
Emil M. Petriu, Dr. Eng., P. Eng., FIEEE
Professor
School of Information Technology and Engineering
University of Ottawa
Ottawa, ON., Canada
http://www.site.uottawa.ca/~petriu/
petriu@site.uottawa.ca

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

Neural Networks :Neural Networks :
BasicsBasics

Biological Neurons

Incoming signals to a dendrite may be inhibitory or excitatory.
The strength of any input signal is determined by the strength of
its synaptic connection. A neuron sends an impulse down its axon
if excitation exceeds inhibition by a critical amount (threshold/
offset/bias) within a time window (period of latent summation).

Biological neurons are rather slow (10-3 s) when compared with
the modern electronic circuits. ==> The brain is faster than an
electronic computer because of its massively parallel structure.
The brain has approximately 1011 highly connected neurons (approx.
104 connections per neuron).

Dendrites carry electrical signals in into the neuron body.
The neuron body integrates and thresholds the incoming signals.
The axon is a single long nerve fiber that carries the signal from
the neuron body to other neurons.

Memories are formed by the modification of the synaptic strengths
which can change during the entire life of the neural systems..

Body

Axon

Dendrites

Synapse

A synapse is the connection between dendrites of two neurons.

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

W. McCulloch & W. Pitts (1943) the first theory on the fundamentals of neural computing
(neuro-logicalnetworks) “A Logical Calculus of the Ideas Immanent in Nervous Activity”
==> McCulloch-Pitts neuron model; (1947) “How We Know Universals” - an essay on networks

capable of recognizing spatial patterns invariant of geometric transformations.

Cybernetics: attempt to combine concepts from biology, psychology, mathematics, and engineering.

1940s

Natural components of mind-like machines are simple abstractions based on the behavior
of biological nerve cells, and such machines can be built by interconnecting such elements.

Historical Sketch of Neural Networks

D.O. Hebb (1949) “The Organization of Behavior” the first theory of psychology on conjectures
about neural networks (neural networks might learn by constructing internal representations of
concepts in the form of “cell-assemblies” - subfamilies of neurons that would learn to support one
another’s activities). ==> Hebb’s learning rule: “When an axon of cell A is near enough to excite a
cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased.”

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

1950s

Cybernetic machines developed as specific architectures to perform specific functions.
==> “machines that could learn to do things they aren’t built to do”

M. Minsky (1951) built a reinforcement-based network learning system.

F. Rosenblatt (1958) the first practical Artificial Neural Network (ANN) - the perceptron, “The
Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain.”.

IRE Symposium “The Design of Machines to Simulate the Behavior of the Human Brain” (1955)
with four panel members: W.S. McCulloch, A.G. Oettinger, O.H. Schmitt, N. Rochester, invited
questioners: M. Minsky, M. Rubinoff, E.L. Gruenberg, J. Mauchly, M.E. Moran, W. Pitts, and the
moderator H.E. Tompkins.

By the end of 50s, the NN field became dormant because of the new AI advances based on
serial processing of symbolic expressions.

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

1960s

Connectionism (Neural Networks) - versus - Symbolism (Formal Reasoning)

B. Widrow & M.E. Hoff (1960) “Adaptive Switching Circuits” presents an adaptive percepton-like
network. The weights are adjusted so to minimize the mean square error between the actual and desired
output ==> Least Mean Square (LMS) error algorithm. (1961) Widrow and his students “Generalization
and Information Storage in Newtworks of Adaline “Neurons.”

M. Minsky & S. Papert (1969) “Perceptrons” a formal analysis of the percepton networks explaining
their limitations and indicating directions for overcoming them ==> relationship between the perceptron’s
architecture and what it can learn: “no machine can learn to recognize X unless it poses some scheme
for representing X.”

Limitations of the perceptron networks led to the pessimist view of the NN field as having
no future ==> no more interest and funds for NN research!!!

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

1970s

Memory aspects of the Neural Networks.

T. Kohonen (1972) “Correlation Matrix Memories” a mathematical oriented paper proposing a
correlation matrix model for associative memory which is trained, using Hebb’s rule, to learn
associations between input and output vectors.

J.A. Anderson (1972) “A Simple Neural Network Generating an Interactive Memory” a physiological
oriented paper proposing a “linear associator” model for associative memory, using Hebb’s rule, to learn
associations between input and output vectors.

S. Grossberg (1976) “Adaptive Pattern Classification and Universal Recording: I. Parallel Development
and Coding of Neural Feature Detectors”describes a self-organizing NN model of the visual system
consisting of a short-term and long term memory mechanisms. ==> continuous-time competitive
network that forms a basis for the Adaptive Resonance Theory (ART) networks.

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

1980s

Revival of Learning Machine.

D.E. Rumelhart & J.L. McClelland, eds. (1986) “Parallel Distributed Processing: Explorations in the
Microstructure of Cognition: Explorations in the Microstructure of Cognition” represents a milestone
in the resurgence of NN research.

International Neural Network Society (1988) …. IEEE Tr. Neural Networks (1990).

J.A. Anderson & E. Rosenfeld (1988) “Neurocomputing: Foundations of Research” contains over forty
seminal papers in the NN field.

