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Introduction

• The goal of this course:

to show why and how neural networks can be
applied for system identification
– Basic concepts and definitions of system identification

• classical identification methods

• different approaches in system identification

– Neural networks
• classical neural network architectures

• support vector machines

• modular neural architectures

– The questions of the practical applications, answers based 
on a real industrial modeling task (case study)
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System identification
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System identification: a short overview
• Modeling

• Identification
– Model structure selection

– Model parameter estimation

• Non-parametric identification
– Using general model structure

• Black-box modeling
– Input-output modeling, the description of the behaviour of a

system
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Modeling

• What is a model?

• Why we need models?

• What models can be built?

• How to build models?
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Modeling

• What is a model?

– Some (formal) description of a system, a separable part 

of the world. 

Represents essential aspects of a system

– Main features: 

• All models are imperfect. Only some aspects are taken 

into consideration, while many other aspects are 

neglected.  

• Easier to work with models than with the real systems

– Key concepts: separation, selection, parsimony
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Modeling

• Separation:
– the boundaries of the system have to be defined. 
– system is separated from all other parts of the world

• Selection:
Only certain aspects are taken into consideration e.g.

– information relation, interactions 
– energy interactions

• Parsimony: 
It is desirable to use as simple model as possible

– Occam’s razor (William of Ockham or Occam) 14th Century English
philosopher)

The most likely hypothesis is the simplest one that is consistent with 
all observations
The simpler of two theories, two models is to be preferred.
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Modeling

• Why do we need models?
– To understand the world around (or its defined part)   
– To simulate a system

• to predict the behaviour of the system (prediction, forecasting),
• to determine faults and the cause of misoperations, 

fault diagnosis, error detection,
• to control the system to obtain prescribed behaviour, 
• to increase observability: to estimate such parameters which are 

not directly observable (indirect measurement), 
• system optimization. 

– Using a model
• we can avoid making real experiments,
• we do not disturb the operation of the real system, 
• more safe then working with the real system,
• etc... 
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Modeling

• What models can be built?

– Approaches

• functional models
– parts and its connections based on the functional role 

in the system  

• physical models
– based on physical laws, analogies (e.g. electrical 

analog circuit model of a mechanical system)

• mathematical models
– mathematical expressions (algebraic, differential 

equations, logic functions, finite-state machines, etc.)
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Modeling

• What models can be built?

– A priori information

• physical models, “first principle” models

use laws of nature

• models based on observations (experiments)

the real physical system is required for 

obtaining observations 

– Aspects

• structural models

• input-output (behavioral) models
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Identification

• What is identification?

– Identification is the process of deriving a 

(mathematical) model of a system using 

observed data
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Measurements

• Empirical process 
– to obtain experimental data (observations), 

• primary information collection, or

• to obtain additional information to the a 

priori one.

– to use the experimental data for obtaining 
(determining) the free parameters (features) of 
a model. 

– to validate the model
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Identification (measurement)
The goal of modelingThe goal of modelingThe goal of modeling

Collecting a priori knowledgeCollecting a priori knowledgeCollecting a priori knowledge

A priori modelA priori modelA priori model

Experiment designExperiment design

Observations, determining
features, parameters

Observations, determining
features, parameters

Model validationModel validation

Final modelFinal model

CorrectionCorrection

Measurement

Identification
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• Based on the system characteristics

• Based on the modeling approach

• Based on the a priori information

Model classes
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Model classes
• Based on the system characteristics

– Static – dynamic  

– Deterministic – stochastic 

– Continuous-time – discrete-time 

– Lumped parameter – distributed parameter 

– Linear – non-linear 

– Time invariant – time variant 
– …
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Model classes

• Based on the modeling approach
– parametric

• known model structure

• limited number of unknown parameters

– nonparametric
• no definite model structure

• described in many points (frequency characteristics, 
impulse response)

– semi-parametric
• general class of functional forms are allowed

• the number of parameters can be increased 
independently of the size of the data
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Model classes

• Based on the a priori information (physical insight)

– white-box

– gray-box

– black-box
Black-box

White-box

Structure             ParametersStructure             Parameters

Structure ParametersStructure Parameters

Structure ParametersStructure Parameters

Structure ParametersStructure Parameters Gray-box

Structure ParametersStructure Parameters

Known Missing (Unknown)
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Identification

• Main steps
— collect information

– model set selection

– experiment design and data collection

– determine model parameters (estimation)

– model validation
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Identification
• Collect information

– physical insight (a priori information)

understanding the physical behaviour
– only observations or experiments can be designed 
– application 

• what operating conditions
– one operating point
– a large range of different conditions 

• what purpose
– scientific 

basic research 
– engineering 

to study the behavior of a system, 
to detect faults, 
to design control systems,
etc.
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Identification

• Model set selection
– static – dynamic

– linear – non-linear 

– non-linear

• linear - in - the - parameters

• non-linear - in - the - parameters 

– white-box – black-box

– parametric – non-parametric
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Identification

• Model structure selection

– known model structure (available a priori 

information)

– no physical insights, general model structure

• general rule: always use as simple model as 

possible (Occam’s razor)

– linear

– feed-forward 

•

•
•
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Experiment design and data collection
• Excitation

– input signal selection

– design of excitation
• time domain or frequency domain identification 

(random signal, multi-sine excitation, impulse 
response, frequency characteristics)

• persistent excitation

• Measurement of input-output data 
– no possibility to design excitation signal 

• noisy data, missing data, distorted data 

• non-representing data
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Excitation

• Step function

• Random signal (autoregressive moving 
average (ARMA) process)

• Pseudorandom binary sequence

• Multisine
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Excitation

• Step function 
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Excitation

• Random signal (autoregressive moving 

average (ARMA) process)

– obtained by filtering white noise

– filter is selected according to the desired 

frequency characteristic

– an ARMA(p,q) process can be characterized

• in time domain

• in lag (correlation) domain

• in frequency domain
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Excitation

