
Emil M. Petriu, Dr. Eng., P. Eng., FIEEE
Professor 
School of Information Technology and Engineering
University of Ottawa
Ottawa, ON., Canada
http://www.site.uottawa.ca/~petriu/
petriu@site.uottawa.ca

University of Ottawa 
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

Neural Networks :Neural Networks :
BasicsBasics



Biological Neurons

Incoming signals to a dendrite may be inhibitory or excitatory.
The strength of any input signal is determined by the strength of
its synaptic connection. A neuron sends an impulse down its axon
if excitation exceeds inhibition by a critical amount (threshold/
offset/bias) within a time window (period of  latent summation).

Biological neurons are rather slow (10-3 s) when compared with 
the modern electronic circuits. ==>  The brain is faster than an
electronic computer because of its massively parallel structure.
The brain has approximately 1011 highly connected neurons (approx. 
104 connections per neuron).

Dendrites carry electrical signals in into the neuron body. 
The neuron body integrates and thresholds the incoming signals.
The axon is a single long nerve fiber that carries the signal from
the neuron body to other neurons. 

Memories are formed by the modification of the synaptic strengths
which can change during the entire life of the neural systems..

Body

Axon

Dendrites

Synapse

A synapse is the connection between dendrites of two neurons.    
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W. McCulloch & W. Pitts (1943) the first theory on the fundamentals of neural computing 
(neuro-logicalnetworks)  “A Logical Calculus of the Ideas Immanent in Nervous Activity”
==> McCulloch-Pitts neuron model;  (1947) “How We Know Universals” - an essay on networks

capable of  recognizing spatial patterns invariant of geometric transformations. 

Cybernetics: attempt to combine concepts from biology, psychology, mathematics, and engineering.

1940s

Natural components of mind-like machines are simple abstractions based on the behavior 
of  biological nerve cells, and such machines can be built by interconnecting such elements. 

Historical Sketch of Neural Networks

D.O. Hebb (1949) “The Organization of Behavior” the first theory of psychology on conjectures 
about neural networks (neural networks might learn by constructing internal representations of
concepts in the form of “cell-assemblies” - subfamilies of neurons that would learn to support one 
another’s activities).  ==> Hebb’s learning rule: “When an axon of cell A is near enough to excite a 
cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased.”
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1950s

Cybernetic machines developed as specific architectures to perform specific functions.
==> “machines that could learn to do things they aren’t built to do”

M. Minsky (1951) built a reinforcement-based network learning system.

F. Rosenblatt (1958) the first practical Artificial Neural Network (ANN) - the perceptron, “The 
Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain.”.

IRE Symposium “The Design of Machines to Simulate the Behavior of the Human Brain” (1955)
with four panel members: W.S. McCulloch, A.G. Oettinger, O.H. Schmitt, N. Rochester, invited 
questioners: M. Minsky, M. Rubinoff, E.L. Gruenberg, J. Mauchly, M.E. Moran, W. Pitts, and the
moderator H.E. Tompkins.

By the end of 50s, the NN field became dormant because of the new AI advances based on
serial processing of symbolic expressions.
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1960s

Connectionism (Neural Networks) - versus - Symbolism (Formal Reasoning)

B. Widrow & M.E. Hoff (1960) “Adaptive Switching Circuits” presents an adaptive percepton-like 
network. The weights are adjusted so to minimize the mean square error between the actual and desired 
output ==> Least Mean Square (LMS) error algorithm. (1961) Widrow and his students “Generalization 
and Information Storage in Newtworks of Adaline “Neurons.”

M. Minsky & S. Papert (1969) “Perceptrons” a formal analysis of the percepton networks explaining
their limitations and indicating directions for overcoming them ==> relationship between the perceptron’s
architecture and what it can learn:  “no machine can learn to recognize X unless it poses some scheme
for representing X.”

Limitations of the perceptron networks led to the pessimist view of the NN field as having
no future ==> no more interest and funds for NN research!!!  
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1970s

Memory aspects of the Neural Networks.

T. Kohonen (1972) “Correlation Matrix Memories” a mathematical oriented paper proposing a 
correlation matrix model for associative memory which is trained, using Hebb’s rule, to learn 
associations between input and output vectors.

