
Inductive Agent Modeling

in Games

Bobby D. Bryant
Neuroevolution and Behavior Laboratory

Department of Computer Science and Engineering
University of Nevada, Reno



Today’s Plan

• Introduction to Inductive Agent Modeling

◦ concepts and issues

• In-depth example



Why model agents?

• Competitive reasons

• Automated content creation



How complicated is an agent model?

• from the very simple

◦ e.g., drama manager sets parameter for whether

the player wants to see cat-fights

• to the very complex

◦ e.g., controller emulates the Red Baron’s use of

his airplane and guns in a dog-fight



Relationship of Modeler to Modeled

• Foe (AKA opponent modeling)

• Ally (e.g., human teammate)

• Neutral (e.g., NPCs for richer game environment)



Who/what do we model?

• Human player

• Game AI

◦ Virtual player (e.g., Ms. Pacman)

◦ Autonomous in-game agent (e.g., NPC in FRPG)



Autonomous In-Game Agents

Virtual Player Embedded Agents



What if You Want to Model
a Specific Kind of Behavior?

• E.g., The Red Baron (vs. “a fighter pilot”)

• Behavior may not be optimal (in the normal sense)
◦ this notion ’challenges’ many researchers

• Hand-code the behavior?

• Use RL with a complex/subtle reward function?

• Derive policy from examples?
◦ bypasses traditional knowledge engineering methods

· allows indirect, intuitive expression of behavior

◦ uses subject-matter experts, not technical experts



Now here’s the plan...

...And Uses Them to Train
Game−Playing Agents

...While Machine Learning System
Captures Example Decisions...

Foolish Human,
Prepare to Die!

0 50 100 150 200 250

0
20

40
60

80
10

0

Generation

A
ve

ra
ge

 S
co

re
 o

n 
T

es
t S

et

Human Plays Games...

� � � �� � � �� � � �� � � �� � � �� � � �

� � �� � �� � �� � �� � �� � �



The Inductive Agent Modeling Challenge

• Capture examples

• Create an agent model

◦ Conceive as a function:

· for reactive control -

ma : observablestate→ action

· more generally -

ma : observablestate× context→ action

◦ Derive by inductive machine learning mechanism



Terminology

• Exemplar - the agent creating the examples

• Observer - the agency for capturing the examples

• Learner - the model that will emulate the exemplar

On-line vs. Off-line

• On-line: the learner and observer may be the same

• Off-line: the learner and observer are (probably)

distinct



Challenge: Induction

• Deriving a generality from a collection of instances

• A hard problem...

◦ known to be a logical problem since Hume (18th C.)

◦ no-free-lunch theorems

• But we do it all the time anyway...

◦ Quine: Creatures inveterately wrong in their inductions

have a pathetic but praise-worthy tendency to die

before reproducing their kind.

◦ works because the universe isn’t a random place(?)



Induction in Machine Learning (i)

Learning Classifier Systems (LCS)

• Map feature sets onto discrete classifications

c :< f1, f2, f3, . . . , fn >→ class

• Learn general rule from examples

• Large body of research

◦ we can adopt these methods directly,

when the agent to be modeled has

discrete action space



Induction in Machine Learning (ii)

Artificial Neural Networks (ANN)

• Map input patterns onto (continuous) output patterns

n : Rm → Rn

• Learn general rule from examples

• Large body of research

◦ we can adopt these methods directly,

when the agent to be modeled has

continuous action spaces



Induction in Machine Learning (iii)

<Your Favorite Method Goes Here>

• Map ??? onto ???

• Learn general rule from examples

• Your body of research

◦ you can adopt these methods directly,

when the agent to be modeled has

appropriate input/output types

• [Discuss!]



