
Feature Extraction in Computational 
Intelligence

Evangelia Micheli-Tzanakou, PhD 

Department of Biomedical Engineering, 
RUTGERS UNIV.

cil.rutgers.edu

IJCNN 2004 Budapest
International Joint Conference on Neural Networks



Evangelia Micheli-Tzanakou, PhD

Learning from Data

Design of experiments, data recording 
and analysis
Now what do you do?
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Size of the Data Set Matters

If you do not know what to do:
Try simple tools first
Then more complex ones
Validate them properly on separate test 
sets
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Statistics or DATA MINING?

Statistics deals with small data sets-
data mining deals with large data sets
Statistics addresses focused questions-
Data Mining unfocused
Statistics-uses probabilistic inference 
based on population models
Data Mining-????
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Challenges

Huge data sets-memory problems
How much data we really need?
Different types of data-how do we 
handle them?
What if the data are correlated
What if we have complex data 
structures?
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Then…

Learn more about Computational 
Intelligence

Learn more about Feature Extraction

Best of all:  Know your data!



Pattern recognition

A Pattern is a description of an object

The object belongs to a Class or a Set where each 
element shares common properties. For example:

1. The alphabet is a set of objects (letters) with the 
property that all appear in a text.

2. Humans form a set of objects (men, women) with 
common properties (2 feet, 2 arms, well developed 
cerebral cortex)
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Pattern Recognition (cont.)

In Pattern Recognition we extract 
“relevant” information about an object
via experiments 

and
Use these measurements (=features)
to classify an object.
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Pattern Recognition (cont.)
Arrange the measurements of the object in 
a pattern vector  

x=[x1 x2 …. xn]
“Extract” characteristic features or 
attributes from the input data 
Operate on the pattern vector to obtain
a feature vector

F= [y1 y2…. ym],  m<n
yi is a feature.
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Introduction
Feature - Any local attribute or property of a specific 

configuration of some object or image that is critical 
in distinguishing that object or image from others.

Feature detector - A perceptual mechanism that detects 
single distinctive features in complex displays. 
Generally thought to be the receptive fields of 
neurons, such as simple and complex cells, that 
respond to orientations, size, spatial frequency, etc.



Evangelia Micheli-Tzanakou, PhD

Visual Attention

Preattentive - A parallel, effortless process which 
signals where texture gradients (feature differences) are 
located, and directs focal attention.

Focal Attention - A searchlight which scrutinizes each 
element of the texture in a serial fashion, and signals what 
is in the texture by synthesizing features in the same 
spatial location into whole objects.

Visual Processes/Mechanisms



e.g. Texton theory

Proposes that the visual system applies some 
local spatial filtering which is followed by some 
non-linearity such as threshold taking, and 
then a second spatial filtering such as 
averaging which separates the areas of 
different luminance distributions obtained by 
the threshold taking.
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Textons: specific texture spatial 
properties to which the pre-attentive 
processes are highly sensitive.  They 
include elongated blobs of specific 
orientations, terminators, color, motion, 
spatial frequency, and line crossings
Pre-attentive vision selects the areas 
where texton activity is highest due to 
greater number and density

Texton theory
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Models

Several models exist within the Texton theory

Each model starts with some local 
conspicuous feature (whether they are 
textons, size, orientation, or spatial 
frequency) being extracted from the texture.

Next the outputs of these feature detectors
are pooled in some way over the different 
texture regions
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Conclusions

These stages are somewhat analogous to the 
operations of simple cells, complex cells, and 
hyper-complex cells, respectively, as found in 
the visual system.

Finally, these pooled outputs are compared in 
order to find differences among them which in 
turn will segregate the textures.

Models…..
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Feature selection
A feature vector can be thought of as a 
vector in an n-dim vector space, where 
“components” are the projections on the 
feature axes and correspond to the 
magnitude of the features
Features and feature vectors are samples 
from a probability distribution whose 
statistical properties can be estimated from 
a random sample of the population



Evangelia Micheli-Tzanakou, PhD

Feature selection…..

