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A Gentle Introduction

Evolutionary Robotics
 Evolutionary Robotics is automatic generation of control systems and
morphologies of autonomous robots. It is based on a process of Artificial
Evolution without human intervention.

Two motivations:

- It is difficult to design autonomous systems using a purely top-down
engineering process because the interaction between the robot and its
environment is very complex and hard to predict.

In ER the engineer defines the control components and the selection criterion and lets
artificial evolution discover the most suitable combinations while the robot interacts with
the environment.

- A synthetic (as opposed to an analytic) approach to the study of the
mechanisms of adaptive behavior in machines and animals.

ER was first suggested by a neurophysiologist (Braitenberg, 1984) as a way to show that
evolution can generate simple artificial neural circuits that display apparently complex
behaviors.
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Fitness = V x Δv x (1-s)
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Results

The average and best population fitness are typical measures of performance.

Direction

Speed = 60%

Evolved robots always have a preferential direction of motion and speed.

functional behavioral

internal

externalexplicit

implicit

conventional
optimization

autonomous
self-organization

Fitness Space
Fitness Space is a method to conceive and compare fitness functions
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Fitness = V x (1-s)

motors

sensors

Δt=300ms

Environment Role
Let us now put the robot in a more complex environment and make the
fitness function even simpler. The robot is equipped with a battery that
lasts only 20 s and there is a battery charger in the arena.

Machine Neuro-ethology
After 240 generations, we find a robot capable
of moving around and going to recharge 2
seconds before the batteries are completely
discharged.

Neural Activity Maps
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[Harvey et al. 1994]

‘Seeing the Light’
The Sussex group investigated evolution of vision-based behaviors. They
solved the energy fitness problem using a suspended camera with
bumpers (gantry robot).

Incremental Evolution
In the first stage, one full wall was covered with white paper and the robot
was asked to move toward the wall. In the second stage, the white target
surface was restricted to a 22 cm wide band. Finally, in the third stage
the white paper was substituted by two white shapes, a rectangle and a
triangle, and the robot was asked to move toward the triangle.

Evolved controllers used only two photoreceptors whose activation time,
triggered by the left-wing rotation, was sufficient to discriminate between
the two patterns.
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Center-Surround Oriented Edges

Hebb plasticity

Feature Selection

Process whereby visual neurons become
sensitive to certain sensory patterns (features)
during the developmental process (Hubel &
Wiesel, 1959)

Process of selecting by motor
actions sensory patterns (features)
that make discrimination easier
(Bajcsy, 1988)

Yarbus, 1967

Active Vision
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Output of vision system is movement
of camera (pan/tilt) and of robot
wheels (mot1/mot2). Filter as before.

Co-evolution F.S. + A.V.
Goal: Robot must move around simple arena using only vision information
from a pan/tilt camera.
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Fitness = percentage of covered
distance D in R races on M circuits
(limited time for each race).

Evolving a Car Driver
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Physical sensors deliver uncertain values and commands to
actuators have uncertain effects.

The body of the robot and the environment should be carefully
(not accurately) reproduced in the simulation.
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Different physical sensors and actuators may perform differently
because of slight differences in their electronics or mechanics.
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Simulations

Simulation: Noise
The simplest and most often used way to ensure that simulation results
transfer to real robots consists of adding noise from a uniform distribution
centered about zero to the precise values produced by analytical models.

Noise can/should be added to:
- computed speeds (kinematic equations)
- cartesian coordinates (trigonometric transformations)
- sensor values (usually linearly monotonic functions)

Typical noise values in the literature are in the range of 5% of the signal

However, this method does
not yet guarantee a perfect
transfer [Miglino et al., 1995]
because the noise in the
environment is not uniform.

simulation real

obstacle avoidance
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Simulation: Sampling
Sampling consists in measuring the values returned by the robot sensors
for given objects and by actuators for given speeds.
The values are stored in a look-up table and accessed by the simulator.
Furthermore, some noise (5%) is added to the values.

0.962 deg.1 mm

.........

0.950 deg.2 mm

0.980 deg.1 mm

sample valangledistance

9.9, 9.810 mm/sec10 mm/sec

.........

0.1, 0.0-5 mm/sec5 mm/sec

5.0, 5.05 mm/sec5 mm/sec

sample x,yspeed rightspeed left

simulation real

obstacle avoidanceThis method guarantees an
excellent transfer from simulated
to real robot [Miglino et al., 1995],
but it is feasible only for simple
sensors and for simple
environments (squared and
circular objects).

Simulation: Minimal
Minimal simulations [Jakobi, 1997] model only those characteristics of the
interaction between robot and environment that are relevant for the
expected behavior (base set features). The remaining features are
considered implementation-specific and therefore are simpified and varied
randomly from one trial to the next so that evolution does not rely on them.