Challenge: Change in POV (i)
Observer and/or learner may have a different observable

state (or view thereof) than the exemplar has

• e.g., Legion-II example (later)

◦ exemplar is human player with “God’s-eye” view

◦ observer/learner is in-game agent with egocentric view

• may make the induction harder

• can make the induction impossible,
if critical state information is not visible

◦ e.g., trying to model a driver when observer or learner

cannot see street lights



Challenge: Change in POV (ib)

Human Player In-Game Agents



Challenge: Change in POV (ii)

Observer’s and/or learner’s view of state may have a

completely different modality than the exemplar’s

• e.g., Parker & Bryant (in press) work on emulating

Quake II bot
◦ exemplar (bot) has direct access to games’s state

variables
· distances, directions, etc.

◦ observer/learner has only low-resolution rendered

visual input

• presumably makes the induction harder



Challenge: Measuring Success

• Nix “I don’t think the Red Baron would do it that way.”

• Approach based on Behavior Analysis

◦ 2007 workshop

◦ anecdote (if time allows)

• Holding back training examples for testing

◦ conventional ML technique

◦ best suggestion so far



Detailed Example Using Lamarckian

Neuroevolution

• But let’s talk about this a bit more first...



References

References
Bryant, B. D., and Miikkulainen, R. (2007). Acquiring visibly intelligent behavior with

example-guided neuroevolution. In Proceedings of the Twenty-Second Na-
tional Conference on Artificial Intelligence (AAAI-07), 801–808. Menlo Park,
CA: AAAI Press.

20

http://nebl.cse.unr.edu/archive/papers/bryant-2007-aaai.pdf
http://nebl.cse.unr.edu/archive/papers/bryant-2007-aaai.pdf


Acquiring Visibly Intelligent Behavior
with

Example-Guided Neuroevolution

Bobby D. Bryant
Department of Computer Science and Engineering

University of Nevada, Reno

Risto Miikkulainen
Department of Computer Sciences
The University of Texas at Austin

Based on the AAAI’07 Presentation, July 25, 2007



Introduction

Visibly Intelligent Behavior

Focus on agents in environments where -

• The agents’ behavior is

directly observable

• Humans have intuitions about

what is and is not intelligent

Obvious examples: games and simulators

1



Background

Example Game Environment: Legion-II

• Discrete-state strategy game with video display

• Pits legions vs. barbarians

• Legions must learn to cooperate
to minimize the barbarians’ pillage
◦ pre-programmed barbarians

◦ legions trained by neuroevolution

• Designed as multi-agent testbed
◦ complex enough to produce interesting phenomena

◦ transparent enough for analysis

◦ scalable in complexity

2



Background

The Legions’ Sensors
• Three egocentric sensor arrays detect

cities, barbarians, and other legions

• Sub-arrays provide range and direction

information for objects in six 60◦

“pie slices”:

NE E NWSE SW W NE E NWSE SW WX

Sense Adjacent Sense DistantLocal
Sense

Sensor Array

• Each ranged element computed as
P

i
1
di

• 3× (1 + 6 + 6) = 39 FP sensor elements total

• Still only provides a fuzzy view of the map
3



Background

The Legions’ Controllers
• Sensor activations are propagated through

an artificial neural network:

X NE E SE SW W NW

Hidden
Layer
Neurons

Key:

Neuron

Scalar

S
ig

na
l P

ro
pa

ga
tio

n

Output
Neurons

Controller Outputs

Sensor Inputs (39 elements)
...

• Then the network’s output activations are decoded

to choose an action

• The network must be trained to the task
4



Background

Neuroevolution with
Enforced Sub-Populations (ESP)

(Gomez 2003)

S
ig

na
l P

ro
pa

ga
tio

n

P17

P1

P2

X NE E SE SW W NW

...
Breeding Populations

Sensor Inputs (39 elements)
...

...

...

Controller Outputs

...

• Direct-encoding neuroevolution mechanism

• Separate breeding population for each neuron

◦ populations co-evolve to produce network

• Use game scores for fitness function

◦ score = pillage rate (lower is better)

◦ evaluation noise reduced by averaging
5



Background

How well does it work?