Select from the initial set of features, 
that subset which best discriminates 
between two or more previously defined 
groups of objects

The last step is called Feature Selection
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Feature selection

Intraset features
Those which characterize properties 
common to all members of a given class
Intraset features that contain no 
information that permits discrimination may 
be ignored
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Feature selection

Interset features have values that permit 
differentiation between the classes under study

Features that discriminate best between groups 
are selected with statistical tests

This results in a small subset of “information rich”
features that are then used to design a decision 
(=classification) rule
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Feature selection

Feature selection reduces the 
dimensionality of the feature space 
Feature selection discards information 
poor features
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Classification

View the recognition problem as that of 
generating “decision boundaries”
separating m classes on the basis of the 
observed vector
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Important Characteristics of Features
Discrimination

How good are the features
Reliability

How reliable is the decision rule
Independence

Features should be uncorrelated with each 
other

Small numbers
Complexity in recognition increases with 
the number of features used
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Important Points
Normalization

The usual concept of distance may not be 
useful
One method of “norming” the space is

• Calculate  the variances of the features:
If σk = variance of the kth feature of all sample 
points (from all classes) then

Nxk / σk  
are the normalized values
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Dimensionality of the Feature Space

Questions

• Why not use a large number of features in       
designing a decision function?

• Doesn’t the accuracy increase as we add more 
and more features?
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Dimensionality of the Feature Space

Answer

• NO, because the dimensionality of the vector 
space increases and the number of sample 
points necessary to give a meaningful estimate 
of the decision rule parameters increases 
dramatically
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Dimensionality of the Feature Space

0    ½ 1
2 samples  (1-D)

4 samples  (2-D)

8 samples  (3-D)
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Dimensionality of the Feature Space

……….For an n-dimensional cube, we 
would need 2n evenly distributed points 
for the same density, and even then, the 
feature space would be sparsely 
populated :

Dimensionality Curse
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Dimensionality of the Feature Space

Rule of thumb:

If M=number of sample feature vector per 
class and

If n=number of features
then

M/n >5
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Analysis Methods
average power
Fourier analysis
wavelets
fractal dimension
entropy
moments
Hjorth parameters
modular neural network
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Analysis Methods
average power
Fourier analysis
wavelets
fractal dimension
entropy
moments
Hjorth parameters
modular neural network
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Wavelets

If a signal contains frequency components 
emerging and vanishing in certain time 
intervals, then a time and a frequency 
localization is required
Historically, this is done with the Short Time 
Fourier Transform (STFT) or Gabor
Transform
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Wavelets
There exists a Heisenberg’s Uncertainty 
Principle between time and frequency

In order to overcome the resolution limitation of 
the STFT a decomposition of square integrable
signals has been developed 
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Wavelets
These families of functions ha,b are generated 
from a single function h(t) by the operation of 
dilations and translations

Where x(t) is a continuous function, * 
represents the complex conjugation and < > 
represents the inner product.
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Wavelets
The last equation is interpreted as a multi-
resolution decomposition of the signal into a 
set of channels having the same bandwidth in 
a logarithmic scale
For the STFT the phase space is uniformly 
sampled
In the wavelet transform the sampling in 
frequency is logarithmic
The latter enables one to analyze higher 
frequencies in shorter windows and lower 
frequencies in longer windows in time
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Wavelets

Taking the wavelet transform of an 
image involves convolving a pair of 
filters, one high pass and one low pass, 
with the image
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Wavelets

image
f(x, y)

2LP

HP 2

2LP

HP 2

HP 2

2LP

HP-HP

HP-LP

LP-HP

LP-LP

filter in x-direction filter in y-direction

Wavelet transform algorithm - sub-band decomposition of one octave. 
HP = high-pass, LP = low-pass, ↓ 2 represents decimation by 2
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Wavelets

(a)  Lena (b) Octave 1
The wavelet transform of Lena.bmp.  Note that (b) has been enhanced to 
accentuate the detail coefficients (high pass components).
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Wavelets

Discrete Wavelet Series
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Wavelets
Discrete Wavelet Transform (DWT)
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Wavelets, an example….



