Accelerating Problem Solving by Combining Machine Learning and Human Learning

David B. Fogel, Ph.D.
Natural Selection, Inc.
3333 N. Torrey Pines Ct., Suite 200
La Jolla, CA 92037
dfogel@natural-selection.com
The Future of Problem Solving Combines Machines with Humans

- Computational intelligence methods can solve problems autonomously
- When combined with human expertise, problem solving accelerates
- When combined with hardware advances, we become truly orders of magnitude more able to address the problems that we face
- My focus is on evolutionary machine learning
Combining Machine Intelligence with Human Intelligence

- Evolutionary computation can discover informative patterns using “self-play”
 - Strategies compete against each other
- Each generation reuses the information stored in the previous generation to explore for new strategies
- Can be combined with human intelligence to achieve solutions rapidly
- Projection: Combination of methods leads to significant acceleration of problem solving in the coming decade
Evolutionary Traveling Salesman Demonstration
Traveling Salesman Demonstration: Cross the Y-axis as Little as Possible

- The traveling salesman must visit every city, so he must cross the y-axis at least twice.
- The best evolved solution crosses only twice and still provides an optimized path.
- Whether or not the path is perfect is unknown.
 - The solution provided is “good enough, fast enough to be useful.”
Traveling Diamond Smuggler Example

- Traveling diamond smuggler gets paid every time he crosses the y-axis.
- Must still minimize path length to avoid detection by authorities.
Evolutionary Optimization in Continuous Domains and Changing Environments
Combining Machine Intelligence with Human Intelligence

- Evolutionary computation can discover informative patterns using “self-play”
 - Strategies compete against each other
- Each generation reuses the information stored in the previous generation to explore for new strategies
- Can be combined with human intelligence to achieve solutions rapidly
- Projection: Combination of methods leads to significant acceleration of problem solving in the coming decade
Striving for Computational Intelligence

- Since the advent of the modern digital computer we’ve tried to generate machines as intelligent as humans
- Primary goal of early artificial intelligence
 - General problem solver
- What is intelligence?
 - Central problem: No well-accepted definition of intelligence, let alone “artificial intelligence”
- Surrogate challenges in the form of Turing Tests
Turing Test: The Imitation Game

- Turing (1950) replaced the question of “Can a machine think?” to “Can a machine fool an interrogator as well as a human?”
- The test involves a man trying to convince an interrogator than he is a woman
- Machine “passes the test” if it can fool the interrogator as often as the man

Figure 1-1 The Turing test. An interrogator (C) questions both a man (A) and a woman (B) and attempts to determine which is the woman.
Turing Test → Intelligence?

- Turing (1950) never claimed that a machine that passes the test would be “intelligent”
 - “Too meaningless to deserve discussion”

- The Turing Test is no more of a test for thinking machines than it is a test for femininity
 - If a man can fool an interrogator into believing he is a woman as often as a woman can convince the interrogator, is the man a woman?

- What were the consequences of focusing on this test?
Consequences

- Impossible to envision passing the test in the 1960s based purely on computer speed
- Narrow the focus
 - Try games
- Emphasize applications, emphasize humans
- Ask experts how they do things
- Never mind what intelligence is or what sort of intelligence we are trying to generate
 - Minsky: Intelligence means the ability to solve hard problems
- The Turing Test led to the death of AI
Artificial Intelligence

- For an organism (system) to be intelligent, it must make decisions
- A decision arises when available resources must be allocated
 - Must face a range of decisions, otherwise there’s really no decision at all
- Decision making requires a goal
- Intelligence may be defined as “the ability of a system to adapt its behavior to meet its goals in a range of environments”
Adaptive Behavior

→ Evolutionary Computation

- Adaptation is fundamentally an evolutionary process whether it occurs in phyletic, ontogenetic, or sociogenetic systems
- Unit of mutability and reservoir of stored knowledge
- The mechanisms for change and memory differ but the behavioral effects are notably similar
- If we really want to talk about intelligent machines we have to talk about machines that learn and adapt to meet goals based on experience
 - MACHINES THAT EVOLVE
The Game of Checkers

- 8x8 board with red and black squares
- Two players (Red & White)
- 12 pieces (checkers) for each player
- Diagonal Moves
- Jumps are forced
- Checkers and kings
- Win, lose, and draw
Computer Checkers

- Samuel’s first checkers program
- World Man-Machine Checkers Championship
 - Chinook defeated Marion Tinsley (human), the world checkers champion and won the championship
- Chinook
 - Incorporated a linear polynomial as a board evaluator
 - All “items” of knowledge were preprogrammed, opening book, and all 8-piece endgame database (440 billion stored positions)
 - Did not use any learning
- Programmed human expertise to beat human expertise
Evolving Strategies for Checkers

- 32x1 board vector
- Entries \(-K, -1, 0, 1, K\)
- Players pieces positive
- Opponents pieces negative
- Each player consisted of
 - A neural network board evaluator
 - A unique king value \(K\)
 - The NN and \(K\) are evolvable
- Minimax search
 - 4-ply for training and 6-ply for playing against humans
The closer the NN output was to 1.0 the better the move
The pieces changed sign when move alternated between players
Evolving Checkers Players

- **Neural network weight update**
 \[
 \sigma'_i(j) = \sigma_i(j) \exp(\tau N_j(0,1)), \quad j = 1, \ldots, N_w \quad \text{and} \quad \tau = \left(\sqrt{2\sqrt{N_w}}\right)^{-1}
 \]
 \[
 w'_i(j) = w_i(j) + \sigma'_i(j) N_j(0,1), \quad j = 1, \ldots, N_w
 \]