• Pseudorandom binary sequence
– The signal switches between two levels with given probability

– Frequency characteristics depend on the probability p
– Example
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Excitation

• Multisine

– where is the maximum frequency of the excitation signal, 

K is the number of frequency components

• Crest factor
minimizing CF with the selection of φ phases
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Excitation

• Persistent excitation
– The excitation signal must be „rich” enough to 

excite all modes of the system  
– Mathematical formulation of persistent excitation

• For linear systems
– Input signal should excite all frequencies,

amplitude not so important

• For nonlinear systems
– Input signal should excite all frequencies and 

amplitudes
– Input signal should sample the full regressor 

space
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The role of excitation: small excitation signal
(nonlinear system identification)
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The role of excitation: large excitation signal
(nonlinear system identification)
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Modeling (some examples)

• Resistor modeling

• Model of a duct (an anti-noise problem)

• Model of a steel converter (model of a 

complex industrial process)

• Model of a signal (time series modeling)
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Modeling (example)

• Resistor modeling
– the goal of modeling: to get a description of a 

physical system (electrical component)

– parametric model
• linear model
• constant parameter

• variant model

• frequency dependent c

DC
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Modeling (example)
• Resistor modeling

– nonparametric model
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Modeling (example)
• Resistor modeling

– parameter estimation based on noisy measurements
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Modeling (example)

• Model of a duct
– the goal of modeling: to design a controller for 

noise compensation. 

active noise control problem
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Modeling (example)
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Modeling (example)

• Model of a duct 
– physical modeling: general knowledge about acoustical 

effects; propagation of sound, etc.

– no physical insight. Input: sound pressure, output: sound 
pressure 

– what signals: stochastic or deterministic: periodic, non-
periodic, combined, etc. 

– what frequency range 

– time invariant or not

– fixed solution, adaptive solution. Model structure is fixed, 
model parameters are estimated and adjusted: adaptive 
solution
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Modeling (example)

• Model of a duct
– nonparametric model of the duct (H1)
– FIR filter with 10-100 coefficients
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Modeling (example)

• Nonparametric models: impulse responses
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Modeling (example)

• The effect of active noise compensation



Neural Networks for System Modeling  • Gábor Horváth, 2005  Budapest University of Technology and Economics

Modeling (example)

• Model of a steel 
converter (LD converter)
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Modeling (example)

• Model of a steel converter (LD converter)
– the goal of modeling: to control steel-making 

process to get predetermined quality steel

– physical insight: 
• complex physical-chemical process with many inputs

• heat balance, mass balance

• many unmeasurable (input) variables (parameters)

– no physical insight: 
• there are input-output measurement data

– no possibility to design input signal, no possibility 
to cover the whole range of operation
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Modeling (example)

• Time series modeling
– the goal of modeling: to predict the future 

behaviour of a signal (forecasting)
• financial time series

• physical phenomena e.g. sunspot activity

• electrical load prediction

• an interesting project: Santa Fe competition 

• etc. 

– signal modeling = system modeling
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Time series modeling
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Time series modeling
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Time series modeling

• Output of a neural model
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Identification (linear systems)

• Parametric identification (parameter estimation)

– LS estimation

– ML estimation

– Bayes estimation

• Nonparametric identification

– Transient analysis

– Correlation analysis

– Frequency analysis
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Parametric identification
n

y

yM

CCriterion

C(y,yM)

Model

Parameter

algorithm

System

function

adjustment

u

y=f (u,n)

yM=f M(u,θ)



Neural Networks for System Modeling  • Gábor Horváth, 2005  Budapest University of Technology and Economics

Parametric identification
• Parameter estimation

– linear system

– linear-in-the parameter model

– criterion (loss) function
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Parametric identification

• LS estimation

quadratic loss function

LS estimate
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Parametric identification

• Weighted LS estimation

– weighted quadratic loss function

weighted LS estimate

– Gauss-Markov estimate (BLUE=best linear unbiased 

estimate)
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Parametric identification

• Maximum likelihood estimation
– we select the estimate which makes the given 

observations most probable

– likelihood function, log likelihood function

– maximum likelihood estimate
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Parametric identification
• Properties of ML estimates

– consistency

– asymptotic normality

– asymptotic efficiency: the variance reaches Cramer-Rao

lower bound

– Gauss-Markov if  Gaussian
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Parametric identification

• Bayes estimation

– the parameter Θ is a random variable with known pdf

the loss function

– Bayes estimate

a priori
a posteriori

f(Θ)
f(Θ│y)

Θ
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Parametric identification

• Bayes estimation with different cost functions

– median

– MAP

– mean
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Parametric identification

• Recursive estimations

– is estimated from

– is predicted as 

– the error is determined

– update the estimate               from           and
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Parametric identification

• Recursive estimations
– least mean square  LMS

– the simplest gradient-based iterative algorithm 

– it has important role in neural network training

( ) ( ) ( ) ( ) ( )kkkkk uΘΘ εμ+=+ ˆ1ˆ
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Parametric identification
• Recursive estimations

– recursive least square RLS

where is defined as

changes the search direction from instantenous 

gradient direction
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Parametric identification

• Recursive estimations
– recursive Bayes a posteriori df

a priori            a posteriori         a priori               a posteriori

observation                                   observation
yk-1 yk

k-1 k

( )yf Θ

( ) ( ) ( )

( ) ( )∫
∞+

∞−

=
ΘΘΘy

ΘΘy
yΘ

dff

ff
f

1

1
1 ( ) ( ) ( )

( ) ( )∫
∞+

∞−

=
ΘΘyΘyy

ΘyΘyy
yyΘ

dff

ff
f

,,

,,
,

112

112
21

( ) ( ) ( )

( ) ( )∫
∞+

∞−
−−

−−=
ΘΘyyyΘyyyy

ΘyyyΘyyyy
yyyΘ

dff

ff
f

kk

kkk
k

,,,,,,,,

,,,,,,,,
,,,

1211212

121121
21

KK

KK
K



Neural Networks for System Modeling  • Gábor Horváth, 2005  Budapest University of Technology and Economics

Parametric identification

• Parameter estimation
− Least square less a priori information

− Maximum Likelihood

conditional probability density f.