Evangelia Micheli-Tzanakou, PhD

Speaker Identification
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Speaker Identification
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Wavelets
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High Pass and Low Pass filter coefficients
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Speaker Identification

Processing with overlapping windows

  o v e r l a p

w in d o w  l e n g t h

w in d o w  l e n g t h  -  o v e r l a p
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Speaker Identification
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Speaker Identification
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Speaker Identification
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Speaker Identification
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Speaker Identification
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Speaker Identification
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Analysis Methods
average power
Fourier analysis
wavelets
fractal dimension
entropy
moments
Hjorth parameters
modular neural network
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Fractal dimension

What is a fractal?
• Self-Similarity - small part should 

resemble the whole
• “an object whose Hausdorff- Besicovich

(H-B) dimension strictly exceeds its 
topological dimension”

• Results from an recursive iterative 
equations

• Wiggly Lines or Surfaces
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Fractal dimension
von Koch’s Curve (1904) - "On a continuous curve 
without any tangent, obtained through an elementary 
geometrical construction

Each side L is replaced by 4/3L – length tends towards 
infinite – yet curve never goes outside circumcircle of 
original triangle or inside inner circle inside triangle
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Fractal dimension
Mathematical Development

Defining dimensions of objects 

Euclidean Geometry

Point – 0D Line – 1D Plane – 2D Space – 3D

Hausdorff(1919) & Besicovich(1935) – calculation of 
dimensions
Von Koch’s Curve H-B dimension log 4/log 3 = 1.2618... 
Cantor's dust H-B dimension log 2/log 3 = 0.6309...
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Fractal dimension
Proposed Fractal Dimension  ( “Fractional 
Dimension”)
Measuring the Coastline of England
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Fractal dimension

51.1
)1/½log(
)7/20log(

)2/1log(
)1/2log(

===
SS
LLD

L2, L1 are the measured lengths of the 
curves (in units)

S2, S1 are the sizes of the units (ie. the 
scales)
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Fractal dimension
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Fractal dimension
Fractals and Images

Measurement of the texture or roughness of an 
image
The higher the FD the rougher the surface

Methods of calculating Fractal Dimension
Statistical differences in pixel intensity
Box counting method
Gabor filters
Wavelets
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Fractal dimension Sarkar and 
Chaudhuri’s algorithm
Start with a M x M image, G levels of gray scale and D = log(N)/log(1/r)

D = dimension, N = number of parts comprising the set, scaling of 1/r from whole

For a square: N parts scaled by 1/N1/2, thus Nr2 = 1 or D = 2

Divide up the image into size s x s where M/2 > s > 1 such that r = s/M

Imagine the two dimensional image is a topological map in three dimensions.  On 
each size grid s x s can be built a column of boxes sized s x s x s’ where ⎣G/s’⎦ = 
⎣M/s⎦ with indices starting with 1 for the bottom box.

Find the lowest and highest boxes intersected by the image in the current column of 
boxes and name them k and l respectively.

Add up  the differences (1 – k + l) for all areas s x s for the current scale r and call it 
N(r)

Do this for all scales and the result will be a vector N(r) where 1/r = 2, 4, 8, ….M/2

Plot log(N[r]) vs. log(1/r) and calculate the slope using a least square linear fit..

This is the fractal dimension
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An example…..
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MAMMOGRAPHY

The leading cause of death of women affected by 
breast cancer
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Classification 
is performed in two basic 
steps:

feature extraction
neural network classification
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Network Topology

The two basic types of network topologies
used in our experiments were:
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A Three Layer Network

one input, one hidden, and one output 
layer, classified between the three types of 
images by using three output nodes

• Normal
• Mass
• Microcalcifications
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N N  A R C H ITEC TU R E 
 

Inputs

O utputs

H idden
Nodes

This type of architecture did not identify exactly the 
three types of patterns
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A Binary Tree Network

images were classified into two categories 
at a time 
each stage contained a single three layer 
network as in the three layer NN, however 
each three layer network contained only 
two output units
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Binary Tree NN

 

s t a g e  1  

s ta g e  2  

I n p u t  F e a t u r e  D a t a  

N o r m a l

A b n o r m a l

M ic r o c a lc i f ic a t io n M a s s

T h is  t y p e  o f  N N ,  id e n t i f ie s  
t h e  c o r r e c t  t y p e  o f  t is s u e  
w it h  9 8 %  a c c u r a c y  
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Another example…..