DARPA Neural Network Study(1988) a comprehensive review of the theory and applications of the
Neural Networks.

[Minsky]: “The marvelous powers of the brain emerge not from any single, uniformly structured
connectionst network but from highly evolved arrangements of smaller, specialized networks
which are interconnected in very specific ways.”

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

Artificial Neural Networks (ANN)

McCulloch-Pitts model of an artificial neuron

y = f (w1
. p1 +…+ wj

. pj +... wR
. pR + b)

wjpj

w1p1

wRpR

.

.

.

.

.

.

Σ f yz

b

Some transfer functions “f”

Hard Limit: y = 0 if z<0
y = 1 if z>=0

0

1

y

z

Symmetrical: y = -1 if z<0
Hard Limit y = +1 if z>=0

0

1

y

z
-1

Log-Sigmoid:
y =1/(1+e-z)

0

1
y

z

Linear:
y = z

0

y

zp = (p1, … , pR)T is the input column-vector

W = (w1, … , wR) is the weight row-vector

y = f (W. p + b)

*) The bias b can be treated as a weight whose input is always 1.

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

The Architecture of an ANN
§ Number of inputs and outputs of the network;

§ Number of layers;

§ How the layers are connected to each other;

§ The transfer function of each layer;

§ Number of neurons in each layer;ANNs map input/stimulus values
to output/response values: Y= F (P).

Intelligent systems generalize:
their behavioral repertoires exceed
their experience. An intelligent
system is said to have a creative
behaviour if it provides appropriate

responses when faced with new stimuli. Usually the new stimuli
P’ resemble known stimuli P and their corresponding responses
Y’ resemble known/learned responses Y.

Measure of system’s F creativity:

Volume of “stimuli ball BP “

Volume of “response ball BY”

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

BP

P

P’
BY

Y
Y’

Y’= F (P’)

Y= F (P)

Most of the mapping functions can be implemented by a two-layer ANN: a sigmoid layer feeding a
linear output layer.

ANNs with biases can represent relationships between inputs and outputs than networks
without biases.

Feed-forward ANNs cannot implement temporal relationships. Recurrent ANNs have internal
feedback paths that allow them to exhibit temporal behaviour.

Feed-forward architecture with three layers

N (1,1)

N (1,R1)

p1
.
.
.
pR

.

.

.

N (2,1)

N (2,R2)

.

.

.

y(1,1)

y(1,R1)

N (3,1)

N (3,R3)

.

.

.

y(2,1)

y(2,R2)

y (3,1)

y (3,R3)

Layer 1 Layer 2 Layer 3
N (1)

N (R)

.

.

.

y(1)

y(R)

.

.

.

Recurrent architecture (Hopfield NN)

The ANN is usually supplied with an initial
input vector and then the outputs are used
as inputs for each succeeding cycle.

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

Learning Rules (Training Algorithms)

Supervised Learning

Procedure/algorithm to adjust the weights and biases
in order for the ANN to perform the desired task.

wj

. . .

Σ f yz

b

Learning
Rule

e = t-ye t

pj
(j= 1,…,R)

. . .

For a given training set of pairs
{p(1),t(1)},...,{p(n),t(n)}, where p(i)
is an instance of the input vector and
t(i) is the corresponding target
value for the output y, the learning
rule calculates the updated value of
the neuron weights and bias.

Reinforcement Learning

Similar to supervised learning - instead of being provided with the correct output value for each given
input, the algorithm is only provided with a given grade/score as a measure of ANN’s performance.

Unsupervised Learning

The weight and unbiased are adjusted based on inputs only. Most algorithms of this type learn to
cluster input patterns into a finite number of classes. ==> e.g. vector quantization applications

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

THE PERCEPTRON

The perceptron is a neuron with a hard limit transfer function and a weight adjustment mechanism
(“learning”) by comparing the actual and the expected output responses for any given input /stimulus.

[Minski] “Perceptrons make decisions/determine whether or not event fits a certain pattern
by adding up evidence obtained from many small experiments”

Frank Rosenblatt (1958), Marvin Minski & Seymour Papert (1969)

wjpj

w1p1

wRpR

.

.

.

.

.

.

Σ y
z

b

f

0

1

Perceptrons are well suited for
pattern classification/recognition.

The weight adjustment/training
mechanism is called the perceptron
learning rule.

y = f (W. p + b)

NB: W is a row-vector and p is a column-vector.

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

§ Supervised learning

t <== the target value

e = t-y <== the error
wjpj

w1p1

wRpn

.

.

.

.

.

.

Σ y
z

b

f

0

1

p = (p1, … , pR)T is the input column-vector

W = (x1, … , xR) is the weight row-vector

Because of the perceptron’s hard limit
transfer function y, t, e can take only
binary values

Perceptron learning rule:

Wnew = Wold + e.pT

bnew = bold + e

if e = 1, then Wnew = Wold + p , bnew = bold + 1;

if e = -1, then Wnew = Wold - p , bnew = bold - 1 ;

if e = 0, then Wnew = Wold .