− Bayes most a priori information 

a priori probability density f. 

conditional probability density f. 

cost function

)ˆ( ΘNf y

( )ΘΘ̂C

)(Θf

)ˆ( ΘNf y
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Non-parametric identification

• Frequency-domain analysis

– frequency characteristic, frequency response

– spectral analysis

• Time-domain analysis

– impulse response

– step response

– correlation analysis

• These approaches are for linear dynamical systems
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Non-parametric identification (frequency 
domain)

• Secial input signals
– sinusoid

– multisine

where is the maximum frequency of the excitation signal

K is the number of frequency components

crest factor

minimizing CF with the selection of φ phases

∑
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Non-parametric identification (frequency 
domain)

• Frequency response

– Power density spectrum, periodogram

– Calculation of periodogram

– Effect of finite registration length

– Windowing (smoothing)
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Black box modeling
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Black-box modeling

• Why do we use black-box models?

– the lack of physical insight: physical modeling is not 

possible

– the physical knowledge is too complex, there are 

mathematical difficulties; physical modeling is possible 

in principle but not possible in practice

– there is no need for physical modeling, (only the 

behaviour of the system should be modeled)

– black-box modeling may be much simpler
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Black-box modeling

• Steps of black-box modeling

– select a model structure

– determine the size of the model (the number of 

parameters) 

– use observed (measured) data to adjust the model 

(estimate the model order - the number of 

parameters - and the numerical values of the 

parameters)

– validate the resulted model
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Black-box modeling

• Model structure selection
Dynamic models: with

how to chose φ(k) regressor-vectors?
past inputs

past inputs and outputs

past inputs and system outputs

past inputs, system outputs and errors

past inputs, outputs and errors

( ) ( )( )kfkyM ϕΘ,=
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Black-box identification

• Linear dynamic model structures
FIR

ARX

OE

ARMAX

BJ

parameter vector
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Black-box identification

• Non-linear dynamic model structures
NFIR

NARX

NOE

NARMAX

NBJ
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Black-box identification

• How to choose nonlinear mapping?

– linear-in-the-parameter models

– nonlinear-in-the-parameters
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Black-box identification

• Model validation, model order selection

– residual test

– Information Criterion:

• AIC Akaike Information Criterion

• BIC Bayesian Information Criterion

• NIC Network Information Criterion

• etc.

– Rissanen MDL (Minimum Description Length)

– cross validation
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Black-box identification

• Model validation: residual test

residual: the difference between the model and the measured (system) 

output

– autocorrelation test: 

• are the residuals white (white noise process with mean 0)?

• are residuals normally distributed?

• are residuals symmetrically distributed?

– cross correlation test:

• are residuals uncorrelated with the previous inputs?

( ) ( )kkk Myy −=)(ε
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Black-box identification

• Model validation: residual test  
autocorrelation test: 
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Black-box identification

• Model validation: residual test
– cross-correlation test: 
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Black-box identification

• residual test

0 5 10 15 20 25
-0.5

0

0.5

1

lag

Auto correlation function of prediction error

-25 -20 -15 -10 -5 0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

lag

Cross correlation function of past input and prediction error



Neural Networks for System Modeling  • Gábor Horváth, 2005  Budapest University of Technology and Economics

Black-box identification

• Model validation, model order selection

– the importance of a priori knowledge 

(physical insight)

– under- or over-parametrization

– Occam’s razor

– variance-bias trade-off
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Black-box identification

• Model validation, model order selection

– criterions:    noise term+penalty term

• AIC:

• NIC network information criterion

extension of AIC for neural networks

• MDL
p  = number of parameters

M = Fisher information matrix

( ) pLp N 2ˆlog)2()(AIC +−= Θ

p2)likelihood imum(maxlog)2()ˆ(AIC +−=Θ

MNN
pNpLp Θ++Θ−= ˆlog
2

log
2

)ˆ(log)2()(MDL



Neural Networks for System Modeling  • Gábor Horváth, 2005  Budapest University of Technology and Economics

Black-box identification

• Model validation, model order selection

– cross validation

• testing the model on new data (from 

the same problem)

• leave out one cross validation

• leave out k cross validation
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Black-box identification

• Model validation, model order selection

– variance-bias trade-off

difference between the model and the real 

system

• model class is not properly selected: bias

• actual parameters of the model are not 

correct: variance
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Black-box identification

• Model validation, model order selection
– variance-bias trade-off

The order of the model (m) is the dimension of φ(k). 

The larger m the smaller bias and the larger variance
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Black-box identification

• Model validation, model order selection
– approaches

• A sequence of models are used with increasing m

Validation using cross validation or some criterion e.g. 
AIC, MDL, etc.

• A complex model structure is used with a lot of 
parameters (over-parametrized model)

Select important parameters 

– regularization

– early stopping

– pruning
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Neural modeling

• Neural networks are (general) nonlinear 
black-box structures with “interesting” 
properties
– general architecture 

– universal approximator

– non-sensitive to over-parametrization

– inherent regularization
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Neural networks

• Why neural networks?
– There are many other black-box modeling approaches: 

e.g. polynomial regression.

– Difficulty: curse of dimensionality

– In high-dimensional (N) problem and using M-th order 

polynomial the number of the independently adjustable 

parameters will grow as NM.