In signal processing



Fractal Analysis of EMG & Evoked 
Potential Signals
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Evoked Potential Signal

A
m

plitude (uV
)

Time (msec)
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EMG (Electromyography) Signals

EMG is a test that measures muscle
response to nervous stimulation (electrical 
activity within muscle fibers). 
The electromyography (EMG) measures the 
response of muscle fibers to electrical activity. 
It's used to help determine the kind of muscle 
condition that might be causing muscle 
weakness, including muscular dystrophy and 
nerve dysfunctions.
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EMG Signal

A
m

plitude (m
V

)

Time (msec)
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Fractal Dimension

In medicine, waveforms showing 
repetitive patterns (ECG, EEG, EMG) 
are often analyzed in the terms of 
Fractal Dimension.
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Fractal Dimension

Fractals are of rough or 
fragmented geometric 
shape that can be 
subdivided in parts, each 
of which is approximately 
a reduced copy of the 
whole.
Fractal Dimension 
measures the degree of 
fractal boundary 
fragmentation or 
irregularity over multiple 
scales
D=log(N)/log(1/r)
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Fractal Dimension

Box-Counting Method 
(Barnsley, 1988): It works by 
covering fractal (its image) with 
boxes (squares) and then counting 
how many boxes are needed to 
cover the fractal completely. 
Repeating this measurement with 
different sizes of boxes will result 
into logarithmical function of box size 
(x-axis) and number of boxes 
needed to cover the fractal (y-axis). 
The slope of this function is referred 
as box dimension. Box dimension is 
taken as an appropriate 
approximation of fractal dimension.
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Fractal Dimension
Dbox-counting = ΔlogN(s)/Δlog(1/s)
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Results

D of Evoked 
Potential Signals

D of EMG Signals

1.37301.2584
1.45871.2070
1.32701.4193
1.35321.3996

1.5500
1.41041.4450
1.40581.4674
1.49141.6016
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Results

Fractal Dimension 
indicates the 
fragmentation or 
irregularity of the 
signal curve over 
multiple scales.
D1=1.2070 (upper)
D2=1.6016 (lower)
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Discussion

The results above suggest that fractal 
dimension may be useful as alternative 
means to evaluate the EMG and 
Evoked Potential signals. High D value 
may mean muscle’s irregular state of 
trembling, which is one symptom of 
Parkinson's disease.
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Analysis Methods
average power
Fourier analysis
wavelets
fractal dimension
entropy
moments
Hjorth parameters
modular neural network
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Entropy
Information content in a source is 
denoted by entropy:  H = - Σpilog2pi 
(bits)
Shannon Coding Theorem states that a 
source with entropy H can be encoded 
with an arbitrarily small error probability 
at rate R bits/source output as long as

R > H
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Entropy

What does this have to do with the 
wavelet transform?  

the wavelet transform changes 
the statistics of the image
has the potential to decrease 
entropy depending on the image 
being transformed
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Analysis Methods
average power
Fourier analysis
wavelets
fractal dimension
entropy
moments
Hjorth parameters
modular neural network
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Moments
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Moments

Invariant MomentsInvariant Moments
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Moments values

|10-40| to |1041| (for 256x256 images) 

|10-40| to |1041| (for 256x256 images) 

x’ = ln (| ln(|x|) |)
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Moments

Have been used successfully both in 
one and two dimensional data.
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Analysis Methods
average power
Fourier analysis
wavelets
fractal dimension
entropy
moments
Hjorth parameters
modular neural network
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Hjorth parameters (coefficients)

Another way of looking at features using 
moments and their higher order 
combinations
Mostly used with one dimensional data
These are:

Activity
Mobility
Complexity
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Hjorth Coefficients

[ Hjorth 1970]
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Time-Frequency Analysis
TOP:
VEP waveform from data file
X axis: Time (ms)
Y axis: Amplitude (mv)

MIDDLE:
Time-Frequency Analysis
X axis: Time (ms) 

(matches Top timescale)
Y axis: Frequency (Hz)

BOTTOM:
Histogram of Time-Frequency 

Amplitudes
X axis: Normalized Amplitudes (0–1)
Y axis: Count of Amplitudes in 

Time-Frequency Space
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Brain Frequencies
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Analysis Methods
average power
Fourier analysis
wavelets
fractal dimension
entropy
moments
Hjorth parameters
modular neural network
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Modular Neural Networks

• Once you have all these features, 
what do you do with them?