Perceptron Learning Rule

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

The hard limit transfer function (threshold function) provides the ability to classify input vectors
by deciding whether an input vector belongs to one of two linearly separable classes.

w1p1

w2p2

Σ y
z

b
f

0

1

Two-Input Perceptron
p2

p10

-b / w2

-b / w1

(z = 0)

w1
. p1 + w2

. p2 + b =0

y = sign (b) y = sign (-b)

The two classes (linearly separable regions) in the two-dimensional
input space (p1, p2) are separated by the line of equation z = 0.

y = hardlim (z) = hardlim{ [w1 , w2] . [p1 , p2]T + b}

The boundary is always orthogonal to the weight vector W.

W

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

q Example #1: Teaching a two-input perceptron to classify five input vectors into two classes

p(1) = (0.6, 0.2)T

t(1) = 1
p(2) = (-0.2, 0.9)T

t(2) = 1
p(3) = (-0.3, 0.4)T

t(3) = 0
p(4) = (0.1, 0.1)T

t(4) = 0
p(5) = (0.5, -0.6)T

t(5) = 0

p1

p2

1

1

-1

-1

P=[0.6 -0.2 -0.3 0.1 0.5;
0.2 0.9 0.4 0.1 -0.6];

T=[1 1 0 0 0];
W=[-2 2];
b=-1;
plotpv(P,T);
plotpc(W,b);
nepoc=0
Y=hardlim(W*P+b);
while any(Y~=T)
Y=hardlim(W*P+b);
E=T-Y;
[dW,db]= learnp(P,E);
W=W+dW;
b=b+db;
nepoc=nepoc+1;
disp(‘epochs=‘),disp(nepoc),
disp(W), disp(b);
plotpv(P,T);
plotpc(W,b);
end

The MATLAB solution is:

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

q Example #1:

After nepoc = 11
(epochs of training
starting from an

initial weight vector
W=[-2 2] and a
bias b=-1)
the weights are:

w1 = 2.4
w2 = 3.1

and the bias is:

b = -2

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
-1.5

-1

-0.5

0

0.5

1

1.5

2
Input Vector Classification

p1

p 2

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

Ø The larger an input vector p is, the larger is its effect on the weight vector W during the learning process

Long training times can be caused by the presence of an “outlier,” i.e. an input vector
whose magnitude is much larger, or smaller, than other input vectors.

Normalized perceptron learning rule,
the effect of each input vector on the
weights is of the same magnitude:

Wnew = Wold + e.pT / p

bnew = bold + e

Perceptron Networks for Linearly Separable Vectors

The hard limit transfer function of the perceptron provides the ability to classify input vectors
by deciding whether an input vector belongs to one of two linearly separable classes.

p2

p1

10

1
AND

p2

p1

10

1
OR

W = [2 2]
b = -3

W = [2 2]
b = -1

p = [0 0 1 1 ;
0 1 0 1]

tAND =[0 0 0 1]

p = [0 0 1 1 ;
0 1 0 1]

tOR = [0 1 1 1]

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

Three-Input Perceptron

w1p1

w2p2
Σ

yz

b
f

0

1

w3p3

y =hardlim (z)
= hardlim{ [w1 , w2 ,w3] .

[p1 , p2 p3]T + b}

-2
-1

0
1

2

-2

-1
0

1

2
-2

-1

0

1

2

p1

p2

p3

P = [-1 1 1 -1 -1 1 1 -1;
-1 -1 1 1 -1 -1 1 1;
-1 -1 -1 -1 1 1 1 1]

T = [0 1 0 0 1 1 1 0]

EXAMPLE

The two classes in
the 3-dimensional

input space (p1, p2, p3)
are separated by the
plane of equation z = 0.

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

One-layer multi-perceptron classification of linearly separable patterns

-3 -2 -1 0 1 2
-3

-2

-1

0

1

2

3

4

3
p1

p 2

0 2 4 6 8
10

-20

10
-15

10
-10

10
-5

10
0

10
5

Epochs

E
rr

or

Demo P3 in the “MATLAB Neural Network
Toolbox - User’s Guide”

T = [1 1 1 0 0 1 1 1 0 0;
0 0 0 0 0 1 1 1 1 1]

00 = O ; 10 = +
01 = * ; 11 = x

P = [0.1 0.7 0.8 0.8 1.0 0.3 0.0 -0.3 -0.5 -1.5;
1.2 1.8 1.6 0.6 0.8 0.5 0.2 0.8 -1.5 -1.3]

R = 2 inputs
S = 2 neurons

Where:
R = # Inputs
S = # Neurons

MATLAB representation:

W

SxR

b

Sx1R

p

Rx1

1

z

Sx1

Sx1

y

Input Perceptron Layer

y = hardlim(W*p+b)

Σ

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

p = [0 0 1 1 ;
0 1 0 1]

tXOR = [0 1 1 0]

XOR
p2

p1

10

1

If a straight line cannot be drawn between the set of
input vectors associated with targets of 0 value and
the input vectors associated with targets of 1, than a
perceptron cannot classify these input vectors.

1 1

1 1

w1,1 w1,2

w2,1 w2,2
=

b11

b12

-1.5

-0.5
=

[w21,1 w21,2] = [-1 1] [b21] = [-0.5]

One solution is to use a two layer architecture, the perceptrons in the first layer are
used as preprocessors producing linearly separable vectors for the second layer.

