployment interface in major languages 
– Good initial results, educated developers 

• We will face more battles 
– Energy efficiency vs. easy of programming 
– Potential fragmentation of programming interface 
– Widen the set of applications, algorithms and kernels 
– Better tools 
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There is always hope.  
 – Aragorn in the eve of the Battle of Pelennor 
  Minas Tirith 



THANK YOU! 

CANDE 2011 
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