• Use a Modular Neural Network with 
each module processing a different set 
of features

• Integrate all “input networks” into one 
for the final output
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An example…..
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An example…..
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We developed a system to analyze 
spontaneous activity within the Globus
Pallidus of Parkinson’s patients and able to:

Rate the degree to which proposed lesions at 
specific locations along the current surgical 
tract are expected to relieve Parkinsonian
symptoms
Rate the degree to which proposed lesions at 
specific locations along the current surgical 
tract are expected to cause unwanted effects 
such as scotoma and/or dysarthria
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Localization Methods

Imaging
Stimulation testing
Recordings of spontaneous activity

mapping boundaries of pallidum?
extends duration of procedure
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Field Potential Recordings
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Activity Recordings

10 mm

4 mm

2 mm

1 mm

0 mm

-1 mm

-2 mm

-2.5 mm

3 mm (after)

2 mm (after)

1 mm (after)

0 mm (after) 

100 msec by 10 uV



Evangelia Micheli-Tzanakou, PhD

Patient Data: Efficacy Assessment

patients were examined by neurologists and 
neurosurgeons before and after pallidotomy
bradykinesia, rigidity, tremor, and dyskinesia
rated on 5-point scales
“after” results taken as close to six months 
after operation as possible
improvement mapped to a 0-5 scale
“best” improvement (of bradykinesia, rigidity, 
tremor, dyskinesia) and “average”
improvement used to train network
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Patient Data: Deleterious Outcomes
 

 

                                                                                                       
 Rating Deleterious Outcome  
 5 death  
 4 stroke, meningitis  
 3.5 confusion, hallucinations; difficulty 

swallowing 
 

 3 dysarthria; measurable field cut  
 2.5 diplopia  
 2 slowed speech; visual disturbance of lesser 

severity than a measurable field cut or 
diplopia 

 

 1 decreased speech volume  
 0 no hazardous outcome noted  
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Patient Data: Deleterious Outcomes
 
 Rating Duration of Deleterious Outcome  
 5 greater than one year  
 4 6-12 months  
 3 1-6 months  
 2 1-4 weeks  
 1 up to one week  
 0 no hazardous outcome detected  
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Patient Data: Multiple Data Segments

Recordings at each site often contain 
more samples than are needed for 
analysis techniques.
When “extra” data existed, the network 
was trained with up to 10 different views 
of the analysis results for each patient.



Evangelia Micheli-Tzanakou, PhD

Analysis Methods:  “Toolkit”
average power (already in use on-line)
frequency-based

Fourier analysis
wavelets

complexity measures (used off-line)
fractal dimension
entropy

moments
pre-operative information
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Analysis Methods: power analysis 
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Analysis Methods: power analysis
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AT, before lesioning

AT, before lesioning (7a)
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VQ, right side, before
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Neural Networks: ALOPEX
Wi(n) = Wi(n-1) + δi(n)
δi(n) = ±δ with probability pi(n)
δi(n) =    δ with probability 1-pi(n)

pi(n) = 
1

1 + exp
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞ΔWiΔR

temperature(n)
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Neural Networks: Architecture
inputs encode 
results of different 
analysis techniques, 
possible lesion 
locations
output represents 
estimated efficacy or 
hazard
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Data Used

• Obtained before

• During and

• After the operation
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Artificial Data: Why?

patient data describe locations that  
were lesioned
no patient data available for locations         

that were not lesioned
network trained only with data from 

“good” locations and will not recognize 
“bad” locations
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Artificial Data: Types
Lesion too high

no benefit, minimal hazard if 3mm above 
highest actual lesion

Lesion too low
2 mm below lowest actual lesion: unknown 
benefit, risk varies with size
>2 mm below lowest actual lesion: no 
benefit, severe hazard

Subsets and combinations
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Artificial Data
 
 
 Description  average 

impr. 
best 
impr. 

hazard hazard 
duration 

location  

 actual lesion 
and  outcome 

1.17 1.50 0.00 0.00 {2, 3}  

 zero-benefit  0.00 0.00 0.00 0.00 {7}  
 lesions 0.00 0.00 0.00 0.00 {6}  
  0.00 0.00 0.00 0.00 {6, 7}  
  1.17 1.50 0.00 0.00 {2, 3, 7}  
  1.17 1.50 0.00 0.00 {2, 3, 6}  
  1.17 1.50 0.00 0.00 {2, 3, 6, 7}  
 
 