J.A. Anderson (1972) “A Simple Neural Network Generating an Interactive Memory” a physiological
oriented paper proposing a “linear associator” model for associative memory, using Hebb’s rule, to learn
associations between input and output vectors. 

S. Grossberg (1976) “Adaptive Pattern Classification and Universal Recording: I. Parallel Development
and Coding of Neural Feature Detectors”describes a self-organizing NN model of the visual  system
consisting of a short-term and long term memory mechanisms. ==> continuous-time competitive 
network that forms a basis for the Adaptive Resonance Theory (ART) networks.
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1980s

Revival of Learning Machine.

D.E. Rumelhart & J.L. McClelland, eds. (1986) “Parallel Distributed Processing: Explorations in the
Microstructure of Cognition: Explorations in the Microstructure of Cognition” represents a milestone
in the resurgence of NN research.

International Neural Network Society (1988) …. IEEE Tr. Neural Networks (1990).

J.A. Anderson & E. Rosenfeld (1988) “Neurocomputing: Foundations of Research” contains over forty
seminal papers in the NN field. 

DARPA Neural Network Study(1988) a comprehensive review of the theory and applications of the 
Neural Networks.

[Minsky]: “The marvelous powers of the brain emerge not from any single, uniformly structured 
connectionst network but from highly evolved arrangements of smaller, specialized networks 
which are interconnected in very specific ways.”
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Artificial  Neural  Networks  (ANN)

McCulloch-Pitts model of an artificial neuron

y = f ( w1
. p1 +…+ wj

. pj +... wR
. pR + b)

wjpj

w1p1

wRpR
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Some transfer functions “f”

Hard Limit:  y = 0  if  z<0
y = 1  if  z>=0
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Symmetrical:  y = -1  if  z<0
Hard Limit y = +1  if  z>=0
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z
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Log-Sigmoid:
y =1/(1+e-z)

0

1
y
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Linear:
y = z

0

y

zp = (p1, … , pR)T is the input column-vector  

W = (w1, … , wR)  is the weight row-vector  

y = f (W. p + b)

*) The bias  b can be treated as a weight whose input is always 1.
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The Architecture of an ANN
§ Number of inputs and outputs of the network;

§ Number of layers;

§ How the layers are connected to each other;

§ The transfer function of each layer;

§ Number of neurons in each layer;ANNs map input/stimulus values 
to output/response values: Y= F (P).

Intelligent systems generalize:          
their  behavioral repertoires exceed 
their  experience.  An intelligent              
system is said to have a creative     
behaviour if it provides appropriate                                     

responses when faced with new stimuli.   Usually the new stimuli
P’ resemble known stimuli P and their corresponding  responses
Y’ resemble known/learned responses Y.

Measure of system’s F creativity:

Volume of “stimuli ball BP “

Volume of “response ball BY”

University of Ottawa 
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

BP

P

P’
BY

Y
Y’
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Most of the mapping functions can be implemented by a two-layer ANN: a sigmoid layer feeding a 
linear output layer.

ANNs with biases can represent relationships between inputs and outputs than networks 
without biases.

Feed-forward ANNs cannot implement temporal relationships. Recurrent ANNs have internal
feedback paths that allow them to exhibit temporal behaviour. 

Feed-forward architecture with three layers
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Recurrent architecture (Hopfield NN)

The ANN is usually supplied with an initial
input vector and then the outputs are used 
as inputs for each succeeding cycle.
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Learning Rules (Training Algorithms)

Supervised Learning

Procedure/algorithm to adjust the weights and biases
in order for the ANN to perform the desired task.  

wj

. . .

Σ f yz

b

Learning
Rule

e = t-ye t

pj
( j= 1,…,R)

. . .

For a given training set of pairs
{p(1),t(1)},...,{p(n),t(n)}, where p(i) 
is an instance of the input vector and 
t(i) is the corresponding  target
value for the output y, the learning  
rule calculates the updated value of 
the neuron weights and bias. 

Reinforcement Learning

Similar to supervised learning - instead of being provided with the correct output value for each given
input, the algorithm is only provided with a given grade/score as a measure of  ANN’s performance. 