(Alternatively, it is possible to use linear ANN
or back-propagation networks)w11,1

Σ
y11z11

b11 f1
0

1

Σ
y12z12

b12 f1
0

1

p1

p2 Σ y21
z21

b21

f2
0

1w11,2

w12,1

w12,2

w21,2

w21,1

Perceptron Networks for Linearly Non-Separable Vectors

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

The row index of a weight indicates the destination
neuron of the weight and the column index indicates
which source is the input for that weight.

LINEAR NEURAL NETWORKS (ADALINE NETWORKS)

Widrow-Hoff Learning Rule (The) Rule)

wj

. . .

Σ
y(y = z)

b

LMS
Learning Rule

e = t-ye t

pj

(j= 1,…,R)

. . .

(ADALINE <== ADAptive LInear NEuron)

(NB: E[…] denotes the “expected value”; p is column vector)

The LMS algorithm will adjust ADALINE’s weights
and biases in such away to minimize the mean-square-
error E [e2] between all sets of the desired response
and network’s actual response:

E [(t-y)2] = E [(t - (w1 … wR b) . (p1 … pR 1)T)2]
= E [(t - W . p)2]

Where: R = # Inputs, S = # Neurons

W

SxR

b

Sx1R

p

Rx1

1

z

Sx1

Sx1

y

Input Linear Neuron Layer

y = purelin(W*p+b)

Σ

q Linear neurons have a linear transfer functionthat
allows to use a Least Mean-Square (LMS) procedure
- Widrow-Hoff learning rule- to adjust weights and
biases according to the magnitude of errors.

q Linear neurons suffer from the same limitation as the
perceptron networks: they can only solve linearly
separable problems.

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

>> Widrow-Hoff algorithm

As t(k) and p(k) - both affecting e(k) - are independent of W(k), we obtain the final expression of the
Widrow-Hoff learning rule:

W(k+1) = W (k) + 2.µ .e(k). p(k)

where µ the “learning rate” and e(k) = t(k)-y(k) = t(k)-W(k) . p(k)

b(k+1) = b(k) +2.µ .e(k)

The input cross-
correlation matrix

The cross-correlation
between the input vector
and its associated target.

If the input correlation matrix is positive
the LMS algorithm will converge as there will
a unique minimum of the mean square error.

E [e2] = E [(t - W . p)2] = {as for deterministic signals the expectation becomes a time-average}
= E[t2] - 2.W . E[t.p] + W . E[p.pT] . WT

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

The weight vector is then modified in the direction that decreases the error:

W k W K W k W k e kk
e k
W k

e k
W k() () () () ()* ()

()
()
()+ = − • ∇ = − • = − • •1 2

2

µ µ µ∂
∂

∂
∂

[]∇ = =k
e k
W k

e k
w k

e k
w k

e k
b kR

* ()
()

()
()

()
()

()
(). . . ,∂

∂
∂
∂

∂
∂

∂
∂

2 2

1

2 2

q The W-H rule is an iterative algorithm uses the “steepest-descent” method to reduce the mean-square-error.
The key point of the W-H algorithm is that it replaces E[e2] estimation by the squared error of the iteration k:
e2(k). At each iteration step k it estimates the gradient of this error k with respect to W as a vector consisting
of the partial derivatives of e2(k) with respect to each weight:

>> Widrow-Hoff algorithm

Demo Lin 2 in the “MATLAB Neural Network Toolbox - User’s Guide”

P = [1.0 -1.2]
T = [0.5 1.0]

One-neuron one-input ADALINE, starting from some random
values for w = -0.96 and b= -0.90 and using the “trainwh” MATLAB
NN toolbox function, reaches the target after 12 epochs with an error
e < 0.001. The solution found for the weight and bias is:

w = -0.2354 and b= 0.7066.

Er
ro

r

Weight W
Bias b

B
ia

s
 b

Weight W

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

Back-Propagation Learning
- The Generalized) Rule

P. Werbos (Ph.D. thesis 1974);
D. Parker (1985), Yann Le Cun(1985),
D. Rumelhart, G. Hinton, R. Williams (1986)

Two-layer ANN that can approximate
any function with a finite number of

of discontinuities, arbitrarily
well, given sufficient neurons

in the hidden layer.

e2= (t-y2) = (t- purelin
(W2*tansig(W1*p
+b1) +b2))

The error is an indirect
function of the weights
in the hidden layers.

q Back-propagation ANNs often have one or more hidden layers of
sigmoid neurons followed by an output layer of linear neurons.

Linear Neuron Layer

W2

S2xS1

b2

S2x1

z2

S2x1

S2x1

y2

y2 = purelin(W2*y1+b2)

1

y1 = tansig(W1*p+b1)

W1

S1xR

b1

S1x1R

p

Rx1

1

z1

S1x1

S1x1

y1

Input Sigmoid Neuron Layer

Σ Σ

q Single layer ANNs are suitable to only solving linearly separable classification problems. Multiple feed-
forward layers can give an ANN greater freedom. Any reasonable function can be modeled by a two layer
architecture: a sigmoid layer feeding a linear output layer.

q Single layer ANNs are only able to solve linearly Widrow-Hoff learning applies to single layer networks.
==> generalized W-H algorithm (∆ -rule) ==> back-propagation learning.