Evangelia Micheli-Tzanakou, PhD

Artificial Data: Balancing Act
The available pool of artificial data far 
exceeds the amount of actual outcome data
Only a portion of available artificial data was 
used
Final training set included between 1-4 items 
of artificial data for each case.
“Too low” lesions

rejected by neurosurgeons because of side effects
associated by network with increased side effects
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Results: Plausibility 

“Too high” lesions
additional lesions near the target area have 
a greater benefit than those farther away
additional lesions frequently associated 
with reduction in overall benefit
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Results: Flexibility

Unusually low target

Unusually high target

Unusually high hazard area

Unusually modest benefit
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Results: Flexibility
Unusually low target
Actual: (-3, -2, -1, 0, 1, 2) with no adverse effect
Network: (-4, -3, -2), hazard rating < 0.6
Unusually high target

Unusually high hazard area

Unusually modest benefit
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Results: Flexibility

Unusually low target
Actual: (-3, -2, -1, 0, 1, 2) with no adverse effect
Network: (-4, -3, -2), hazard rating < 0.6
Unusually high target
Actual: (2, 4, 5) with no adverse effect
Network: (2, 3, 4), (3, 4, 5), (2, 4, 5),  and (3, 4, 6)
Unusually high hazard area

Unusually modest benefit
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Results: Flexibility
Unusually low target
Actual: (-3, -2, -1, 0, 1, 2) with no adverse effect
Network: (-4, -3, -2), hazard rating < 0.6
Unusually high target
Actual: (2, 4, 5) with no adverse effect
Network: (2, 3, 4), (3, 4, 5), (2, 4, 5),  and (3, 4, 6)
Unusually high hazard area
Actual: patient saw flashes of light at 0 mm
Network: Hazard increased for combinations with 
0mm  
Unusually modest benefit
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Results: Flexibility
Unusually low target
Actual: (-3, -2, -1, 0, 1, 2) with no adverse effect
Network: (-4, -3, -2), hazard rating < 0.6
Unusually high target
Actual: (2, 4, 5) with no adverse effect
Network: (2, 3, 4), (3, 4, 5), (2, 4, 5),  and (3, 4, 6)
Unusually high hazard area
Actual: patient saw flashes of light at 0 mm
Network: Hazard increased for combinations with 
0mm
Unusually modest benefit
Actual: lesions at (1, 2, 3) helped for only a short time
Network: no beneficial combination of lesions found 
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Comparison: Hazard

15 different cases reviewed
5 cases had hazardous outcome
Under previous method, none of these 
were predicted
Network identified 2/5 cases as 
hazardous
Also identified 1/10 “safe” cases as 
hazardous
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Comparison: Hazard
15 different cases reviewed
5 cases had hazardous outcome
Under previous method, none of these 
were predicted
Network identified 2/5 cases as 
hazardous
Also identified 1/10 “safe” cases as 
hazardous
Recognized 40% of hazards that the 
previous method missed
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Comparison: Efficacy
15 different cases reviewed
Network identified the 1 site not lesioned
because of low expected efficacy as having 
marginal benefit (maximum = 1.86)
Network identified 1 site which was lesioned, 
producing no benefit, as having no 
combination of standard lesions which could 
produce any benefit.
Two sites which produced good results when 
lesioned were rejected by network
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Comparison: Efficacy
15 different cases reviewed
Network identified the 1 site not lesioned
because of low expected efficacy as having 
marginal benefit (maximum = 1.86)
Network identified 1 site which was lesioned, 
producing no benefit, as having no 
combination of standard lesions which could 
produce any benefit.
Two sites which produced good results when 
lesioned were rejected by network
Correctly identified 100% of low-benefit 
sites
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Conclusions
Neural networks trained with data obtained by a 
variety of common analysis methods produce 
more accurate assessments of surgical outcome 
than do current power-based techniques.
Networks trained with data derived from wavelet 
analysis, entropy, and fractal dimension give more 
accurate results than those which use Fourier 
analysis, statistical moments, or power content.