Unsupervised Learning

The weight and unbiased are adjusted based on inputs only.  Most algorithms of this type  learn to
cluster input patterns into a finite number of classes.  ==> e.g. vector quantization applications
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THE PERCEPTRON

The perceptron is a neuron with a hard limit transfer function and a weight adjustment mechanism
(“learning”) by comparing the actual and the expected output responses for any given input /stimulus.  

[Minski] “Perceptrons make decisions/determine whether or not event fits a certain pattern 
by adding up evidence obtained from many small experiments”

Frank Rosenblatt (1958), Marvin Minski & Seymour Papert (1969)
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Perceptrons are well suited  for 
pattern classification/recognition.

The weight adjustment/training
mechanism is called the perceptron
learning rule.

y = f (W. p + b)

NB: W is a row-vector and  p is a column-vector. 
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§ Supervised learning

t  <== the target value 

e = t-y   <== the error
wjpj

w1p1

wRpn
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Σ y
z

b

f

0

1

p = (p1, … , pR)T is the input column-vector  

W = (x1, … , xR)  is the weight row-vector  

Because of the perceptron’s hard limit 
transfer function  y, t, e can take only 
binary values

Perceptron learning rule:

Wnew = Wold + e.pT

bnew = bold + e

if   e = 1, then  Wnew = Wold + p , bnew = bold + 1;

if   e = -1, then  Wnew = Wold - p , bnew = bold - 1 ;

if   e = 0, then  Wnew = Wold .

Perceptron Learning Rule
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The hard limit transfer function (threshold function) provides the ability to classify input vectors 
by deciding whether an input vector belongs to one of  two linearly separable classes.

w1p1

w2p2

Σ y
z

b
f

0

1

Two-Input Perceptron
p2

p10

-b / w2

-b / w1

( z = 0 )

w1
. p1 + w2

. p2   +  b =0 

y = sign (b) y = sign (-b)

The two classes (linearly separable regions) in the two-dimensional
input  space (p1, p2) are separated by the line of equation  z = 0. 

y = hardlim (z) = hardlim{ [w1 , w2] . [p1 , p2]T + b}

The boundary is always orthogonal  to the weight vector W.

W
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q Example #1: Teaching a two-input perceptron to classify five input vectors into two classes

p(1) = (0.6, 0.2)T

t(1) = 1
p(2) = (-0.2, 0.9)T

t(2) = 1
p(3) = (-0.3, 0.4)T

t(3) = 0
p(4) = (0.1, 0.1)T

t(4) = 0
p(5) = (0.5, -0.6)T

t(5) = 0

p1

p2

1

1

-1

-1

P=[0.6 -0.2 -0.3 0.1 0.5;
0.2  0.9  0.4 0.1 -0.6];

T=[1 1 0 0 0];
W=[-2 2];
b=-1;
plotpv(P,T);
plotpc(W,b);
nepoc=0
Y=hardlim(W*P+b);
while any(Y~=T)
Y=hardlim(W*P+b);
E=T-Y;
[dW,db]= learnp(P,E);
W=W+dW;
b=b+db;
nepoc=nepoc+1;
disp(‘epochs=‘),disp(nepoc),
disp(W), disp(b);
plotpv(P,T);
plotpc(W,b);
end

The MATLAB solution is:
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q Example #1:

After  nepoc = 11  
(epochs of training
starting from an 

initial weight vector
W=[-2 2] and a
bias b=-1)
the weights are:

w1 = 2.4
w2 = 3.1 

and the bias is:

b = -2

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
-1.5

-1

-0.5

0

0.5

1

1.5

2
Input Vector Classification

p1

p 2
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Ø The  larger an input vector p is, the larger is its effect on the weight vector W during the learning process

Long training times can be caused by the presence of  an “outlier,” i.e. an input vector
whose magnitude is much larger, or smaller, than other input vectors.

Normalized perceptron learning rule,
the effect of each input vector on the
weights is of the same magnitude:

Wnew = Wold + e.pT / p 

bnew = bold + e

Perceptron Networks for Linearly Separable Vectors

The hard limit transfer function of the perceptron provides the ability to classify input vectors 
by deciding whether an input vector belongs to one of  two linearly separable classes.

p2

p1

10

1
AND

p2

p1

10

1
OR

W = [ 2  2 ]
b = -3

W = [ 2  2 ]
b = -1

p  =   [ 0  0  1  1 ;
0  1  0  1 ]

tAND =[ 0  0 0  1 ]

p  =   [ 0  0  1  1 ;
0  1  0  1 ]

tOR = [ 0  1  1  1 ]

University of Ottawa 
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu



Three-Input Perceptron

w1p1

w2p2
Σ

yz

b
f

0

1

w3p3

y =hardlim ( z ) 
= hardlim{ [w1 , w2 ,w3] .

