
Many-Core GPU Computing
Current Victories and Coming Battles

Wen-mei Hwu
University of Illinois, Urbana-Champaign

Agenda
• Context and Many-core GPU Usage Patterns
• Current Victories
• Coming Battles
• Conclusion and Outlook

CANDE 2011

Setting the Context

The battles are between computing
community and challenges in application

strong scaling

Not between CPUs and GPUs
Not between vendors

The GPU computing community are on the

frontline today.
CANDE 2011

GPU computing is catching on.

CANDE 2011

GPU Computing Gems
280 Submissions, 90 chapters

Financial
Analysis

Scientific
Simulation

Engineering
Simulation

Data
Intensive
Analytics

Medical
Imaging

Digital
Audio

Processing

Computer
Vision

Digital
Video

Processing

Biomedical
Informatics

Electronic
Design

Automation

Statistical
Modeling

Ray
Tracing

Rendering

Interactive
Physics

Numerical
Methods

A Common GPU Usage Pattern

• Use GPUs to accelerate the most time-
consuming aspects of a computational problem
– Kernels in CUDA or OpenCL
– Refactor host code to better support kernels and

data transfer
– Convolution filtering (e.g. bilateral Gaussian

filters), De Novo gene assembly, etc.
– …

• Rethink the domain problem

CANDE 2011

CURRENT VICTORIES
HPC applications

CANDE 2011

NAMD Released GPU Features and
Future Plans (100,000 users)

NAMD 2.8
• CUDA features supported -

full electrostatics with
PME and most simulation
features (not alchemical
methods), NBFIX
parameters

• 100M-atom capability
functional on CUDA

NAMD 2.9
• Alchemical free energy perturbation
• Locally enhanced sampling
• Methods that modify nonbonded

interactions for small sets of atoms
• New multi-level summary method (MSM)

Longer Term
• Specialized methods such as Lowe-

Anderson thermostat, Go potentials, and
tabulated nonbonded interactions

• Various performance improvements,
including reduce CPU-side performance
bottlenecks such as shifting various
calculations to GPUs

CANDE 2011

Pushing Limits of Innovation with NAMD

Test Platform: 1 Node, Dual Tesla M2070 GPU (6GB), Dual Intel 4-core Xeon (2.4 GHz), NAMD 2.8, CUDA 4.0, ECC On.
Visit www.nvidia.com/simcluster for more information on speed up results, configuration and test models.

F1-ATPase
327,506 Atoms

ns/Day
1.08

ns/Day
0.22

GPU+CPU CPU

STMV
1,066,628 Atoms

ns/Day
0.28

ns/Day
0.05

GPU+CPU CPU

ApoA-1
92,224 Atoms

ns/Day
2.81

ns/Day
0.68

GPU+CPU CPU

CANDE 2011

GPU Scaling on NAMD

CANDE 2011

• NAMD run on Tsubame 2.0 from 64 to 189 nodes.
• Using 1 or 2 Fermi GPUs per node

0

10

20

30

64 128 189

STMV Benchmark on Tsubame 2.0

Dual Socket Intel Xeon Westmere 6 core CPUs/Node
1 GPU/Node
2 GPUs/Node (~ 1 Kepler GPU/Node)

of Nodes

D
ay

s/
ns

NAMD Benchmark on Tsubame 2.0, 9/7/2011
100STMV, ibverbs-smp

1.8x

4.2x 2.4x

4.3x 2.7x
4.4x

QCD Strong Scaling using GPUs
• General Problem : as core counts increase, the ratio of communication to local computation tends to grow. For a

sufficient number of cores, the problem becomes communications bound (vs. computation)
• Solution : solvers that minimize communication, such as “domain-decomposition” solvers. An additive Schwarz

domain-decomposed preconditioner with a Generalized Conjugate Residual solver (GCR-DD) successfully
demonstrates strong scaling

• Results : Strong scaling to 256 GPUs on 323x256 lattice in Chroma (Wilson-clover fermions)
• Results : Strong scaling to 256 GPUs on 643x256 lattice in MILC (improved staggered fermions)

Sustained strong-scaling performance in
Chroma 3.41.0 using Schwarz generalized
conjugate residual solver (GCR-DD).
BiCGstab is the reference Krylov solver.