– To get a trained neural network with good 

generalization capability the dimension of the input 

space has significant effect on the size of required 

training data set. 
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Neural networks

• The advantages of neural approach

– Neural nets (MLP) use basis functions to 

approximate nonlinear mappings, which 

depend on the function to be approximated. 

– This adaptive basis function set gives the 

possibility to decrease the number of free 

parameters in our general model structure.
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Other black-box structures

• Wavelets
– mother function (wavelet), dilation, translation

• Volterra series

Volterra series can be applied succesfully for weakly 
nonlinear systems and impractical in strongly 
nonlinear systems
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•Fuzzy models, fuzzy neural models

– general nonlinear modeling approach

•Wiener, Hammerstein, Wiener-Hammerstein

– dynamic linear system + static nonlinear 

– static nonlinear + dynamic linear system

– dynamic linear system + static nonlinear + dynamic linear

•Narendra structures

– other combined linear dynamic and nonlinear static 
systems

Other black-box structures
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Combined models

• Narendra structures
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Neural networks
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Outline
• Introduction
• Neural networks

– elementary neurons
– classical neural structures
– general approach 
– computational capabilities of NNs

• Learning (parameter estimation)
– supervised learning
– unsupervised learning
– analytic learning

• Support vector machines
– SVM architectures
– statistical learning theory

• General questions of network design
– generalization
– model selection
– model validation
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Neural networks
• Elementary neurons

– linear combiner
– basis-function neuron

• Classical neural architectures
– feed-forward
– feedback

• General approach
– nonlinear function of regressors
– linear combination of basis functions

• Computational capabilities of NNs
– approximation of function
– classification
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Neural networks (a definition)

Neural networks are massively parallel 
distributed information processing systems, 
implemented in hardware or software form

made up of: a great number highly interconnected 
identical or similar simple processing units 
(processing elements, neurons) which are doing local 
processing, and are arranged in ordered topology, 

have learning algorithm to acquire knowledge from 
their environment, using examples

have recall algorithm to use the learned knowledge
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Neural networks (main features)

• Main features
– complex nonlinear input-output mapping

– adaptivity, learning capability

– distributed architecture

– fault tolerance

– VLSI implementation

– neurobiological analogy
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The elementary neuron (1)
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Elementary neuron (2)
• Neuron with basis function
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Classical neural networks
• static (no memory, feed-forward)

– single layer networks
– multi-layer networks

• MLP
• RBF
• CMAC

• dynamic (memory or feedback)
– feed-forward (storage elements)
– feedback

• local feedback
• global feedback
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Feed-forward architecture

• Single layer network: Rosenblatt’s perceptron
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Feed-forward architecture

• Single layer network
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Feed-forward architecture
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Feed-forward architecture
• Network with one trainable layer (basis function 

networks)
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Radial basis function (RBF) network

• Network with one trainable layer
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CMAC network

• Network with one trainable layer
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Feed-forward architecture

• Dynamic multi-layer network
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Feed-forward architecture

• Dynamic multi layer network (single trainable layer)

FIR filter
FIR filter
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Feedback architecture

• Lateral feedback (single layer)
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Feedback architecture

Input layer    1. hidden layer    2. hidden layer   Output layer
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Feedback architecture

• Global feedback (sequential network)

Multi-input
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Feedback architecture

• Hopfield network (global feedback)
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Basic neural network architectures

• Genaral approach
– Regressors

• current inputs (static networks)

• current inputs and past outputs (dynamic networks)

• past inputs and past outputs (dynamic networks)

– Basis functions
• non-linear-in-the-parameter network

• linear-in-the-parameter networks 
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Basic neural network architectures
• Non-linear dynamic model structures based on regressor

– NFIR

Multi-input
single output
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static network

x(k-1)

x(k-N)

x(k)

x(k)

y(k)

( ) ( ) ( )( )Nkxkxkxfky −−= ,...,1),(



Neural Networks for System Modeling  • Gábor Horváth, 2005  Budapest University of Technology and Economics

Basic neural network architectures

• Non-linear dynamic model structures based on regressor

– NARX

From the system’s output, d(k)
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Basic neural network architectures

• Non-linear dynamic model structures based on regressor

– NOE

Multi-input
single output
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Basic neural network architectures
• Non-linear dynamic model structures based on regressor

– NARMAX

– NJB

– NSS nonlinear state space representation

( ) ( ) ( ) ( ) ( ) ( ) ( )( )LkεkεMkdkdNkxkxfky −−−−−= ,...,1,,...,1,,...,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )KkεkεLkεkεMkykyNkxkxfky xx −−−−−−−= ,...,1,,...,1,,...,1,,...,



Neural Networks for System Modeling  • Gábor Horváth, 2005  Budapest University of Technology and Economics

Basic neural network architectures 

• Nonlinear function of regressor

– linear-in-the-parameter models (basis function models)

– nonlinear-in-the-parameter models
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Basic neural network architectures

• Basis functions

– MLP (with single nonlinear hidden layer)

• sigmoidal basis function

– RBF (radial basis function, e.g. Gaussian)

– CMAC (rectangular basis functions, splines)
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• CMAC (rectangular basis functions)

Basic neural network architectures

quantization intervals

u1

u2

overlapping regions

regions of
one overlay

points of 
main diagonal

points of
subdiagonal
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• General basis functions of compact support 
(higher-order CMAC)

• B-splines
advantages

Basic neural network architectures

 A two-dimensional basis function 
with compact support: 
tensor product of a second-order B-spline
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Capability of networks
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Capability of networks

• Function approximation

• Classification

• Association

• Clustering 

• Data compression

• Significant component 
selection

• Optimization

Supervised 
learning network

Unsupervised 
learning network



Neural Networks for System Modeling  • Gábor Horváth, 2005  Budapest University of Technology and Economics

Capability of networks

• Approximation of functions
– Main statements: some FF neural nets (MLP, RBF) are 

universal approximators (in some sense)