A DATABASE IMAGE MANAGEMENT SYSTEM 
WITH AUTOMATED CLASSIFICATION OF 

RETINAL ABNORMALITIES

Goals:Goals:
Digital Image storage/retrievalDigital Image storage/retrieval

Image ProcessingImage Processing

Classification of retinal diseasesClassification of retinal diseases
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Involved difficulties:
Variable data sizes
Multiple data types
Requirement to store different data types in the same file
Reliability of data storage/retrieval
Remote data access
Data compression

Image StorageImage Storage

Variety of diseasesVariety of diseases
Different image sources, image qualities, and spatial image Different image sources, image qualities, and spatial image 
characteristicscharacteristics

Image ClassificationImage Classification

NormalNormal HemorrhageHemorrhageArteriosclerosisArteriosclerosis
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M1 Image Source
(digital camera / scanner)

M2 Database Image
Management Module

M4 Feature Extraction
Module

M3 Image Processing
Module

M5 Neural Network
Classification Module

M1 Image Source
(digital camera / scanner)

M2 Database Image
Management Module

M4 Feature Extraction
Module

M3 Image Processing
Module

M5 Neural Network
Classification Module

Scanner (150dpi)Scanner (150dpi)
Digital CameraDigital Camera

M1: Image Source

Local Computer

Visual Ophthalmologist BDE
Image Data

M2: Image Storage

System Components
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Image Processing
1. Image Histogram functions 

1.1. Histogram Equalization 
1.2. Histogram Stretch 

2. Image compression/decompression based on a Gaussian Pyramid 
3. Image orientation, and center of mass 
4. Image clustering 
5. Determination of the best fit ellipse and rectangle based on a given

histogram range 
6. A set of convolution filters, which include 

6.1. Low-pass, high-pass filters 
6.2. Gaussian and Laplassian filters 
6.3. Median Filters 
6.4. Several other filters with predefined kernels 
6.5. Ability to specify custom filter kernels 
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Histogram FunctionsHistogram Functions

OriginalOriginal

StretchedStretched

EqualizedEqualized

Image Gaussian Pyramid CompressionImage Gaussian Pyramid Compression

Image ClusteringImage Clustering

x p k n x ki i
k

= − −∑ ( ) ( )2 1



Evangelia Micheli-Tzanakou, PhD

Image Orientation, BestImage Orientation, Best--fit ellipse,fit ellipse,
Center of Mass, Bounding RectangleCenter of Mass, Bounding Rectangle

0 0 --1  01  0
--1  5 1  5 --11
0 0 --1  01  0

--1 1 --11 --11
--1  8 1  8 --11
--1 1 --11 --11

1  1  11  1  1
1  4  11  4  1
1  1  11  1  1

Image FiltersImage Filters g n n h k k h n k n k
k

N

k

M

( , ) ( , ) ( , )1 2 1 1 2 2 1 1 1 2
0

1

0

1

21

= − −
=

−

=

−
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Median FilterMedian Filter

OriginalOriginal Added  noiseAdded  noise FilteredFiltered
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Central and Invariant Moments
F-Core
Wavelet Histogram

Feature Extraction Methods

μ p q
p qx x y y f x y dxdy, ( ) ( ) ( , )= − −∫∫
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OriginalOriginal Real CoefficientsReal Coefficients Imaginary Imaginary CoeffCoeff..

Fourier TransformFourier Transform

MicheliMicheli--Tzanakou and Binge, 1989:  FTzanakou and Binge, 1989:  F--Core algorithmCore algorithm

F u v
N M

f x y e
j

u
N

v
M

y

M

x

N

( , ) ( , )
( )

=
− +

=

−

=

−

∑∑1 2

0

1

0

1
π

64 x 64 pixels image => 2 x 4096 64 x 64 pixels image => 2 x 4096 coeffcoeff..

p r ij j j= +2 2Image power spectrum:Image power spectrum:

1.  Compress image using Gaussian Pyramid to 32x32 pixels. 
2.  Apply the FFT (2x1024 coefficients). 
3.  Compute the power spectrum (1024 coefficients). 
4.  Sort coefficients, and store the top 5%  (50 coefficients). 
5.  Save every other feature of the resulting 50 coefficients array. 