Sustained strong-scaling performance in MILC
7.6.3 using mixed-precision conjugate gradient
solver (parallelized along multiple dimensions)

* Guochun Shi (NCSA), Bálint Joó (Jefferson Labs), Ron Babich (BU), Mike Clark (Harvard), Rich Brower (BU), Steve Gottlieb (Indiana), “Scaling Lattice QCD
beyond 100 GPUs,” SC11, ACM (Nov 2011)

CANDE 2011

USQCD Software GPU Roadmap
• ETA September 2011 : exploiting GPU Direct (QUDA 0.4.0 doesn’t currently support

peer-to-peer transfers to minimize inter-GPU communication.
• ETA Q3/Q4 2011 : Multi-GPU DWF fermions.
• ETA fall 2011 : Adaptive multigrid (MG), expected to deliver O(10)-fold speedup over

current solvers.
• ETA Q4 2011 / Q1 2012 : Refinement of domain-decomposition algorithms. Currently

simple block Jacobi. Expect significant speedup from overlapping blocks,
multiplicative Schwarz (e.g. block Gauss-Seidel).

• Active R&D 2012 : Exploitation of cache locality (e.g. more efficient use of shared
memory to reduce memory traffic). Better scaling for GPU cores vs. GPU memory
bandwidth.

• ETA 2012 : Full Hybrid Monte Carlo (e.g. gauge generation) on GPUs. Includes
support for high-order symplectic symmetric integrators which improves the volume
scaling from HMC, which will result in substantial computational cost reduction at
large volumes.

• Beta 1H 2012 : Complete deployment of QCD applications (e.g. Chroma) on GPUs
by implementing the domain specific language (QDP++) in CUDA. Currently pre-
alpha, Jlab R&D (Jie Chen), Frank Winter (Edinburgh).

• R&D 2012, Deployment 2013 : Combine HMC and MG on GPUs.

CANDE 2011

CURRENT VICTORIES
Available Kernels

CANDE 2011

Solid Scalable Kernels
• Dense SGEMM/DGEMM, LU, Triangular solvers

(CUBLAS, CULA, MAGMA)
• Sparse Matrix Vector Multiplication, Tridiagonal

solvers (CUSP, QUDA, PARBOIL)
• FFTs, Convolutions (CUFFT, Parboil)
• N-Body (NAMD/VMD, FMM BU, PARBOIL)
• Histograms (PARBOIL)
• Some PDE solvers (CURRENT, PARBOIL)

CANDE 2011

Example: Tridiagonal Solver
• Implicit finite difference methods, cubic spline

interpolation, preconditioners
• An algorithm to find a solution of Ax = d, where A

is an n-by-n tridiagonal matrix and d is an n-
element vector

CANDE 2011

Presenter
Presentation Notes
TDS is one of the core function for many mathematical algorithms. Just to name a few, it is used for

- Cubic spline interpolation
 - Empirical Mode Decomposition (EMD) Library for nonlinear and nonstationary time frequency analysis

- Alternating direction implicit method for finite difference method
- Poisson solvers
Semi-coarsening for multi-grid method
Preconditioners for iterative linear solvers

Thomas Algorithm
• Special two-way Gaussian elimination

Forward reduction

Backward substitution

CANDE 2011

Presenter
Presentation Notes
Multiply by –a2/b1 and add to the second row to cancel a2.
Until Xn is solved.
After you get the solution of the last row, you use the result to solve remaining rows by plug in the value.
Sequential, due to data dependency across the problem.