[p1 , p2 p3]T + b}

-2
-1

0
1

2

-2

-1
0

1

2
-2

-1

0

1

2

p1

p2

p3

P = [ -1  1  1  -1 -1  1  1 -1;
-1  -1  1  1  -1 -1  1  1;
-1  -1 -1 -1   1  1  1   1]

T = [ 0 1 0 0 1 1 1 0 ]

EXAMPLE

The two classes in 
the 3-dimensional 

input  space (p1, p2, p3) 
are separated by the 
plane of equation  z = 0. 
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One-layer multi-perceptron classification of linearly separable patterns
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E
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Demo P3 in the “MATLAB Neural Network 
Toolbox - User’s Guide”

T = [ 1 1 1 0 0 1 1 1 0 0;
0 0 0 0 0 1 1 1 1 1 ]

00 = O ; 10 = +
01 = * ;  11 = x

P = [ 0.1  0.7   0.8  0.8  1.0  0.3  0.0  -0.3  -0.5  -1.5;
1.2   1.8  1.6   0.6  0.8  0.5  0.2   0.8  -1.5  -1.3 ]

R = 2 inputs
S = 2 neurons

Where:  
R = # Inputs
S = # Neurons

MATLAB representation:

W

SxR

b

Sx1R

p

Rx1

1

z

Sx1

Sx1

y

Input Perceptron Layer

y = hardlim(W*p+b)

Σ
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p  =   [ 0  0  1  1 ;
0  1  0  1 ]

tXOR = [ 0  1  1  0 ]

XOR
p2

p1

10

1

If a straight line cannot be drawn between the set of 
input vectors associated with targets of  0 value and 
the input vectors associated with targets of 1, than a 
perceptron cannot classify these input vectors. 

1   1

1   1

w1,1 w1,2

w2,1    w2,2
=

b11

b12

-1.5

-0.5
=

[ w21,1 w21,2] = [-1  1] [ b21 ] = [-0.5]

One solution is to use a two layer architecture, the  perceptrons in the first layer are
used as preprocessors producing linearly separable vectors for the second layer.

(Alternatively, it is possible to use linear ANN 
or back-propagation networks)w11,1

Σ
y11z11

b11 f1
0

1

Σ
y12z12

b12 f1
0

1

p1

p2 Σ y21
z21

b21

f2
0

1w11,2

w12,1

w12,2

w21,2

w21,1

Perceptron Networks for Linearly Non-Separable Vectors
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The row index of a weight indicates the destination 
neuron of the weight and the column index indicates 
which source is the input for that weight.



LINEAR  NEURAL  NETWORKS  (ADALINE NETWORKS)

Widrow-Hoff Learning Rule ( The ) Rule )

wj

. . .

Σ
y(y = z)

b

LMS 
Learning Rule

e = t-ye t

pj

( j= 1,…,R)

. . .

( ADALINE <== ADAptive LInear NEuron )

(NB:  E[…] denotes the “expected value”; p is column vector)

The LMS algorithm will adjust ADALINE’s weights 
and biases in such away to minimize the mean-square-
error E [e2] between all sets of the desired response
and network’s actual response:

E [ (t-y)2 ] = E [ (t - (w1 … wR b) .  (p1 … pR 1)T )2 ]
= E [ (t - W . p)2 ] 

Where:   R = # Inputs,  S = # Neurons

W

SxR

b

Sx1R

p

Rx1

1

z

Sx1

Sx1

y

Input Linear Neuron Layer

y = purelin(W*p+b)

Σ

q Linear neurons have a linear transfer functionthat
allows to use a Least Mean-Square (LMS) procedure
- Widrow-Hoff learning rule- to adjust weights and
biases according to the magnitude of errors. 

q Linear neurons suffer from the same limitation as the
perceptron networks: they can only solve linearly
separable problems. 
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>> Widrow-Hoff algorithm

As t(k) and p(k) - both affecting e(k) - are independent of W(k), we obtain the final expression of the 
Widrow-Hoff learning rule:

W(k+1) = W (k) + 2.µ .e(k). p(k)

where  µ the “learning rate” and  e(k) = t(k)-y(k) = t(k)-W(k) . p(k) 

b(k+1) = b(k) +2.µ .e(k) 

The input cross-
correlation matrix

The cross-correlation 
between the input vector 
and its associated target.