– Kolmogorov’s Theorem (representation theory): any 

continuous real-valued N-variable function defined on 

[0,1]N can be represented using properly chosen functions 

of one variable (non constructive).
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Capability of networks

• Approximation of function (MLP)
– Arbitrary continuous function f : RN→R on a compact 

subset K of RN can be approximated to any desired 
degree of accuracy (maximal error) if and only if the 
activation function, g(x) is non-constant, bounded, 
monoton increasing. 
(Hornik, Cybenko, Funahashi, Leshno, Kurkova, etc.)
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Capability of networks

• Approximation of function (MLP)
– Arbitrary continuous function f : RN→R on a compact 

subset of RN can be approximated to any desired 

degree of accuracy (in the L2 sense) if and only if the 

activation function is non-polynomial (Hornik, Cybenko, 

Funahashi, Leshno, Kurkova, etc.)
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• Classification
– Perceptron: linear separation 

– MLP: universal classifier

Capability of networks
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Capability of networks

• Universal approximator (RBF)
An arbitrary continuous function f : RN→R on a compact 
subset K of RN can be approximated to any desired 
degree of accuracy in the following form

if g : RN→R is non-zero, continuous, integrable function.
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Computational capability of the CMAC

• The approximation capability of the Albus binary 
CMAC 

• Single-dimensional (univariate) case

• Multi-dimensional (multivariate) case
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Computational capability of the CMAC
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1  2  3  4 x

C=4

quantization intervals
regions of one overlay
(supports of basis functions of one overlay)

overlays

Computational capability of the CMAC

• Arrangement of basis functions: uni-variate case

Number of basis functions: 1−+= CRM
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Computational capability of the CMAC

• Arrangement of basis functions: multi-variate case

quantization intervals

u1
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overlapping regions
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one overlay

points of 
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CMAC approximation capability

Basis functions

C overlays
Consistency equations:
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CMAC modeling capability

One-dimensional case: can learn any training 
data set exactly 

Multi-dimensional case: can learn any training 
data set from the additive function set 
(consistency equations)
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CMAC generalization capability

Important parameters:

C generalization parameter
dtrain distance between adjacent training data 

Interesting behavior
C=l*dtrain : linear interpolation between the

training points

C≠l*dtrain : significant generalization error 
non-smooth output
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CMAC generalization error

=
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CMAC generalization error
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CMAC generalization error
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Multidimensional case
CMAC generalization error

without                                                         with
regularization
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CMAC generalization error univariate case (max)
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Application of networks (based on the capability)
• Regression: function approximation

– modeling of static and dynamic systems, signal 
modeling, system identification

– filtering, control, etc. 

• Pattern association
– association

• autoassociation (similar input and output)

(dimension reduction, data compression)

• Heteroassociation (different input and output)

• Pattern recognition, clustering 
– classification
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Application of networks (based on the capability)

• Optimization
– optimization

• Data compression, dimension reduction
– principal component analysis (PCA), linear 

networks

– nonlinear PCA, non-linear networks

– signal separation, BSS, independent component 
analysis (ICA). 
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Data compression, PCA networks

• Karhunen-Loève tranformation
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Data compression, PCA networks

• Principal component analysis (Karhunen-
Loève tranformation

x2
y2 y1

x1

xy Φ=



Neural Networks for System Modeling  • Gábor Horváth, 2005  Budapest University of Technology and Economics

Nonlinear data compression

• Non-linear problem (curvilinear component 
analysis)

x1

y1

x2
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ICA networks

• Such linear transformation is looked for that restores the 
original components from mixed observations

• Many different approaches have been developed

depending on the definition of independence

(entropy, mutual information, Kullback-Leibleir information,
non-Gaussianity)

• The weights can be obtained using nonlinear network 
(during training)

• Nonlinear version of the Oja rule
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The task of independent component analysis

Pictures taken from: Aapo Hyvärinan:  Survey of Independent Component Analysis
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Learning
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Learning in neural networks

• Learning: parameter estimation

– supervised learning, learning with a teacher

x, y, d  training set:

– unsupervised learning, learning without a teacher

x, y

– analytical learning

{ }P
iii 1, =dx
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Supervised learning

• Model parameter estimation: x, y, d
n

d

y

C=C(ε)Criterion

C(d,y)

Neural model

Parameter

algorithm

System

function

adjustment

x

d=f (x,n)

y=fM (x,w)
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Supervised learning

• Criterion function
– quadratic criterion function:

– other criterion functions
• e.g. ε insensitive

– regularized criterion functions: 

adding a penalty (regularization) term
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Supervised learning

• Criterion minimization

• Analytical solution
only in linear-in-the parameter cases
e.g. linear networks: Wiener-Hopf equation

• Iterative solution
– gradient methods

– search methods
• exhaustive search

• random search

• genetic search
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Supervised learning

• Error correction rules
– perceptron rule

– gradient methods

• steepest descent

• Newton 

• Levenberg-Marquardt

• conjugate gradient
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Perceptron training
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we have a linearly separable two-class problem with finite number of 
samples with a finite upper bound                  μ>0M≤x
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Gradient method

• Analytical solution
– linear-in-the parameter model

– quadratic criterion function

– Wiener-Hopf equation
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Gradient method

• Iterative solution

– gradient

– condition of convergence
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Gradient method
• LMS: iterative solution based on instantaneous error

– instantaneous gradient

– weight updating

– condition of convergence
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Gradient  methods
• Example of convergence

a.) small μ b.) large μ c.) conjugate gradient
steepest descent

0

w
w

w1

w

(0)
*

(1)w

(a)
(b)

(c)



Neural Networks for System Modeling  • Gábor Horváth, 2005  Budapest University of Technology and Economics

Gradient  methods

• Single neuron with nonlinear activation function
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Gradient  methods

• Multi-layer network: error backpropagation (BP)
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Designing of an MLP