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

>>Back-Propagation

e = (t - yN)

t

e

R

p

Rx1

Input

Phase I : The input vector is propagated forward (fed-
forward) trough the consecutive layers of the ANN.

yN

SN x 1

Phase II : The errors are recursively back-propagated
trough the layers and appropriate weight changes are
made. Because the output error is an indirect function
of the weights in the hidden layers, we have to use the
“chain rule” of calculus when calculating the derivatives
with respect to the weights and biases in the hidden layers.
These derivatives of the squared error are computed first
at the last (output) layer and then propagated backward
from layer to layer using the “chain rule.”

∆Wj | j= N, N-1, …,1,0

q Back-propagation is an iterative steepest descent algorithm, in which the performance index
is the mean square error E [e2] between the desired response and network’s actual response:

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Input vector P

Ta
rg

et
 v

ec
to

r
T

0 50 100 150 200 250 300 350 400 450
10-2

10-1

100

101

Epochs

E
rr

or

EXAMPLE: Function Approximation by Back-Propagation

Linear Neuron Layer

W2

S2xS1

b2

S2x1

z2

S2xQ

S2x1

y2

y2 = purelin(W2*y1+b2)

1

y1 = tansig(W1*P+b1)

W1

S1xQ

b1

S1x1Q

P

RxQ

1

z1

S1xQ

S1x1

y1

Input Sigmoid Neuron Layer

Σ ΣR

S1 S2

R = 1 input
S1 = 5 neurons

in layer #1
S2 = 1 neuron

in layer #2
Q = 21 input

vectors

Demo BP4 in the” MATLAB Neural
Network Toolbox User’s Guide”

The back-propagation algorithm took 454 epochs to
approximate the 21 target vectors with an error < 0.02

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

Hardware Neural Network
Architectures

University of Ottawa
School of Information Technology - SITE

Prof. Emil M. Petriu
http://www.site.uottawa.ca/~petriu/

ANNs / Neurocomputers ==>architectures optimized for neuron model implementation

§ general-purpose, able to emulate a wide range of NN models;
§ special-purpose, dedicated to a specific NN model.

ANN VLSI Architectures:
• analog ==> compact,high speed,

asynchronous, no quantization
errors, convenient weight “+”and “X”;

• digital ==> more efifcient VLSI technology,
robust, convenient weight storage;

Pulse Data Representation:
• Pulse Amplitude Modulation (PAM) -

not satisfactory for NN processing;
• Pulse Width Modulation (PWM);
• Pulse Frequency Modulation (PFM).

Number of nodes

0

103

106

109

1012

103 106 109 1012 Node complexity
[VLSI area/node]

RAMs
Special-purpose neurocomputers

General-purpose neurocomputers
Systolic arrays

Computational arays

Conventional parallel
computers

Sequential computers

[from P. Treleaven, M. Pacheco, M. Vellasco,
“VLSI Architectures for Neural Networks,”
IEEE Micro, Dec. 1989, pp. 8-27]

Pulse Stream ANNs: combination of
different pulse data representation methods
and opportunistic use of both analog and
digital implementation techniques.

Hardware NNs consisting of a collection of simple neuron circuits provide the massive
computational parallelism allowing for a higher modelling speed.

University of Ottawa
School of Information Technology - SITE

Prof. Emil M. Petriu
http://www.site.uottawa.ca/~petriu/

HARDWARE NEURAL NETWORK ARCHITECTURES USING
RANDOM-PULSE DATA REPRESENTATION

Looking for a model to prove that algebraic operations with analog variables can be performed by
logical gates, von Neuman advanced in 1956 the idea of representing analog variables by the mean
rate of random-pulse streams [J. von Neuman, “Probabilistic logics and the synthesis of reliable
organisms from unreliable components,” in Automata Studies, (C.E. Shannon, Ed.), Princeton, NJ,
Princeton University Press, 1956].

The “random-pulse machine” concept, [S.T. Ribeiro, “Random-pulse machines,” IEEE Trans. Electron.
Comp., vol. EC-16, no. 3, pp. 261-276,1967], a.k.a. "noise computer“, "stochastic computing“, “dithering”
deals with analog variables represented by the mean rate of random-pulse streams allowing to use digital
circuits to perform arithmetic operations. This concept presents a good tradeoff between the electronic
circuit complexity and the computational accuracy. The resulting neural network architecture has a high
packing density and is well suited for very large scale integration (VLSI).

Interactive VE applications require real-time rendering
of complex NN models

University of Ottawa
School of Information Technology - SITE

Prof. Emil M. Petriu
http://www.site.uottawa.ca/~petriu/

Σ
F

Y = F [w X]Σ
j=1

m
.

j iij

SY
N

A
PS

E

SY
N

A
PS

E

SY
N

A
PS

E
. X mX 1 X i

w mjw ij
w 1j

Neuron Structure

FS+VFS-V

FS FS
XQ

p.d.f.
of VR

1

2 FS.

-FS

+FS

1

V

X

0

-1

VRQ1-BIT QUANTIZER

X
-FS

+FS

XQ

X

0

1

-1

XQ

CLOCK CLK

VRP

ANALOG RANDOM
SIGNAL GENERATOR

-FS +FS0
R

p(R)
1

2 FS

+
+

VR
V

R

One-Bit “Analog / Random Pulse” Converter

v HARDWARE ANN USING RANDOM-PULSE DATA REPRESENTATION

[E.M. Petriu, K. Watanabe, T. Yeap, "Applications of Random-Pulse Machine Concept to
Neural Network Design," IEEE Trans. Instrum. Meas., Vol. 45, No.2, pp.665-669, 1996.]