If  the input correlation matrix is positive 
the LMS algorithm will converge as there will
a unique minimum of  the mean square error.

E [ e2 ] = E [ (t - W . p)2 ] = {as for deterministic signals the expectation becomes a time-average} 
= E[t2] - 2.W . E[t.p] + W . E[p.pT] . WT
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The weight vector is then modified in the direction that decreases the error:
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q The W-H rule is an iterative algorithm uses the “steepest-descent” method to reduce the mean-square-error. 
The key point of the W-H algorithm is that it replaces E[e2] estimation by the squared error of the iteration k: 
e2(k).  At each iteration step k it estimates the gradient of this error  k with respect to W as a vector consisting
of the partial derivatives of e2(k) with respect to each weight:  



>> Widrow-Hoff algorithm

Demo Lin 2 in the “MATLAB Neural Network Toolbox - User’s Guide”

P = [ 1.0  -1.2]
T = [ 0.5   1.0]

One-neuron one-input ADALINE, starting from some random
values for w = -0.96 and b= -0.90 and using the “trainwh” MATLAB
NN toolbox function, reaches the target after 12 epochs with an error 
e < 0.001.  The solution found for the weight and bias is: 

w = -0.2354 and  b= 0.7066.

Er
ro

r  

Weight   W
Bias  b

B
ia

s 
 b

Weight  W

University of Ottawa 
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu



Back-Propagation Learning 
- The Generalized  ) Rule

P. Werbos (Ph.D. thesis 1974);  
D. Parker (1985), Yann Le Cun(1985), 
D. Rumelhart, G. Hinton, R. Williams (1986) 

Two-layer ANN that can approximate 
any function with a finite number of

of  discontinuities, arbitrarily 
well, given sufficient neurons

in the hidden layer.

e2= (t-y2) = (t- purelin
(W2*tansig(W1*p
+b1) +b2))

The error is an indirect 
function of the weights 
in the hidden layers.

q Back-propagation  ANNs often have one or more hidden layers of 
sigmoid neurons followed by an output layer of linear neurons.

Linear Neuron Layer

W2

S2xS1

b2

S2x1

z2

S2x1

S2x1

y2

y2 = purelin(W2*y1+b2)

1

y1 = tansig(W1*p+b1)

W1

S1xR

b1

S1x1R

p

Rx1

1

z1

S1x1

S1x1

y1

Input Sigmoid Neuron Layer

Σ Σ

q Single layer ANNs are suitable to only solving linearly separable classification problems.  Multiple feed-
forward layers can give an ANN greater freedom.  Any  reasonable function can be modeled by a two layer 
architecture: a sigmoid layer feeding a linear output layer.

q Single layer ANNs are only able to solve linearly Widrow-Hoff learning applies to single layer networks.
==> generalized W-H algorithm (∆ -rule) ==> back-propagation learning.
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>>Back-Propagation

e = (t - yN)

t

e

R

p

Rx1

Input

Phase I : The input vector is propagated forward (fed-
forward) trough the consecutive layers of the ANN. 

yN

SN x 1

Phase II : The errors are recursively back-propagated
trough the layers and appropriate weight changes are 
made.  Because the output error is an indirect function 
of the weights in the hidden layers, we have to use the
“chain rule” of calculus when calculating the derivatives 
with respect to the weights and biases in the hidden layers.
These derivatives of the squared error are computed first
at the last (output) layer and then propagated backward
from layer to layer using the “chain rule.”