• important questions
– the size of the network (model order: number of 

layers, number of hidden units)

– the value of the learning rate, μ
– initial values of the parameters (weights)

– validation, cross validation learning and testing set 
selection

– the way of learning, batch or sequential

– stopping criteria
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Designing of an MLP

• The size of the network: the number of hidden 
units (model order)
– theoretical results: upper limits 

• Practical approaches: two different strategies
– from simple to complex

• adding new neurons

– from complex to simple
• pruning  

– regularization

– (OBD, OBS, etc)



Neural Networks for System Modeling  • Gábor Horváth, 2005  Budapest University of Technology and Economics

Designing of an MLP

• Cross validation for model selection

C

Model complexity (Size of the network)

Test error

Training error

Best model

Bias (underfitting)                  Variance (overfitting)
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Designing of an MLP

• Structure selection
 

C training error 

  

Number of training cycles 

Increasing the number of hidden units decreasing 
(a)

(b) 

(c)(d)(e)

(f) 
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Output

Proper fitting to training points

Generalization

Training points Overfitting

Input

Designing of an MLP

• Generalization, overfitting
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Designing of an MLP

• Early stopping for avoiding overfitting
C

Number of training cycles

Test error if stopped at the optimum point

Test error if not stopped at the optimum point

Training error

Optimal stopping point
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Designing of an MLP

• Regularization
– parametric penalty

– nonparametric penalty
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MLP as linear data compressor
(autoassociative network)

• Subspace transformation
 

Desired output = Input   Input: x      Output of the 
hidden layer: z  

x 

x 

x 

x W 

  Hidden layer         Output layer  
 M neuron    (in learning phase) 
 (Output of the compression)    N neuron 
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Nonlinear data compression (autoassociative network)
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RBF training

• Linear-in-the parameter structure
– analytical solution

– LMS

• Cetres (nonlinear-in-the-parameters)
– K-means

– clustering

– unsupervised learning
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Designing of an RBF

• Important questions
– the size of the network (number of hidden units)

(model order)

– the value of learning rate, μ
– initial values of parameters (centres, weights)

– validation, learning and testing set selection

– the way of learning, batch or sequential

– stopping criteria
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CMAC network

• Network with one trainable layer
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CMAC network

• Network with hash-coding

a wz
association compressed  weight vector
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• Analytical solution

y(ui)=a(ui)Tw i=1, 2, ... , P

dAw †=∗ ( ) 1† −
= TT AAAA

Awy =

CMAC modeling capability

for univariate cases: M ≥ P       for multivariate cases: M < P

• Iterative algorithm (LMS)
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Networks with unsupervised learning

• Selforganizing network
– Hebbian rule 

– Competitive learning

– Main task

• clustering, detection of similarities 

(normalized Hebbian + competitive)

• data compression (PCA, KLT) (nomalized Hebbian)
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Unsupervised learning

• Hebbian learning

• Competitive learning
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PCA network

• Oja rule

( ) ( )wxwxΔw 2yyyy −=−= μμ

( ) ( )
( ) ( ) ( ) 11~1~

1~
1~

1 −++=
+
+

=+ kk
k
kk ww

w
ww

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )[ ] ( )222

222

2                 

~21~

μμ

μμ

Okyk

Okykkkk T

++=

++=+

w

xwww

( ) ( )( ) ( ) ( )222/121 11~1~ μμ Okykk +−=+=+
−− ww

( ) ( ) ( ) ( )[ ] ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )[ ]kykkkyk

Okykykkk
wxw

xww
−+≅

+−+=+
μ

μμμ
             

11 22

=w xTy
Output

Input
x

x

x

x

Σ
y

1

2

3

N
w

( ) ( ) ykk xww μ+=+ 1~

It can be proofed: w converges 
to the largest eigenvector



Neural Networks for System Modeling  • Gábor Horváth, 2005  Budapest University of Technology and Economics

PCA network

• Oja rule as a maximum problem (gradient search)
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PCA networks 

• GHA network (Sanger network)
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PCA networks

• Oja rule for multi-output (subspace problem)
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PCA networks
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ICA networks

• Such linear transformation is looked for that restores the 
original components from mixed observations

• Many different approaches have been developed

depending on the definition of independence

(entropy, mutual information, Kullback-Leibleir information,
non-Gaussianity)

• The weights can be obtained using nonlinear network 
(during training)

• Nonlinear version of the Oja rule
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ICA training rule (one of the possible methods)
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Networks with unsupervised learning

• clustering

• detection of similarities

• data compression (PCA, KLT)

• Independent component analysis (ICA)
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Networks with unsupervised learning

• Kohonen network: clustering
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Independent component analysis
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Dynamic neural architectures
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Dynamic neural structures

• Feed-forward networks
– NFIR: FIR-MLP, FIR-RBF,etc.
– NARX

• Feedback networks
– RTRL
– BPTT

• Main differences from static networks
– time dependence (for all dynamic networks)
– feedback (for feedback networks: NOE, NARMAX, 

etc.)
– training: not for single sample pairs, but for sample 

sequences (sequantial networks)
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Feed-forward architecture

• NFIR: FIR-MLP                                           
(winner of the Santa Fe competition for laser signal 
prediction)
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Feed-forward architecture

FIR-MLP training: temporal backpropagation

– output layer

– hidden layer
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Recurrent network

• Architecture
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Recurrent network
• Training: real-time recursive learning (RTRL)
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Recurrent network

• Training: backpropagation through time (BPTT)
unfolding in time
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Dynamic neural structures

• Combined linear dynamic and non-linear 
dynamic architectures

feed-forward architectures
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Dynamic neural structures
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Dynamic system modeling

• Example: modeling of a discrete time system

– where

– Training signal: uniform, random, two different 
amplitudes

( ) ( ) ( ) ( )[ ]kufkykyky +−+=+ 16.03.01
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Dynamic system modeling

• The role of excitation: small excitation signal
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Dynamic modeling

• The role of excitation: large excitation signal

0 500 1000 1500 2000
-2
0
2
4
6

M
od

el
 o

ut
pu

t

0 500 1000 1500 2000
-2
0
2
4
6

Pl
an

t o
ut

pu
t

0 500 1000 1500 2000
-2
0
2
4

Er
ro

r



Neural Networks for System Modeling  • Gábor Horváth, 2005  Budapest University of Technology and Economics

References and further readings

Hassoun, M. H.: "Fundamentals of Artificial Neural Networks", MIT Press, Cambridge, MA. 1995. 