Minimal simulations speed up significantly computing time and transfer
well to the real world, but require the programmer to know in advance what
will be the relevant features that must be accurately modeled.



Evolutionary Robotics: A Short Tutorial

© 2005, Dario.Floreano@epfl.ch, http://lis.epfl.ch

Brains & Models
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Alice Micro-Robot
• microcontroller PIC16F84
• 2mA @ 5V
• 10 hours autonomy
• 2 swatch motors
• 4 proximity sensors
• modular (vision, radio, etc.)

Bit-size Evolution
[Floreano et al, 2002]

Steady-state evolution

Fitness = V x Δv x (1-s)
Forward navigation with obstacle avoidance

• bias: 

• IR Right:

• IR Left: 
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Demo

brain space

from sensors

to motors

Evolution of Neural Gas
Computational view of the brain is based on wire metaphor and local
communication. However, biological neurons can communicate across
larger areas emitting gas.

An effect of gas is to change the
response of other neurons that are
sensitive to it.

Smith & Husbands [1998, 2000] have 
explored evolution of gas emitting controllers 
for vision-based navigation (gantry robot task)
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1 synapse

synapse sign

synapse strength

Genetically-determined

1 synapse

synapse sign

learning rule
-  hebb
-  postsynaptic
-  presynaptic
-  covariance
learning rate

Adaptive

Evolution OF Learning

Plain Hebb

Postsynaptic

Presynaptic

Covariance

Floreano and Mondada [1994] suggested to genetically encode and evolve
different types of learning rules found in biological brains. The rules are
applied to the synaptic weights starting always from random initial conditions.

Important aspects:
- A neural network can use different learning rules in different parts
- There is no need of teacher or reinforcement learning, no gradient descent and local minima
- The Baldwin effect cannot take place, individuals are selected for their ability to learn

Test in new environment

On-line self-adaptation
For sake of comparison, a Khepera robot has been evolved in the looping maze
used earlier. Evolved robots display the ability to develop the obstacle
avoidance navigation in few seconds after being created and improve it over
time.
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Dynamic stability

In addition, they perform well in different environments by developing suitable
strategies. Contrary to conventional models, several synapses continue to change,
but the overal pattern of change is dynamically stable.
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Fitness= time_gray_light / total_time

A Sequential Task

IR

Vision

Motors

Light

synapse

neurons (t-1)

A Khepera robot is evolved to switch on a light and go under the light, but this
sequence of actions is not directly rewarded by the fitness function. Two conditions
are measured, evolving weights or learning rules.

evolution
of weights

evolution
of rules

Genetically-determined Adaptive

Sensory appearance
Let now take best evolved individuals and put them in conditions that are
different from those experienced during evolution.
Evolved adaptive individuals can cope with new colours of the walls
whereas genetically-determined individuals fail.

Similarly, evolved adaptive
individuals transfer smoothly
from simulated to real world.
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Genetically-determined Adaptive

Environmental layout

Another important feature of this environment is the position of the the
light switch and of the light bulb.
Evolved adaptive individuals can cope with new positions of the two
landmarks whereas genetically-determined inviduals cannot.

AdaptiveGenetically-determined

Robot transfer
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Morphologies
[Sims, 1994] Body representation is directed

graph. Nodes have properties:
• dimension
• joint type (rigid, twist, revolute, ...)
• recursive-limit
• connection (position, orientation, scale,
reflection)
• terminal
• neural circuit

genotype phenotype

Neural circuit representation is directed
graph. Nodes have properties:
• sensor

• joint sensor
• contact sensor
• photosensor

• neuron (math type)
• sum
• memory
• oscillator
• max, etc.

• effector (force on muscle)
• positive/negative (push/pull)

Example

[Sims, 1994]

body

brain

genome
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Framstick [Komosinski & Ulatowski, 1999]

Primitives are joined sticks. Sticks can host sensors and neurons. Joints
are actuated by muscles. Fast simulation using finite element method
(only force effects on few parts of the system are computed).
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Lipson & Pollack (2000) added the physical
construction of the creatures by using a 3D
thermoplastic printer and extensible bars.
• Evolution takes place in simulation
• Fitness = distance covered by the robot
• Selected individuals are built by:
• printing the bars
• fitting joints and motors
• downloading neural network in PIC controller

video
clip
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Competitive Co-evolution
Competitive Co-Evolution is a situation where two different species co-
evolve against each other. Typical examples are:

- Prey-Predator
- Host-Parasite

Fitness of each species depends on fitness of opponent species.