Parallel Cyclic Reduction(PCR)
• Simultaneous reduction of odd and even rows –

a.k.a. forward reduction only CR

CANDE 2011

Summary of Previous Approaches

Complexity Number of
operations

Number of
processing

steps with n-
parallelism

machine

Thomas O(n) 2n 2n

CR O(n) 2.7 * 2n 2log n – 1

PCR O(n log n) 12 n log n log n

CANDE 2011

Scalable Method
• A hybrid of PCR and parallel Thomas

– PCR as parallelism excavating frontend
– P-Thomas as an efficient and parallel solver

CANDE 2011

 Parallelization of Tiled PCR
(Owens)

• Exponential growth of halo elements and
subsequent reductions

Redundant loads

Redundant
computations

1-step PCR

2-step PCR CANDE 2011

Presenter
Presentation Notes
Parallelization is possible for PCR by grouping fixed number of rows into groups and processing them independently, which is shown in this figure.
Bars indicate the tiling boundary and each tile has four elements in it.

One problem from this idea is that there would be lots of inefficiencies. First, redundant memory accesses.
In this particular example of 1-step PCR, e3 is loaded during processing tile T which would be loaded again when processing tile T-1.
In case of 2-step PCR, it becomes more serious as 1 + 2 rows from the left tile boundary needs to be brought in.
We call this redundant as they will be loaded when processing tile T-1.

On top of that, there is also redundant computation to produce immediately available dependency from the memory loads.
In case of 2-step PCR, for example, e’2 and e’3 should be computed from e1 to e4 to finally calculate e’’4 and e’’5.
But they are redundant as they will also be computed once again when processing tile T-1.

Both grows exponentially which becomes major obstacle for parallelizing PCR.

With small tiling, more parallelism is possible but the redundancy overwhelms the benefit of this approach.
Large tiling, on the contrary, it amortizes the tiling cost. But it would fall into either of two scenarios.

One is otherwise it would suffer from global synchronization, where each step advances lock step.
The performance will suffer from the global synch.

More sophisticated case is when shared memory is used for the entire processing of a tile.
In this case, Fully occupied shared memory will limit the parallelism, at the same time thread synchronization takes place upon each step of PCR.

Hierarchical Tiling

...

Parallel 1st level tile

2nd level tile processed
Sequentially using the
sliding window

Mapping onto GPU
1st level tile One per thread block

2nd level tile Collaborative streaming
within thread block

2nd level tile buffer Shared memory

CANDE 2011

Tiled PCR using Sliding Window
Cached

Reduction steps of PCR

Cached Reduction steps of PCR
CANDE 2011

Presenter
Presentation Notes
Here we propose caching and reusing such dependencies that span across tile boundaries which is described using this example.
In this example, a tile mapped onto shared memory will go through complete PCR steps.

If you look closer to what is really needed for processing tile T, you can see that e3,e’2 and e’3 from left and e8, e’8 and e’9 in case of 2-step PCR.
So the idea is to cache them by the time they are computed and reuse them later.

But this scheme is infeasible, as computing the cached rows would also require redundancy from tile T.

So, we skewed this figure so that caching is always done from the previously processed tiles and the cached rows can be used for a tile that is currently being processed.

For this change, we introduced a direction for processing tiles, from left to right, in this particular example.

While the size of cached rows is the same as we have seen above, the contents is different as it is filled with previously computed rows.

In some sense, this is thread coarsening and shared memory tiling.

Scalable in size and # systems

M := number of systems / x-axis := number of unknowns CANDE 2011

Presenter
Presentation Notes
Liwen: what are k’s for all of the cases?

Using GPU kernels is also
becoming easier.