Haykin, S.: "Neural Networks. A Comprehensive Foundation" Prentice Hall, N. J.1999. 

Hertz, J. - Krogh, A. - Palmer, R. G. "Introduction to the Theory of Neural Computation", Addison-
Wesley Publishing Co. 1991.

Widrow, B. - Stearns, S. D. "Adaptive Signal Processing", Prentice-Hall, Englewood Cliffs, N. J. 1985.

Narendra, K. S. - Pathasarathy, K. "Identification and Control of Dynamical Systems Using Neural 
Networks," IEEE Trans. Neural Networks, Vol. 1. 1990. pp. 4-27. 

Narendra, K. S. - Pathasarathy, K. "Identification and Control of Dynamic Systems Using Neural 
Networks", IEEE Trans. on Neural Networks, Vol. 2. 1991.  pp. 252-262.

Wan, E. A. "Temporal Backpropagation for FIR Neural Networks", Proc. of the 1990 IJCNN, Vol. I. pp. 
575-580.

Weigend, A. S. - Gershenfeld, N. A. "Forecasting the Future and Under-standing the Past" Vol.15. 
Santa Fe Institute Studies in the Science of Complexity, Reading, MA. Addison-Wesley, 1994.

Williams, R. J. - Zipser, D. "A Learning Algorithm for Continually Running Fully Recurrent Neural 
Networks", Neural Computation, Vol. 1. 1989. pp. 270-280.



Neural Networks for System Modeling  • Gábor Horváth, 2005  Budapest University of Technology and Economics

Support vector machines
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Outline

• Why we need a new approch 

• Support vector machines
– SVM for classification

– SVM for regression

– Other kernel machines

• Statistical learning theory
– Validation (measure of quality: risk)

– Vapnik-Chervonenkis dimension

– Generalization 
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Support vector machines

• A new approach:

gives answers for questions not solved using 
the classical approach 
– the size of the network

– the generalization capability
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Classical neural learning
(perceptron)

Support Vector Machine

Support vector machines

Optimal 
hyperplane

• Classification Margin
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Support vector machines

• Linearly separable two-class problem

separating hyperpalne
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Support vector machines
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Support vector machines

• Criterion function (primal problem)

with the conditions

a constrained optimization problem

(KKT conditions, saddle point)

conditions
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Support vector machines

• Lagrange function (dual problem)

support vectors optimal hyperplane

output
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Support vector machines

• Linearly nonseparable case
(slightly nonlinear case)

separating hyperplane

criterion function (slack variable ξ )

Lagrange function

support vectors optimal hyperplane
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Support vector machines

• Nonlinear separation, feature space

– separating hypersurface (hyperplane in the φ space)

– decision surface

– kernel function (Mercer conditions)

– criterion function
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Kernel space
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Support vector machines

• Examples of kernel functions

– Polynomial 

– RBF

– MLP (only for certain βo and β1)

– CMAC  B-spline
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Support vector machines

• Example: polynomial basis and kernel function
– basis functions

– kernel function
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SVR (regression)
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SVR (regression) 
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SVR (regression)

Lagrange function
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• Dual problem

SVR (regression)
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SVR (regression example)

ε=0
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SVR (regression example)

ε=0,1
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SVR (regression)

ε=0,1
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Support vector machines 

• Main advantages
– automatic model complexity (network size)

– relevant training data point selection

– allows tolerance  (ε)

– high-dimensional feature space representation is not 
used directly (kernel trick)

– upper limit of the generalization error (see soon)

• Main difficulties
– quadratic programming to solve dual problem

– hyperparameter (C, ε, σ ) selection

– batch processing (there are on-line versions too)
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SVM versions
• Classical Vapnik’s SVM (drawbacks)

• LS-SVM

classification regression

equality constraints 

no quadratic optimization to be solved : a linear set of equations

• Ridge regression
similar to LS-SVM
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LS-SVM

Lagrange equation

The results
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LS-SVM
Linear equation

Regression Clasification

where

the response of the network
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Main features of LS-SVM and ridge regression
• Benefits

– Easy to solve (no quadratic programming , only a 
linear equation set)

– On-line, adaptive version (important in system 
identification)

• Drawbacks
– Not sprase solution, all training points are used 

(there are no „support vectors”)
– No „tolerance parameter” (ε)
– No proved upper limit of the generalization error
– Large kernel matrix if many training points are 

available
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Improved LS Kernel machines

• There are sparse versions of the LS-SVM
– The training points are ranked and only the most 

important ones are used (iterative solution)

– The kernel matrix can be reduced (a tolerance 
parameter is introduced again)

– Detailes: see the references 

• Additional contraints can be used for special 
applications  (see e.g. regularized kernel CMAC)
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• Goal
– General goal:

to show that additional constraints can be used in the 
framework of LS-SVM 

here: the additional constraint is a weight-smoothing 
term 

– Special goal:

to show that kernel approach can be used for 
improving the modelling capability of the CMAC

Kernel CMAC (an example)
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General goal
• Introducing new constraints
• General LS-SVM problem

Criterion function: two terms
weight minimization term + error term

Lagrange function
criterion function+ Lagrange term

Extension
adding new constraint to the criterion function

Extended Lagrange function
new criterion function (with the new constraint) + 
Lagrange term