- **King value update**
 \[K' = K + 0.1U, \quad \text{where} \quad U \in \{-1,0,1\}\]
 - \(K\) was limited to \([1.0,3.0]\)

- **Tournament**
 - Each player (parents and offspring) played one checkers game with five randomly selected opponents from the population
 - Win = 1 points, draw = 0 points, and loss = −2 points
 - Games were limited to a maximum of 100 moves
Evolution

- 0. Initialization
 - 15 parents with NN weights uniformly sampled from $[-0.2,0.2]$
- 1. Offspring generation
 - Each parent generated one offspring
- 2. Tournament
 - All 30 players competed with 5 randomly selected players from the population
- 3. Selection
 - 15 players with the greatest total points were retained as parents for the next generation
- 4. Loop back to step 1.
- Evolution was conducted for 100 generations
Evaluation Against Human Players

- Best player at generation 10 defeated the authors (novice checkers players)
- Best player at generation 100 was evaluated over 100 games against rated human players at the internet gaming site: www.zone.com
- USCF checkers rating on the zone
 - Starts out at 1600 and follows:

 \[
 \text{Outcome} \in \{1(\text{win}), 0.5(\text{draw}), 0(\text{loss}) \}
 \]

 \[
 W = \frac{1}{1 + 10^{0.0025(R_{\text{opp}} - R_{\text{old}})}}
 \]

 \[
 R_{\text{new}} = R_{\text{old}} + 32(\text{Outcome} - W)
 \]
Results: Game Outcomes

![Graph showing game outcomes and ratings over game numbers](image-url)

- **Opponent**
- **ENN**
- **Outcome**

Legend:
- Win
- Draw
- Loss
Results: Game Outcomes

![Diagram showing game outcomes by rating, including 20 games with 4 wins and 3 losses, 9 games with 7 wins and 8 losses, 3 games with 3 wins and 5 losses, and 0 games with 0 wins and 0 losses.]
Example of Human Feedback

- Chatbox affords possibility for opponents to communicate
- Often received compliments when neural network made good moves
Extension to Object Neural Networks

Sample 3x3 subsection including squares 1, 5, 6, and 9
Sample 4x4 subsections

Red

White
Results with Object Neural Network

- Trained over 840 generations (6 months, P2 450MHz)
- Tested on 165+ games, Blondie24
Summarizing Blondie24 Results

- Rated at 2045, “expert” level
- Often played to restrict mobility of opponent
 - To the extent that the neural network used this feature, it first had to invent the feature
 - We named the neural network Anaconda
 - Then brought Blondie24 out of retirement
Checkers Challenges

- **Chinook**
 - 10 games at the novice setting (high-level expert)
 - Results:
 - Wins: 2, Draws: 4, Losses: 4
 - Verifies expert rating

- **Playsite.com Tournament**
 - 8 minutes/move
 - Blondie24 won the tournament

- **2000-2001 Congress on Evolutionary Computation**
 - Over 100 colleagues have challenged Anaconda for $100-$200
 - My money is still safe

- Written about in the *NY Times*
Blondie24: Playing at the Edge of AI

- Amazon.com
- Written for general science audience
- Published by Morgan Kaufmann Publishers, Inc. (2002)
Evolutionary Checkers starring Blondie24

- Digenetics, Inc. has brought Blondie24 to life
- www.digenetics.com
- Version 2.0 includes Blondie’s “friends,” Shannen and Amber
- At Boston Museum of Science
Evolving Object Neural Networks for Chess
Evolutionary Parameters and Baseline

- Material values
- Position value tables per piece type
- Neural networks (3)
- 10 parents, 10 offspring
- Typical mutation and self-adaptation
- 50 generations, 10 independent trials
- Non-evolved material + PVTs yielded rating of 1870 (Class A) when tested against Chessmaster (65 games)
Testing in Tournament Conditions

- Continued evolving Blondie25 this year for 7462 generations
 - All on one P4 2.5GHz/512MB, 7 months
- New tests show 69% win rate against the non-evolved player, up from 61%
- Tests against Pocket Fritz 2.0
 - 13 Wins, 0 Losses, 3 Draws = rating of 2650
- Tests against Fritz 8
 - 3 Wins, 11 Losses, 10 Draws = rating of 2650
Digenetics, Inc.
Chess with an Attitude!

...featuring literally intelligent lifelike digital opponents with personalities!
Evolving New Electronic Circuits

- Complicated circuits can be invented by manipulating the positions of resistors, capacitors, and other electronics
- Hybrid system of domain knowledge, structural representation, variation operators
Evolving New Drugs

- Using accurate models of the target protein, pharmaceutical companies can screen 50,000-100,000 possible candidate drugs in less than a week by evolving those that appear best.

- Hybrid system of domain knowledge, evolution, traditional gradient search.
What’s Next?

- Combining machine intelligence with human intelligence (and expertise) can already create significant solutions to vexing problems.
- Hardware designs in the future will be tailored to make best use of the algorithms, and their synergy with human problem solving.
 - Advances in industry, medicine, defense, and finance.
Acknowledgments

- Thanks to Tim Hays, Sarah Hahn, James Quon, Kumar Chellapilla, Doug Johnson, Paul Werbos, Garry Kasparov
- Thanks to AC2005 organizers
- Work sponsored in part by NSF SBIR grants DMI-0232124 and DMI-0349604