• Python PyCUDA interface
• MatLab Jacket and Mathematica interfaces
• Thrust C++ interface for CUDA
• Microsoft C++ Accelerated Massive Parallelism
• Java does not currently have an easy way of

using CUDA or OpenCL kernels
– Especially for Android platforms
– JavaCUDA project in Illinois
– Renderscript from Google

• GMAC for data sharing between host and device

CANDE 2011

COMING BATTLES
Hardware trends

CANDE 2011

Important GPU Architecture Trends
• CPU/CPU fusion architectures

– For reduced part count and data movement
– Reduced hand-off granularity
– Larger GPU accessible memory

• Emphasis on energy efficiency
– By reducing data movement and control flow

overhead
• More general forms of parallelism

– To accommodate algorithm and locality needs
• Even higher degree of SIMD

– Due to increasing width of memory interface
 CANDE 2011

DRAM Trends
• Increased minimum DRAM burst size to meet the

increasing interface/core clock gap
– 8 in GDDR5

• # of banks per chip also increases to increase
parallelism
– Usually 4 in GDDR2
– 4 or 8 in GDDR3
– Usually 8 in GDDR4/5
– More

• Intel/Micron
Hybrid Memory Cube
(HMC)

 Courtesy: Micron, Challenges and Solutions for Future Main Memory, 2009

CANDE 2011

DRAM Trend Implications

• More DRAM banks:
– Need well-distributed DRAM requests (high bank-

level parallelism)
• Wider bursts

– Size of DRAM request ≥ min burst size (high
SIMD/SIMT parallelism)

• Holistic approaches to meet the challenge
– From algorithm-level transformation to micro-

architecture
– E.g. data layout transformation in applications +

thread scheduling in runtime + memory coalescing
hardware in GPUs

CANDE 2011

COMING BATTLES
Scalable Kernels

CANDE 2011

There is a critical need for
scalable kernel libraries

• Both CPUs and GPUs require scalable parallel
kernel libraries
– GPU needs are more urgent

• Only a small percentage of the Intel Math Kernel

Library (MKL) functions have scalable forms.

• Software lasts through many hardware
generations and needs to be scalable to be
economically viable

CANDE 2011

Example of kernel Needs
• Sparse LU factorization, Cholesky factorization,

Triangular, and related inverse solvers
• Sparse eigen solvers and related eigen analysis
• Graph partitioning (Metis)
• …

CANDE 2011

Four Challenges
• Computations with no known scalable parallel

algorithms
– Shortest path, Delaunay triangulation, …

• Data distributions that cause catastrophical load
imbalance in parallel algorithms
– Scale-free graphs, MRI compressed sensing

• Computations that have little data reuse
– Matrix vector multiplication, …

• Algorithm optimizations that are hard and labor
intensive
– Locality and regularization transformations

CANDE 2011

Example - Dynamic Data Extraction
• The data to be processed in each phase of

computation need to be dynamically determined
and extracted from a bulk data structure
– Harder to organize for massively parallel access

• Graph algorithms are popular examples that deal
with dynamic data extraction
– Widely used in EDA and large scale optimizations
– Breadth-First Search (BFS) as an example

CANDE 2011

Dynamic Data Extraction using
Queues

• Input data extraction is done by many-threads in
parallel
– Must have a systematic way to avoid contention

in assembling extracted data

• Obvious approach is queues with privatization
– Replicate queues to reduce contention
– Combine queues with concatenation
– Works only when global order does not matter

(queue insertion is commutative)

CANDE 2011

Three-level Queue Hierarchy

CANDE 2011

w-queue

b-queue

g-queue

b-queue

• At the end of each the kernel
– Threads cooperate to assemble b-queue
– Multiple threads collaborate to merge b-queue contents

into g-queue
– Fast atomic operation helps

Scratchpad memory

Global memory

Hierarchical Kernels
• Customize kernels based on the size of frontiers.
• Use fast barrier synchronization when the frontier is

small.

Kernel 1: Intra-block Sync.

Kernel 2: Inter-block Sync.