University of Ottawa
School of Information Technology - SITE

Prof. Emil M. Petriu
http://www.site.uottawa.ca/~petriu/

CLK

UP

DOWN

P
N -BIT
UP/DOWN
COUNTER

D

N -BIT
SHIFT
REGISTER

“Random Pulse / Digital” Converter
using a Moving Average Algorithm

>>> Random-Pulse Hardware ANN

1 OUT_OF m
DEMULTIPLEXER

RANDOM NUMBER
GENERATOR

S1SjSm
CLK

Y = (X1+...+Xm)/m

y

x1

xj

xm

X1

Xj

Xm

Random Pulse Addition

University of Ottawa
School of Information Technology - SITE

Prof. Emil M. Petriu
http://www.site.uottawa.ca/~petriu/

>>> Random-Pulse Hardware ANN

SYNAPSE ADDRESS
DECODER

S mpS ijS 11

2 -BIT SHIFT
REGISTER

n

......

w
ij

RANDOM- PULSE
MULTIPLICATION

DT = w Xij ij
.

i

SYNAPSE

MODE

DATIN SYNADD

X i

Random Pulse Implementation of a Synapse

RANDOM-PULSE/DIGITAL
INTERFACE

CLK*

ACTIVATION FUNCTION F

DIGITAL/RANDOM-PULSE
CONVERTER

Y = F [w X]Σ
j=1

m
.

j iij

... ...

RANDOM-PULSE ADDITION

DT mjDTijDT1j

Σ

Neuron Body Structure

University of Ottawa
School of Information Technology - SITE

Prof. Emil M. Petriu
http://www.site.uottawa.ca/~petriu/

32 266 500
3.2

1

1.2

x2is

x2ditis

x2RQis

4
2

dZis

dHis

dLis

MAVx2RQis

is

Moving Average ‘Random Pulse -to- Digital ” Conversion

>>> Random-Pulse Hardware ANN

University of Ottawa
School of Information Technology - SITE

Prof. Emil M. Petriu
http://www.site.uottawa.ca/~petriu/

32 266 500
8.2

3.5

1.2

x1 is

x1RQ is
4

1.5

MAVx1RQ is

dZ1 is

x2 is 3

x2RQ is

4
4.5

MAVx2RQ is 3

dZ2 is

x1 is x2 is 6

SUMRQX is
4

7.5

MAVSUMRQX is 6

dZS is

dH is

d L is

is

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

>>> Random-Pulse Hardware ANN

Random Pulse Addition

32 144 256
9.2

4

1.2

x1is

x1ditis

x1RQis

4
2

dZis

dHis

dLis

w1is 3.5

dZis 3.5

W1is

4
5

x1W1RQis

4
6.5

MAVx1W1RQis 8

dZis 8

is

University of Ottawa
School of Information Technology - SITE

Sensing and Modelling Research Laboratory
SMRLab - Prof. Emil M. Petriu

>>> Random-Pulse Hardware ANN

Random Pulse Multiplication

v HARDWARE ANN USING MULTI-BIT RANDOM-DATA REPRESENTATION

Generalized b-bit analog/random-data conversion and its quantization characteristics

[E.M. Petriu, L. Zhao, S.R. Das, and A. Cornell, "Instrumentation Applications of Random-Data Representation,"
Proc. IMTC/2000, IEEE Instrum. Meas. Technol. Conf., pp. 872-877, Baltimore, MD, May 2000]

[L. Zhao, "Random Pulse Artificial Neural Network Architecture," M.A.Sc. Thesis, University of Ottawa, 1998]

University of Ottawa
School of Information Technology - SITE

Prof. Emil M. Petriu
http://www.site.uottawa.ca/~petriu/

VR
V

R
VRQ

CLOCK
CLK

VRP

b-BIT
QUANTIZER

X XQ

ANALOG RANDOM
SIGNAL
GENERATOR

-∆/2 0
R

p(R)
1/∆

+∆/2

+
+

.(k+0.5) ∆(k-0.5) ∆.

XQ

X

k

k+1

k-1

0

β ∆.

1/∆
p.d.f.
of VR

∆/2∆/2

β ∆. (1-β) ∆.

.V= (k-β) ∆
k ∆.

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Moving average window size

M
ea

n
sq

ua
re

 e
rr

or

1-Bit

2-Bit
Mean square errors function of the

moving average window size

University of Ottawa
School of Information Technology - SITE

Prof. Emil M. Petriu
http://www.site.uottawa.ca/~petriu/

1analog

......

1.238

......

2.754

5.753

72.232

Relative mean square errorQuantization levels

University of Ottawa
School of Information Technology - SITE

Prof. Emil M. Petriu
http://www.site.uottawa.ca/~petriu/

RANDOM
NUMBER
GENERATOR

1-OUT OF-m
DEMULTIPLEXER

...

