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Today’s Plan

• Introduction to Inductive Agent Modeling

◦ concepts and issues

• In-depth example



Why model agents?

• Competitive reasons

• Automated content creation



How complicated is an agent model?

• from the very simple

◦ e.g., drama manager sets parameter for whether

the player wants to see cat-fights

• to the very complex

◦ e.g., controller emulates the Red Baron’s use of

his airplane and guns in a dog-fight



Relationship of Modeler to Modeled

• Foe (AKA opponent modeling)

• Ally (e.g., human teammate)

• Neutral (e.g., NPCs for richer game environment)



Who/what do we model?

• Human player

• Game AI

◦ Virtual player (e.g., Ms. Pacman)

◦ Autonomous in-game agent (e.g., NPC in FRPG)



Autonomous In-Game Agents

Virtual Player Embedded Agents



What if You Want to Model
a Specific Kind of Behavior?

• E.g., The Red Baron (vs. “a fighter pilot”)

• Behavior may not be optimal (in the normal sense)
◦ this notion ’challenges’ many researchers

• Hand-code the behavior?

• Use RL with a complex/subtle reward function?

• Derive policy from examples?
◦ bypasses traditional knowledge engineering methods

· allows indirect, intuitive expression of behavior

◦ uses subject-matter experts, not technical experts



Now here’s the plan...

...And Uses Them to Train
Game−Playing Agents

...While Machine Learning System
Captures Example Decisions...

Foolish Human,
Prepare to Die!
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The Inductive Agent Modeling Challenge

• Capture examples

• Create an agent model

◦ Conceive as a function:

· for reactive control -

ma : observablestate→ action

· more generally -

ma : observablestate× context→ action

◦ Derive by inductive machine learning mechanism



Terminology

• Exemplar - the agent creating the examples

• Observer - the agency for capturing the examples

• Learner - the model that will emulate the exemplar

On-line vs. Off-line

• On-line: the learner and observer may be the same

• Off-line: the learner and observer are (probably)

distinct



Challenge: Induction

• Deriving a generality from a collection of instances

• A hard problem...

◦ known to be a logical problem since Hume (18th C.)

◦ no-free-lunch theorems

• But we do it all the time anyway...

◦ Quine: Creatures inveterately wrong in their inductions

have a pathetic but praise-worthy tendency to die

before reproducing their kind.

◦ works because the universe isn’t a random place(?)



Induction in Machine Learning (i)

Learning Classifier Systems (LCS)

• Map feature sets onto discrete classifications

c :< f1, f2, f3, . . . , fn >→ class

• Learn general rule from examples

• Large body of research

◦ we can adopt these methods directly,

when the agent to be modeled has

discrete action space



Induction in Machine Learning (ii)

Artificial Neural Networks (ANN)

• Map input patterns onto (continuous) output patterns

n : Rm → Rn

• Learn general rule from examples

• Large body of research

◦ we can adopt these methods directly,

when the agent to be modeled has

continuous action spaces



Induction in Machine Learning (iii)

<Your Favorite Method Goes Here>

• Map ??? onto ???

• Learn general rule from examples

• Your body of research

◦ you can adopt these methods directly,

when the agent to be modeled has

appropriate input/output types

• [Discuss!]



Challenge: Change in POV (i)
Observer and/or learner may have a different observable

state (or view thereof) than the exemplar has

• e.g., Legion-II example (later)

◦ exemplar is human player with “God’s-eye” view

◦ observer/learner is in-game agent with egocentric view

• may make the induction harder

• can make the induction impossible,
if critical state information is not visible

◦ e.g., trying to model a driver when observer or learner

cannot see street lights



Challenge: Change in POV (ib)

Human Player In-Game Agents



Challenge: Change in POV (ii)

Observer’s and/or learner’s view of state may have a

completely different modality than the exemplar’s

• e.g., Parker & Bryant (in press) work on emulating

Quake II bot
◦ exemplar (bot) has direct access to games’s state

variables
· distances, directions, etc.

◦ observer/learner has only low-resolution rendered

visual input

• presumably makes the induction harder



Challenge: Measuring Success

• Nix “I don’t think the Red Baron would do it that way.”

• Approach based on Behavior Analysis

◦ 2007 workshop

◦ anecdote (if time allows)

• Holding back training examples for testing

◦ conventional ML technique

◦ best suggestion so far



Detailed Example Using Lamarckian

Neuroevolution

• But let’s talk about this a bit more first...
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Introduction

Visibly Intelligent Behavior

Focus on agents in environments where -

• The agents’ behavior is

directly observable

• Humans have intuitions about

what is and is not intelligent

Obvious examples: games and simulators
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Background

Example Game Environment: Legion-II

• Discrete-state strategy game with video display

• Pits legions vs. barbarians

• Legions must learn to cooperate
to minimize the barbarians’ pillage
◦ pre-programmed barbarians

◦ legions trained by neuroevolution

• Designed as multi-agent testbed
◦ complex enough to produce interesting phenomena

◦ transparent enough for analysis

◦ scalable in complexity
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Background

The Legions’ Sensors
• Three egocentric sensor arrays detect

cities, barbarians, and other legions

• Sub-arrays provide range and direction

information for objects in six 60◦

“pie slices”:

NE E NWSE SW W NE E NWSE SW WX

Sense Adjacent Sense DistantLocal
Sense

Sensor Array

• Each ranged element computed as
P

i
1
di

• 3× (1 + 6 + 6) = 39 FP sensor elements total

• Still only provides a fuzzy view of the map
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Background

The Legions’ Controllers
• Sensor activations are propagated through

an artificial neural network:

X NE E SE SW W NW

Hidden
Layer
Neurons

Key:

Neuron

Scalar
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ga
tio

n

Output
Neurons

Controller Outputs

Sensor Inputs (39 elements)
...