• Quantitative results – see prior publications

◦ visit

http://www.cse.unr.edu/˜bdbryant/#ref-research-publications

• Qualitative results – see movie

6

http://www.cse.unr.edu/~bdbryant/#ref-research-publications


Experiments

Learning from Examples

• Play a dozen games

• Capture examples as <state,action> pairs

◦ use egocentric sensor readings for state

◦ use the human’s choice of move for action

=⇒< , “West”>

7



Experiments

Target Policies
(Used for Example Generation)

• Policy family Ld, where d is an integer distance

◦ garrison may not move > d from city

◦ must return to city when no barbarians within d

• Safety condition

◦ garrison may not end with barbarian equally near city

◦ must move directly to city if unavoidable

◦ side effect: two barbarians can lock a garrison in

• Examined only d ∈ 0, 1 (limited sensor resolution)

◦ notice that L0 is degenerate (trivial)

• No constraints on ’rovers’
8



Experiments

Lamarckian Neuroevolution

population
of

representations

S produces a stream
of contextual decisions

conditionally return to gene pool
(for Lamarckian NE, return the tuned network)

tune up,
then evaluate

environment

instantiate

S
(ANN)

human−generated examples
are isomorphic to S’s decisions

(use them to partially train S before evaluating)

9



Experiments

Lamarckian Neuroevolution
With ESP!

population
of

representations

S produces a stream
of contextual decisions

conditionally return to gene pool
(for Lamarckian NE, return the tuned network)

tune up,
then evaluate

environment

instantiate

S
(ANN)

human−generated examples
are isomorphic to S’s decisions

(use them to partially train S before evaluating)

• Tuning is done with backpropagation

• ESP and Lamarckian mechanisms are orthogonal
10



Experiments

Comparanda
• Unguided evolution (as before)

◦ 5,000 generations

◦ fitness = 1 / pillage rate

• Lamarckian neuroevolution

◦ 5,000 generations

◦ various amounts of training per generation
· sample sizes: 5, 10, 20, 50, 100, 200, ... 10,000
· only report results for 5,000 in the paper
· in general, more examples−→ better results, higher cost

• Backpropagation

◦ 20,000 epochs

◦ full 11,000 examples per epoch
11



Experiments

Results (i)
Coarse Behavior Metrics

0 20 40 60 80 100

0
2

4
6

8

Test Example Classification Error Rate (%)

A
ve

ra
ge

 T
es

t G
am

e 
S

co
re

 (
pi

lla
ge

 r
at

e)

Unguided evolution
L0 human play
L0 backpropagation
L0 guided evolution
L1 human play
L1 backpropagation
L1 guided evolution