Potential advantages of Competitive Co-evolution:
– It may increase adaptivity by producing an evolutionary arms race [Dawkins
& Krebs, 1979]

– More complex solutions may incrementally emerge as each population tries
to win over the opponent

– It may be a solution to the boostrap problem

– Human-designed fitness function plays a less important role (= autonomous
systems)

– Continuously changing fitness landscape may help to prevent stagnation in
local minima [Hillis, 1990]

Formal Models
Formal models of competitive co-evolution are based on the Lotka-
Volterra set of differential equations describing variation in population
size.

Notice that in biology what matters is variation in population size, not
behavioral performance, which is difficult to define and measure!

host
parasite

dN1/dt=N1 (r1-b1N2)

dN2/dt=N2 (-r2+b2N1)

where:
- N1, N2 are the two populations
- r1 is increment rate of prey without predators
- r2 is death rate of predators without prey
- b1 is death rate of prey caused by predators
- b2 is ability of predators to catch prey
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Complications: Landscape
Whereas in single-species evolution the fitness landscape is static and
fitness is a monotonic function of progress, in competitive co-evolution
the fitness landscape can be modified by the competitor and fitness
function is no longer an indicator of progress.
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competitive co-evolution

Predator-Prey Robots
Let us consider the case of two co-evolutionary robots, a predator and a prey,
that evolve in competition with each other. Questions:

a) can we evolve functional controllers with simple fitness functions?
b) what are the emerging dynamics?
c) do we observe incremental progress?
d) are co-evolved solutions better than evolved solutions?

Goal = Predator must catch the prey, prey must avoid predator
Prey = proximity sensors only, twice as fast as predator   
Predator = proximity + vision, but half max speed of prey
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The two robots are positioned in a white arena. Predator and prey
are tested in tournaments lasting 2 minutes. Robots are equipped
with contact sensors.
Fitness prey = TimeToContact   Fitness predator = 1-TimeToContact

Experimental Setup

Measuring Progress
Progress can be measured by testing evolved individuals against all best
opponents of previous generations. There are two ways of doing so.

g. prey
g.
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prey wins

predator wins

CIAO graphs [Cliff & Miller, 1997]

These graphs represent the outcome of
tournaments of the Current Individual vs.
Ancestral Opponent across generations.
Ideal continuous progress would be
indicated by lower diagonal portion in black
and upper diagonal portion in white.

fitness

generations

prey

predator

MASTER tournaments [Floreano & Nolfi, 1997a]

These graphs plot the average outcome of
tournaments of the current individual
against all previous best opponents. Ideal
continuous progree would be indicated by
continuous growth.
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Limited Progress
with real robots

with simulated robots

Progress analysis of co-evolved robots
using Master Tournament technique
shows that there is some progress only
during the initial 20 generations. After that,
the graphs are flat or even decreasing.
In other words, individuals born after 50
generations may be defeated by individuals
that were born 30 generations earlier.

These data indicate that co-evolution may
have developed into re-cycling dynamics
after 20 generations.

CIAO data are
even less capable
of revealing
progress.

Emerging strategies

predator

prey

Despite lack of progress measured against previous opponents, co-
evolved individuals display highly-adapted strategies against their
opponents and a large variations of behaviors.
Each tournament shows individuals belonging to the same generation.
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SUPER-ORGANISM
Wheeler (1928)

Cooperative Systems
Coordinated Behavior

Coordinated Transportation

Cooperative Co-evolution

1. Levels of Selection: individual fitness or colony fitness? 

2. Genetic Relatedness: clones or different individuals?

3. Hardware: what it takes to cooperate?

KEY ISSUES
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Selection and Relatedness

NEST SMALL FOOD BIG FOOD
Food is consumed
when is taken to 
the nest

One robot can push
Energy only for 
that robot

Two robots needed
Energy shared among
all robots
Small energy for 
each robot

Collective Foraging Task
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Performance Comparison

Genetic relatedness

To encourage emergence of cooperative behaviors, enforce
genetic relatedness by maintaining groups of clones
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Autonomous Systems Lab
http://asl.epfl.ch

Rotational Force Sensor

Color-based
communication

S-bot S-toy

Hardware
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Coordinated Motion

Fitness = amount of distance covered by the center of group
Genetic encoding = weight of neural network, cloning
Neural network = perceptron (in=rot sensor; out=wheels + turret rotation)
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Coordinated hole avoidance
Fitness = amount of distance covered by the center of group
Genetic encoding = weight of neural network, cloning
Neural network = perceptron (in=infrared+rot sensor+ microphone; 
out=wheels, rotation of turret)

For more Information on Swarm-bots, see http://www.swarm-bots.org

Foundations of…

MIT Press
Hardcover, 2000, 2001
Paperback, 2004

Free Software
http://gral.ip.rm.cnr.it/evorobot/simulator.html
http://lis.epfl.ch