...

CLK

... ... S
m

S
1

S
i

mX

1X

iX
 Z =
 (X +...+X)/mmi

b

b

b

b

b

b

b

Stochastic adder for random-data.

University of Ottawa
School of Information Technology - SITE

Prof. Emil M. Petriu
http://www.site.uottawa.ca/~petriu/

2-bit random-data multiplier.

Y

X

1
01

-1
10

0
00

10-1

-1
10

1
01

0
00

011

0
00

0
00

0
00

000

100100

-110

X
LSB

X
MSB Z

LSB

Z
MSB

Y
LSB

Y
LSB

University of Ottawa
School of Information Technology - SITE

Prof. Emil M. Petriu
http://www.site.uottawa.ca/~petriu/

0 100 200 300 400 500
-2

-1

0

1

2
multiplication

0 100 200 300 400 500
-2

-1

0

1

2

weight
input

product

Example of 2-bit random-data multiplication.

University of Ottawa
School of Information Technology - SITE

Prof. Emil M. Petriu
http://www.site.uottawa.ca/~petriu/

SYNAPSE
ADDRESS
DECODER

S mpS ijS 11

N-STAGE
DELAY
LINE

......

w
ij

DT = w Xij ij
.

i

SYNAPSE

MODE

DATIN SYNADD X i

MULTIPLICATION

b

b

b

b

b

 RANDOM-DATA ADDER

DT
mj DT

ij DT
1j

Σ

 RANDOM-DATA / DIGITAL

CLK

 DIGITAL / RANDOM-DATA

 ACTIVATION FUNCTION
F

Y = F [w X]
j Σ

j=1

m
.

i ij

Multi-bit random-data implementation
of a neuron body.

Multi-bit random-data implementation
of a synapse

>>> Random-Pulse Hardware ANN

University of Ottawa
School of Information Technology - SITE

Prof. Emil M. Petriu
http://www.site.uottawa.ca/~petriu/

Auto-associative memory NN architecture

P1, t1 P2, t2 P3, t3

Training set

30

P

30x1

30x30

n

30x1

a

30x1
W

)*hardlim(PWa =

Recovery of 30%
occluded patterns

• W. McCulloch and W. Pitts, “A Logical Calculus of the Ideas Immanent in Nervous Activity,” Bulletin of
Mathematical Biophysics, Vol. 5, pp. 115-133, 1943.

• D.O. Hebb, The Organization Of Behavior, Wiley, N.Y., 1949.
• J. von Neuman, “Probabilistic logics and the synthesis of reliable organisms from unreliable components,”

in Automata Studies, (C.E. Shannon, Ed.), Princeton, NJ, Princeton University Press,1956.
• F. Rosenblat, “The Perceptron: A Probabilistic Model for Information Storage and Organization in the

Brain,” Psychological Review, Vol. 65, pp. 386-408, 1958.
• B. Widrow and M.E. Hoff, “Adaptive Switching Circuits,” 1960 IRE WESCON Convention Record, IRE

Part 4, pp. 94-104, 1960.
• M. Minski and S. Papert, Perceptrons, MIT Press, Cambridge, MA, 1969.
• J.S. Albus, “A Theory of Cerebellar Function,” Mathematical Biosciences, Vol. 10, pp. 25-61, 1971.
• T. Kohonen, “Correlation Matrix Memories,” IEEE Tr. Comp., Vol. 21, pp. 353-359, 1972.
• J. A. Anderson, “A Simple Neural Network Generating an Interactive Memory,” Mathematical Biosciences,

Vol. 14, pp. 197-220, 1972.
• S. Grossberg, “Adaptive Pattern Classification and Universal Recording: I. Parallel Development and

Coding of Neural Feature Detectors,” Biological Cybernetics, Vol. 23, pp.121-134, 1976.
• J.J. More, “The Levenberg-Marquardt Algorithm: Implementation and Theory,” in Numerical Analysis,

pp. 105-116, Spriger Verlag, 1977.
• K. Fukushima, S. Miyake, and T. Ito, “Neocognitron: A Neural Network Model for a Mechanism of Visual

Pattern Recognition,” IEEE Tr. Syst. Man Cyber., Vol. 13, No. 5, pp. 826-834, 1983.

References

University of Ottawa
School of Information Technology - SITE

Prof. Emil M. Petriu
http://www.site.uottawa.ca/~petriu/

• D. E. Rumelhart, G.E. Hinton, and R.J. Willimas, “Learning Internal Representations by Error Propagation,”
in Parallel Distributed Processing, (D.E. Rumelhart and J.L. McClelland, Eds.,) Vol.1, Ch. 8, MIT Press, 1986.

• D.W. Tankand J.J. Hopefield, “Simple ‘Neural’ Optimization Networks: An A/D Converter, Signal Decision
Circuit, and a Linear Programming Circuit,” IEEE Tr. Circuits Systems, Vol. 33, No. 5, pp. 533-541, 1986,

• M.J.D. Powell, “Radial Basis Functions for Multivariable Interpolation” A Review,” in Algorithms for the
Approximation of Functions and Data , (J.C. Mason and M.G. Cox, Eds.), Clarendon Press, Oxford, UK, 1987.