Variation of the FVariation of the F--Core algorithm:Core algorithm:
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WaveletsWavelets
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Δ1 - wavelet coefficient matrix 
Δ2 - scaling 

Advantages over FFT:Advantages over FFT:
1. Can approximate functions defined

in finite domains
2. Can be applied to sharp discontinuities

φ φ ττs

s
sx x, ( ) ( )= −

− −2 22

Φ(t) = 1, if  0 ≤ t ≤ 1 
 0, otherwise 

The scalar: 1
2

   Filter:{ 1
2

, 1
2

}

Haar scaling function:

Wavelet HistogramWavelet Histogram
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1 0

1 5

2 0

1 % 3 % 5 % 7 % 9 %
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F e a t u r e  n u m b e r s :
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4

M i n i m u m  v a l u e s  o f  e a c h  f e a t u r e  w i t h i n  a l l  t e m p l a t e s :
4 8 2 5 6 6 5 5 6 5 5 4 5 2 3 3 2 1 1 1 1 1 1 1 0 0

M a x i m u m  v a l u e s  o f  e a c h  f e a t u r e  w i t h i n  a l l  t e m p l a t e s :
5 8 9 8 4 6 3 4 5 4 0 3 9 3 0 2 9 2 5 2 7 2 7 2 1 2 1 2 0 2 0 2 0 1 9 1 7 1 6 1 8 1 4 1 4 1 4 1 4

Modular Neural NetworksModular Neural Networks
Input Layer

Hidden Layer

Output Layer

Output

ALOPEX optimizationALOPEX optimization
Tzanakou & Harth, 1973.

x n x n x n E n r ni i i i( ) ( ) ( ) ( ) ( )= − ± ⋅ ⋅ +1 γ Δ Δ

Δ E n( ) = E ( n - 1 )  -  E ( n - 2 )
Δ x ni ( ) = x ni ( )− 1 - x ni ( )− 2

γ   -  L e a r n i n g  r a t e  m o d u l a t o r
r ni ( ) -  G a u s s i a n  n o i s e

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 0
1 0
0 1
0 1

Template ClusteringTemplate Clustering

Δ W E Δ E - Δ W Δ E W ( n e w )
> 0 > 0 < 0 d e c r e a s e d
> 0 < 0 > 0 i n c r e a s e d
< 0 > 0 < 0 d e c r e a s e d
< 0 < 0 > 0 i n c r e a s e d
= 0 = 0 r e m a i n  u n c h a n g e d



Evangelia Micheli-Tzanakou, PhD

0

0 . 5

1

1 . 5

2

0 0 . 2 0 . 4 0 . 6 0 . 8 1

E  =  | L o c a l | ^ 2
E = e x p ( L o c a l ) - 1
E = e x p ( 2 * L o c a l ) - 1

′ = −E O u t O u ti i
d e s i r e d

i
o b s e r v e d

C l a s s 1 C l a s s 3 C l a s s 5
1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 0 1 0 0

C l a s s 2 C l a s s 4
0 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0

Classification CriterionClassification Criterion

M o m e n t s H i s t o g W a v e J o i n t
T o t a l R e c o g n i z e d 1 2 7 1 4 5 1 2 5 1 2 7
1 6 0 U n r e c o g n i z e d 3 3 1 5 3 5 3 3

R e c o g n i t i o n  R a t e 7 9 . 3 8 % 9 0 . 6 3 % 7 8 . 1 3 % 7 9 . 3 8 %

ResultsResults Training convergence: 95%Training convergence: 95%
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1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

Training ApproachesTraining Approaches

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

F i r s t S e c o n d G a i n e d L o s t
T o t a l R e c o g n i z e d 1 2 0 1 2 7 2 0 1 3

1 6 0 U n r e c o g n i z e d 4 0 3 3
7 5 . 0 0 % 7 9 . 3 8 % 1 2 . 5 0 % 8 . 1 3 %

#1#1

#2#2

Comparison of two approachesComparison of two approaches
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Conclusions
The goal of uniform image storage/retrieval in a database format is 
achieved
The image processing tools were successfully incorporated in the system
The system classification of the retinal diseases proved to be satisfactory  

Future ImprovementFuture Improvement
Using compression to minimize space that images allocate in the Using compression to minimize space that images allocate in the 
databases (GIF, TIFF, JPEG).databases (GIF, TIFF, JPEG).
Incorporation of additional image processing tools (more filtersIncorporation of additional image processing tools (more filters).).
Increase image classification accuracy by applying additional feIncrease image classification accuracy by applying additional feature ature 
extraction methods, and enhancing existing methods.extraction methods, and enhancing existing methods.
Improving ALOPEX training parameters to achieve faster Improving ALOPEX training parameters to achieve faster 
convergence.convergence.
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