∆Wj | j=  N, N-1, …,1,0

q Back-propagation is an iterative steepest descent algorithm, in which the performance index 
is the mean square error E [e2] between the desired response and network’s actual response:
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EXAMPLE: Function Approximation by Back-Propagation

Linear Neuron Layer

W2

S2xS1

b2

S2x1

z2

S2xQ

S2x1

y2

y2 = purelin(W2*y1+b2)

1

y1 = tansig(W1*P+b1)

W1

S1xQ

b1

S1x1Q

P

RxQ

1

z1

S1xQ

S1x1

y1

Input Sigmoid Neuron Layer

Σ ΣR

S1 S2

R = 1 input
S1 = 5 neurons

in layer #1
S2 = 1 neuron 

in layer #2
Q = 21 input 

vectors

Demo BP4 in the” MATLAB Neural 
Network Toolbox User’s Guide”

The back-propagation algorithm took 454  epochs to
approximate the 21 target vectors with an error < 0.02
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Hardware Neural Network
Architectures
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ANNs / Neurocomputers ==>architectures optimized for neuron model implementation

§ general-purpose, able to emulate a wide range of NN models;
§ special-purpose, dedicated to a specific NN model.

ANN VLSI Architectures:
• analog ==> compact,high speed, 

asynchronous,  no quantization
errors, convenient weight  “+”and “X”;

• digital ==> more efifcient VLSI technology,
robust, convenient weight storage;

Pulse Data Representation:
• Pulse Amplitude Modulation (PAM) -

not satisfactory for NN processing;
• Pulse Width Modulation (PWM);
• Pulse Frequency Modulation (PFM).

Number of nodes

0

103

106

109

1012

103 106 109     1012 Node complexity
[VLSI area/node]

RAMs
Special-purpose neurocomputers

General-purpose neurocomputers
Systolic arrays

Computational arays

Conventional parallel 
computers

Sequential computers

[from P. Treleaven, M. Pacheco, M. Vellasco, 
“VLSI Architectures for Neural Networks,”
IEEE Micro, Dec. 1989, pp. 8-27]

Pulse Stream ANNs: combination of 
different pulse data representation methods
and opportunistic use of both analog and 
digital implementation techniques.

Hardware NNs consisting of a collection of simple neuron circuits provide the massive 
computational parallelism allowing for  a higher modelling speed.
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HARDWARE NEURAL NETWORK ARCHITECTURES USING 
RANDOM-PULSE DATA REPRESENTATION

Looking for a model to prove that algebraic operations with analog variables can be performed by 
logical gates, von Neuman advanced in 1956 the idea of representing analog variables by the mean 
rate of random-pulse streams [J. von Neuman, “Probabilistic logics and the synthesis of reliable 
organisms from unreliable components,” in Automata Studies, (C.E. Shannon, Ed.), Princeton, NJ, 
Princeton University Press, 1956].

The “random-pulse machine” concept, [S.T. Ribeiro, “Random-pulse machines,” IEEE Trans. Electron. 
Comp., vol. EC-16, no. 3, pp. 261-276,1967], a.k.a. "noise computer“, "stochastic computing“, “dithering”
deals with analog variables represented by the mean rate of random-pulse streams allowing to use digital 
circuits to perform arithmetic operations.  This concept presents a good tradeoff between the electronic 
circuit complexity and the computational accuracy.  The resulting neural network architecture has a high 
packing density and is well suited for very large  scale integration (VLSI). 

Interactive VE applications require real-time rendering 
of  complex NN models
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v HARDWARE  ANN USING RANDOM-PULSE DATA REPRESENTATION

[ E.M. Petriu, K. Watanabe, T. Yeap, "Applications of Random-Pulse Machine Concept to
Neural Network Design," IEEE Trans. Instrum. Meas., Vol. 45, No.2, pp.665-669, 1996. ]
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>>> Random-Pulse Hardware ANN
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>>> Random-Pulse Hardware ANN

Random  Pulse  Addition
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>>> Random-Pulse Hardware ANN

Random  Pulse  Multiplication



v HARDWARE  ANN USING MULTI-BIT RANDOM-DATA REPRESENTATION

Generalized b-bit  analog/random-data conversion and its quantization characteristics

[ E.M. Petriu, L. Zhao, S.R. Das, and A. Cornell, "Instrumentation Applications of  Random-Data Representation,"  
Proc. IMTC/2000, IEEE Instrum. Meas. Technol. Conf., pp. 872-877, Baltimore, MD, May 2000]

[ L. Zhao, "Random Pulse Artificial Neural Network Architecture," M.A.Sc. Thesis, University of Ottawa, 1998]
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2-bit random-data multiplier.
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