Kernel 3: Kernel re-launch

One-level parallel propagation

CANDE 2011

Experimental Evaluation
• CPU implementation

– The classical BFS algorithm (O(V+E))
– dual socket dual core 2.4 Ghz Opteron processor

with 8GB memory.
• GPU: NVIDIA GeForce GTX280
• Benchmarks

– Near-regular graphs (degree = 6) up to 10X
– Real world graphs (avg. degree = 2, max degree

= 9) up to 5X
– Scale free graphs, slow down

• 0.1% of the vertices: degree = 1000
• The remaining vertices: degree = 6

 CANDE 2011

COMING BATTLES
tools

CANDE 2011

How a mathematician writes
matrix multiplication

How a smart CUDA programmer
writes matrix multiplication

#define TILE_N 16
#define TILE_TB_HEIGHT 8
#define TILE_M (TILE_N*TILE_TB_HEIGHT)
__global__ void mysgemmNT(const float *A, int lda, const float *B,
 int ldb, float* C, int ldc, int k, float alpha, float beta){
{
 float c[TILE_N];
 for (int i=0; i < TILE_N; i++) c[i] = 0.0f;
 int mid = threadIdx.y * blockDim.x + threadIdx.x;
 int m = blockIdx.x * TILE_M + mid;
 int n = blockIdx.y * TILE_N + threadIdx.x;
 __shared__ float b_s[TILE_TB_HEIGHT][TILE_N];
 for (int i = 0; i < k; i+=TILE_TB_HEIGHT) {
 float a;
 b_s[threadIdx.y][threadIdx.x]=B[n + (i+threadIdx.y)*ldb];
 __syncthreads();
 for (int j = 0; j < TILE_TB_HEIGHT; j++) {
 a = A[m + (i+j)*lda];
 for (int kk = 0; kk < TILE_N; kk++) c[kk] += a * b_s[j][kk];
 }
 __syncthreads();
 }
 int t = ldc*blockIdx.y * TILE_N + m;
 for (int i = 0; i < TILE_N; i++) {
 C[t+i*ldc] = C[t+i*ldc] * beta + alpha * c[i];
 }
}
...
dim3 grid(m/TILE_M, n/TILE_N), threads(TILE_N, TILE_TB_HEIGHT);
mysgemmNT<<<grid, threads>>>(A, lda, B, ldb, C, ldc, k, alpha, beta);
... CANDE 2011

IMPACT Tools for Heterogeneous
Parallel Programming

Late

Early

Writing optimizable,
portable, kernels
 ► Pyon
Shared memory model &
multi-GPU copy support
 ► GMAC

Higher-level Interfaces for
Programmability,
Portability, and Performance

Performance portability,
Analysis, optimization
(with collaboration with
DSLs – Hanrahan/Keutzer)

CANDE 2011

Performance tools
 ► ADAPT
 ► Thread Coarsening
 ► DL (Data Layout)
 ► MCUDA

Presenter
Presentation Notes
Pyon provides a means for programmers to write very concise Python syntax source code with typing information to enable multi-kernel optimizations and data oriented transformations. Comparable or better quality information can also be generated from Domain Specific Language systems. So, the performance tools can potentially be interfaced to a DSL such as Liszt for PDE solvers. We already have some PDE use cases in Pyon, GMAC, and all performance tools so this will be our next natural step.

Writing efficient code is complicated.

• Choose data structures

• Decompose work into tasks
• Schedule tasks to threads

• Memory allocation
• Data movement
• Pointer operations
• Index arithmetic

• Kernel dimensions
• Thread ID arithmetic
• Synchronization
• Temporary data structures

Planning how to execute an algorithm Implementing the plan

GMAC

Data
Layout

Thread
coarsening

Tools can provide focused help
or broad help

MCUDA

Pyon

CANDE 2011

Example - DL (Data Layout)
• DRAM bursts are formed differently in a

heterogeneous system
– From last level cache misses on CPUs
– From SIMD-ized memory accesses on many-core

architectures like GPUs
• Data layout transformation can mitigate the gap

– E.g.: Array-of-structure / Discrete-arrays
– Bridging divergent layout requirements

between CPU cores and GPU cores
– Transparent and efficient marshaling

 CANDE 2011

Structure of Array: [e][z][y][x]

Data Layout Alternatives

Array of Structure: [z][y][x][e]

y=0 y=1

y=0 y=1 y=0 y=1 y=0 y=1

CANDE 2011 Array of Structure of Tiled Array (ASTA) [z][y31:4][x31:4][e][y3:0][x3:0

Presenter
Presentation Notes
CFD calculation differ from Coulombic Potential in that each grid point contains a lot more state: 20X more in LBM.