12



Experiments

Results (ii)
Rule Induction – L0 Results

0 10 20 30 40 50

0
.0

1
.0

2
.0

Game Turn

A
v
e
ra

g
e
 L

0
 V

io
la

ti
o
n
s

Unguided

Backpropagation

Lamarckian

13



Experiments

Results (iii)
Rule Induction – L1 Results

0 10 20 30 40 50

0
.0

0
.4

0
.8

Game Turn

A
v
e
ra

g
e
 L

1
 V

io
la

ti
o
n
s

Unguided

Backpropagation

Lamarckian

14



Experiments

Results (iv)
Rule Induction – L0 Results

0 10 20 30 40 50

0
.0

0
.2

0
.4

Game Turn

A
v
e
ra

g
e
 S

a
fe

ty
 V

io
la

ti
o
n
s

Unguided

Backpropagation

Lamarckian

15



Experiments

Results (v)
Rule Induction – L1 Results

0 10 20 30 40 50

0
.0

0
.2

0
.4

Game Turn

A
v
e
ra

g
e
 S

a
fe

ty
 V

io
la

ti
o
n
s

Unguided

Backpropagation

Lamarckian

16



Experiments

Results (vi)
Rule Induction – L0 Results

0 10 20 30 40 50

0
.0

0
.4

0
.8

Game Turn

A
v
e
ra

g
e
 L

e
g
io

n
 D

is
ta

n
c
e

Unguided

Backpropagation

Lamarckian

17



Experiments

Results (vii)
Rule Induction – L1 Results

0 10 20 30 40 50

0
.0

0
.4

0
.8

Game Turn

A
v
e
ra

g
e
 L

e
g
io

n
 D

is
ta

n
c
e

Unguided

Backpropagation

Lamarckian

18



Related Work

Related Work
• Policy induction with rule-based systems

◦ behavioral cloning (Sammut et al. 1992)

◦ KnoMic (van Lent and Laird 2001)

◦ Style Machines (Brand and Hertzmann 2000)

• Social robotics / mimetic algorithms

◦ surveyed in Nicolescu (2003)

• Advice systems

◦ RL advice unit (Kuhlmann et al. 2004)

◦ appliqué networks (Yong et al. 2005)

• Inverse reinforcement learning (Ng and Russell 2000)

• User modeling

◦ adaptive user interfaces

◦ drama management for interactive fiction (AIIDE’07) 19



Conclusions

Conclusions

• Some applications require intuitively correct behaviors

• Policy induction can simplify creating such behaviors

• Lamarckian neuroevolution can implement PI
for some applications

◦ beats backpropagation on enforcing rule conformance

◦ more power and efficiency are needed

◦ raises questions about how success can be measured

Related papers and movies can be found at
www.cse.unr.edu/ bdbryant/#ref-research-publications

20



Acknowledgments

Acknowledgments

This research was sponsored in part by the Digital Media

Collaboratory at the IC2 Institute at the University of Texas at Austin.

It builds on earlier research supported in part by the

National Science Foundation under grant IIS-0083776

and the Texas Higher Education Coordinating Board

under grant ARP-003658-476-2001.

CPU time for the experiments was made possible by

NSF grant EIA-0303609, using the Mastodon cluster at UT-Austin.

Some of the images are taken from the open-source game Freeciv.

21



References

References
Gomez, F. (2003). Robust Non-Linear Control Through Neuroevolution. PhD thesis,

Department of Computer Sciences, The University of Texas at Austin.

Kuhlmann, G., Stone, P., Mooney, R., and Shavlik, J. (2004). Guiding a reinforcement
learner with natural language advice: Initial results in RoboCup soccer. In
The AAAI-2004 Workshop on Supervisory Control of Learning and Adaptive
Systems.

Ng, A. Y., and Russell, S. (2000). Algorithms for inverse reinforcement learning. In
Proceedings of the 17th International Conference on Machine Learning, 663–
670. San Francisco: Morgan Kaufmann.

Nicolescu, M. N. (2003). A Fremework for Learning From Demonstration, General-
ization and Practiced in Human-Robot Domains. PhD thesis, University of
Southern California.

Sammut, C., Hurst, S., Kedzier, D., and Michie, D. (1992). Learning to fly. In Proceed-

22

http://citeseer.ist.psu.edu/ng00algorithms.html
http://www.cse.unr.edu/~monica/Research/Publications/MonicaDiss.pdf
http://www.cse.unr.edu/~monica/Research/Publications/MonicaDiss.pdf
http://citeseer.ist.psu.edu/sammut92learning.html


References

ings of the Ninth International Conference on Machine Learning, 385–393. Ab-
erdeen, UK: Morgan Kaufmann.

van Lent, M., and Laird, J. E. (2001). Learning procedural knowledge through obser-
vation. In Proceedings of the International Conference on Knowledge Capture,
179–186. New York: ACM.

Yong, C. H., Stanley, K. O., and Miikkulainen, R. (2005). Incorporating advice into
evolution of neural networks. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2005): Late Breaking Papers.

22

http://portal.acm.org/citation.cfm?id=500765
http://portal.acm.org/citation.cfm?id=500765

	Part1.pdf
	Part2.pdf