• G.A. Carpenter and S. Grossberg, “ART2: Self-Organizing of Stable Category Recognition Codes for Analog
Input Patterns,” Applied Optics, Vol. 26, No. 23, pp. 4919-4930, 1987.

• B. Kosko, “Bidirectional Associative Memories,” IEEE Tr. Syst. Man Cyber., Vol. 18, No. 1, pp. 49-60, 1988.
• T. Kohonen, Self_Organization and Associative Memory, Springer-Verlag, 1989.
• K. Hornic, M. Stinchcombe, and H. White, “Multilayer Feedforward Networks Are Universal

Approximators,” Neural Networks, Vol. 2, pp. 359-366, 1989.
• B. Widrow and M.A. Lehr, “30 Years of Adaptive Neural Networks: Perceptron, Madaline, and

Backpropagation,” Proc. IEEE, pp. 1415-1442, Sept. 1990.
• B. Kosko, Neural Networks And Fuzzy Systems: A Dynamical Systems Approach to Machine

Intelligence, Prentice Hall, 1992.
• E. Sanchez–Sinencio and C. Lau, (Eds.), Artificial Neural Networks, IEEE Press, 1992.
• A. Hamilton, A.F. Murray, D.J. Baxter, S. Churcher, H.M. Reekie, and L. Tarasenko, “Integrated

Pulse Stream Neural Networks: Results, Issues, and Pointers,” IEEE Trans. Neural Networks, vol. 3,
no. 3, pp. 385-393, May 1992.

• S. Haykin, Neural Networks: A Comprehensive Foundation, MacMillan, New York, 1994.
• M. Brown and C. Harris, Neurofuzzy Adaptive Modelling and Control, Prentice Hall, NY, 1994.

University of Ottawa
School of Information Technology - SITE

Prof. Emil M. Petriu
http://www.site.uottawa.ca/~petriu/

• C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, NY, 1995
• M.T. Hagan, H.B. Demuth, and M. Beale, Neural Network Design, PWS Publishing Co., 1995
• S. V. Kartalopoulos, Understanding Neural and Fuzzy Logic:Basic Concepts and Applications,

IEEE Press, 1996.
• M. T. Hagan, H.B. Demuth, M. Beale, Neural Network Design, PWS Publishing Co., 1996.
• C.H. Chen (Editor), Fuzzy Logic and Neural Network Handbook, McGraw Hill, Inc., 1996.
• ***, “Special Issue on Artificial Neural Network Applications,” Proc. IEEE, (E. Gelenbe

and J. Barhen, Eds.), Vol. 84, No. 10, Oct. 1996.
• J.-S.R. Jang, C.-T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing. A Computational

Approach to Learning and Machine Intelligence, Prentice Hall, 1997.
• C. Alippi and V. Piuri, “Neural Methodology for Prediction and Identification of Non-linear Dynamic

Systems, “ in Instrumentation and Measurement Technology and Applications, (E.M. Petriu, Ed.),
pp. 477-485, IEEE Technology Update Series, 1998.

• ***, “Special Issue on Pulse Coupled Neural Networks,” IEEE Tr. Neural Networks, (J.L. Johnson,
M.L. Padgett, and O. Omidvar, Eds.), Vol. 10, No. 3, May 1999.

• C. Citterio, A. Pelagotti, V. Piuri, and L. Roca, “Function Approximation – A Fast-Convergence
Neural Approach Based on Spectral Analysis, IEEE Tr. Neural Networks, Vol. 10, No. 4,
pp. 725-740, July 1999.

• ***, “Special Issue on Computational Intelligence,” Proc. IEEE, (D.B. Fogel, T. Fukuda, and
L. Guan, Eds.), Vol. 87, No. 9, Sept. 1999.

• L.I. Perlovsky, Neural Networks and Intellect, Using Model-Based Concepts, Oxford University
Press, NY, 2001.

University of Ottawa
School of Information Technology - SITE

Prof. Emil M. Petriu
http://www.site.uottawa.ca/~petriu/

University of Ottawa
School of Information Technology - SITE

Prof. Emil M. Petriu
http://www.site.uottawa.ca/~petriu/

• T.M. Martinetz, S.G. Berkovich, and K.J. Schulten, “Neural-Gas Network for vector quantization and
its application to time-series prediction”, IEEE Trans. Neural Networks, vol. 4, no. 4, pp.558-568, 1993.

• ***, “SOM toolbox online documentation”, http://www.cis.hut.fi /project /somtoolbox/documentation/
• N. Davey, R.G. Adams, and S.J. George, “The architecture and performa nce of a stochastic competitive

evolutionary neural tree network”, Applied Intelligence 12, pp. 75-93, 2000.
• B. Fritzke, “Unsupervised ontogenic networks”, Handbook of Neural Computation, Eds. E. Fiesler, R.
Beale, IOP Publishing Ltd and Oxford University Press, C2.4, 1997.

• N. Kasabov, Evolving Connectionist Systems. Methods and Applications in Bioinformatics, Brain Study
and Intelligent Machines, Springer Verlag, 2003.