ASTA (Sung et al
• Array-of-Structure-of-Tiled-Arrays: preserving

locality while gaining coalesced memory access
– A[x].foo  A[x/4].foo[x%4] for ASTA(4)

0 2 4 6

AOS
Discrete Array

ASTA(512)
ASTA(256)
ASTA(128)

ASTA(64)
ASTA(32)
ASTA(16)

LBM Layouts (ATI Radeon
5870)

Speedup
over AOS

0 2 4 6

AOS
Discrete Array

ASTA(256)
ASTA(128)

ASTA(64)
ASTA(32)
ASTA(16)

LBM Layouts (NVIDIA
GTX480)

Speedup
over AOS

CANDE 2011

DL for OpenCL

CANDE 2011

Data layout improves performance
even with marshaling.

CANDE 2011

0 2 4 6 8 10

MersenneTwister

Box-Muller

LBM

Black-Scholes

3D Stencil (Heat)

Speedup on NVIDIA GTX480

Manually Transformed

DL-Transformed

Baseline

Related Kernel Development
Tools

• OpenMP Accelerator Pragmas
– Wider use of GPU in large applications but less

performance in each kernel
– Cray and others

• Portland Group FORTAN compiler

• Intel Array Building Block (Cilk)

CANDE 2011

Conclusion and Outlook
• We have enjoyed some victories

– Good initial set of applications and kernels
– Good deployment interface in major languages
– Good initial results, educated developers

• We will face more battles
– Energy efficiency vs. easy of programming
– Potential fragmentation of programming interface
– Widen the set of applications, algorithms and kernels
– Better tools

CANDE 2011

There is always hope.
 – Aragorn in the eve of the Battle of Pelennor
 Minas Tirith

THANK YOU!

CANDE 2011

	Many-Core GPU Computing�Current Victories and Coming Battles
	Agenda
	Setting the Context
	GPU computing is catching on.
	GPU Computing Gems �280 Submissions, 90 chapters
	A Common GPU Usage Pattern
	Current Victories
	NAMD Released GPU Features and Future Plans (100,000 users)
	Pushing Limits of Innovation with NAMD
	GPU Scaling on NAMD
	QCD Strong Scaling using GPUs
	USQCD Software GPU Roadmap
	Current Victories
	Solid Scalable Kernels
	Example: Tridiagonal Solver
	Thomas Algorithm
	Parallel Cyclic Reduction(PCR)
	Summary of Previous Approaches
	Scalable Method
	 Parallelization of Tiled PCR (Owens)
	Hierarchical Tiling
	Tiled PCR using Sliding Window
	Scalable in size and # systems
	Using GPU kernels is also becoming easier.
	Coming Battles
	Important GPU Architecture Trends
	DRAM Trends
	DRAM Trend Implications
	Coming Battles
	There is a critical need for scalable kernel libraries
	Example of kernel Needs
	Four Challenges
	Example - Dynamic Data Extraction
	Dynamic Data Extraction using Queues
	Three-level Queue Hierarchy
	Hierarchical Kernels
	Experimental Evaluation
	Coming Battles
	Slide Number 39
	IMPACT Tools for Heterogeneous Parallel Programming
	Writing efficient code is complicated.
	Example - DL (Data Layout)
	Data Layout Alternatives
	ASTA (Sung et al
	DL for OpenCL
	Data layout improves performance even with marshaling.
	Related Kernel Development Tools
	Conclusion and Outlook
	Thank you!