• Then the network’s output activations are decoded

to choose an action

• The network must be trained to the task
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Background

Neuroevolution with
Enforced Sub-Populations (ESP)

(Gomez 2003)
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P17

P1

P2

X NE E SE SW W NW

...
Breeding Populations

Sensor Inputs (39 elements)
...

...

...

Controller Outputs

...

• Direct-encoding neuroevolution mechanism

• Separate breeding population for each neuron

◦ populations co-evolve to produce network

• Use game scores for fitness function

◦ score = pillage rate (lower is better)

◦ evaluation noise reduced by averaging
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Background

How well does it work?

• Quantitative results – see prior publications

◦ visit

http://www.cse.unr.edu/˜bdbryant/#ref-research-publications

• Qualitative results – see movie
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Experiments

Learning from Examples

• Play a dozen games

• Capture examples as <state,action> pairs

◦ use egocentric sensor readings for state

◦ use the human’s choice of move for action

=⇒< , “West”>
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Experiments

Target Policies
(Used for Example Generation)

• Policy family Ld, where d is an integer distance

◦ garrison may not move > d from city

◦ must return to city when no barbarians within d

• Safety condition

◦ garrison may not end with barbarian equally near city

◦ must move directly to city if unavoidable

◦ side effect: two barbarians can lock a garrison in

• Examined only d ∈ 0, 1 (limited sensor resolution)

◦ notice that L0 is degenerate (trivial)

• No constraints on ’rovers’
8



Experiments

Lamarckian Neuroevolution

population
of

representations

S produces a stream
of contextual decisions

conditionally return to gene pool
(for Lamarckian NE, return the tuned network)

tune up,
then evaluate

environment

instantiate

S
(ANN)

human−generated examples
are isomorphic to S’s decisions

(use them to partially train S before evaluating)
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Experiments

Lamarckian Neuroevolution
With ESP!

population
of

representations

S produces a stream
of contextual decisions

conditionally return to gene pool
(for Lamarckian NE, return the tuned network)

tune up,
then evaluate

environment

instantiate

S
(ANN)

human−generated examples
are isomorphic to S’s decisions

(use them to partially train S before evaluating)

• Tuning is done with backpropagation

• ESP and Lamarckian mechanisms are orthogonal
10



Experiments

Comparanda
• Unguided evolution (as before)

◦ 5,000 generations

◦ fitness = 1 / pillage rate

• Lamarckian neuroevolution

◦ 5,000 generations

◦ various amounts of training per generation
· sample sizes: 5, 10, 20, 50, 100, 200, ... 10,000
· only report results for 5,000 in the paper
· in general, more examples−→ better results, higher cost

• Backpropagation

◦ 20,000 epochs

◦ full 11,000 examples per epoch
11



Experiments

Results (i)
Coarse Behavior Metrics
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Experiments

Results (ii)
Rule Induction – L0 Results

0 10 20 30 40 50

0
.0

1
.0

2
.0

Game Turn

A
v
e
ra

g
e
 L

0
 V

io
la

ti
o
n
s

Unguided

Backpropagation

Lamarckian

13



Experiments

Results (iii)
Rule Induction – L1 Results
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Experiments

Results (iv)
Rule Induction – L0 Results
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Experiments

Results (v)
Rule Induction – L1 Results
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Experiments

Results (vi)
Rule Induction – L0 Results
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Experiments

Results (vii)
Rule Induction – L1 Results
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Related Work

Related Work
• Policy induction with rule-based systems

◦ behavioral cloning (Sammut et al. 1992)

◦ KnoMic (van Lent and Laird 2001)

◦ Style Machines (Brand and Hertzmann 2000)

• Social robotics / mimetic algorithms

◦ surveyed in Nicolescu (2003)

• Advice systems

◦ RL advice unit (Kuhlmann et al. 2004)

◦ appliqué networks (Yong et al. 2005)

• Inverse reinforcement learning (Ng and Russell 2000)

• User modeling

◦ adaptive user interfaces

◦ drama management for interactive fiction (AIIDE’07) 19



Conclusions

Conclusions

• Some applications require intuitively correct behaviors

• Policy induction can simplify creating such behaviors

• Lamarckian neuroevolution can implement PI
for some applications

◦ beats backpropagation on enforcing rule conformance

◦ more power and efficiency are needed

◦ raises questions about how success can be measured

Related papers and movies can be found at
www.cse.unr.edu/ bdbryant/#ref-research-publications
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