Neural Networks for System Modeling  • Gábor Horváth, 2005  Budapest University of Technology and Economics

Special goal: improving the capability of the  
CMAC

• Difficulties with multivariate CMAC:
– too many basis functions (too large weight memory)

– poor modelling and generalization capability

• Improved generalization: regularization

• Improved modelling capability:
– more basis functions:

difficulties with the implementation 

kernel trick, kernel CMAC

• Improved modelling and generalization capability
– regularized kernel CMAC
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Regularized CMAC

• Regularized criterion function (weight smoothing)
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Kernel CMAC

• Classical Albus CMAC: analytical solution

• Kernel version

criterion function (LS)

constraint
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Kernel CMAC (ridge regression)

• Using the derivatives the resulted equations
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Kernel CMAC with regularization 
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• Kernel function for two-dimensional kernel CMAC
Kernel CMAC with regularization 
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Regularized Kernel CMAC ( example)
• 2D sinc

without         with 
regularization
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Statistical learning theory

• Main question: how can the quality of a learning 
machine be estimated 

• Generalization measure based on the empirical 
risk (error). 

• Empirical risk: the error determined in the 
training points



Neural Networks for System Modeling  • Gábor Horváth, 2005  Budapest University of Technology and Economics

Statistical learning theory

• Goal: to find a solution that minimizes the risk

• Difficulties: joint density function is unknown

Only the empirical risk can be determined

optimal value

minimizing the empirical risk
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Statistical learning theory: ERM principle

• Asymptotic consistency of empirical risk 

P

min R(w)=R(w º)
w

Expected Risk  R(w*|P)

Empirical Risk  R(w*|P)
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Statistical learning theory

• Condition of consistency of the ERM principle
Necessarry and sufficient condition: finite VC dimension

Also: this is a sufficient condition of fast convergence

• VC (Vapnik-Chervonenkis) dimension:
A set of function has VC dimension h if there exist h
samples that can be shattered (can be separated into 
two classes in all possible ways: all 2h possible ways) by 
this set of functions but there do not exist h +1 samples 
that can be shattered by the same set of functions.
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Model complexity, VC dimension

•VC dimension of a set of indicator functions
– definition

VC dimension is the maximum number of samples for
which all possible binary labellings can be induced by a
set of functions

– illustration

linear separation no linear separation
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VC dimension

• Based on VC dimension upper bounds of the 
risk can be obtained

• Calculating the VC dimension
– general case: rather difficult                                  

e.g for MLP  VC-dimension can be infinite

– special cases: e.g. linear function set 

• VC dimension of a set of linear functions 
(linear separating task)

h =N +1   (N : input space dimension)

An important statement: It can be proved that 
the VC dimension can be less than N +1
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Generalization error

• Bound on generalization
– Classification:  with probability of at least 1-η (confidence 

level; η is a given value within the additional term)

– regression
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Generalization error

guaranteed risk

training error

VC dimension
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Structural risk minimization principle

• Good generalization: both terms should be minimized
S set of approximating functions
The elements of S, nested subset of Sk with finite VC dimension hk 

S1 ⊂ S2 ⊂ … ⊂ Sk ⊂ …
The ordering of complexity of the elements

h1 ≤ h2 ≤ … ≤ hk ≤ …
Based on a priori information S is specified.
For a given data set the optimal model estimation:

selection of an element of the set (model selection)
estimating the model from this subset (training the model)
there is an upper bound on the prediction risk with a given
confidence level
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Constructing a learning algorithm 

• Structural risk minimization
– Such Sk will be selected for which the guaranted 

risk is minimal 

– SRM principle suggests a tradeoff between the 
quality of approximation and the complexity of the 
approximating function (model selection problem)

– Both terms are controlled:
• the empirical risk with training 

• the complexity with the selection of Sk

)/( termadditional)()( emp k
k
P

k
P hPRR +≤ ww

confidence interval
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SVM

• Support vector machines are such a learning 
machines that minimize the length of the weight 
vector

• They minimize the VC dimension. The upper 
bounds are valid for SVMs. 

• For SVMs not only the structure (the size of the 
network) can be determined, but an estimate of 
its generalization error can be obtained.
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Modular network architectures
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Modular solution

• A set of networks: competition/cooperation

– all networks solve the same problem (competition/cooperation)

– the whole problem is decomposed: the different networks solve 

different part of the whole problem (cooperation)

• Ensemble of networks

– linear combination of networks

• Mixture of experts

– using the same paradigm  (e.g. neural networks)

– using different paradigms (e.g. neural networks + symbolic 

systems, neural networks + fuzzy systems)
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Cooperative networks

Ensemble of cooperating networks 

(classification/regression)

• The motivation

– Heuristic explanation 

• Different experts together can solve a problem better

• Complementary knowledge

– Mathematical justification

• Accurate and diverse modules
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Linear combination of networks
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Ensemble of networks

• Mathematical justification

– Ensemble output

– Ambiguity (diversity)

– Individual error

– Ensemble error

– Constraint
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Ensemble of networks

• Mathematical justification (cont’d)
– Weighted error 

– Weighted diversity

– Ensemble error

– Averaging over the input distribution

Solution: Ensemble of accurate and diverse networks
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Ensemble of networks

• How to get accurate and diverse networks
– different structures: more than one network structure (e.g. 

MLP, RBF, CCN, etc.)

– different size, different complexity networks (number of 

hidden units, number of layers, nonlinear function, etc.)

– different learning strategies (BP, CG, random search,etc.) 

batch learning, sequential learning

– different training algorithms, sample order, learning samples

– different training parameters

– different initial parameter values

– different stopping criteria
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Linear combination of networks

• Computation of  optimal (fix) coefficients

– → simple average 

– ,k depends on the input

for different input domains different network (alone)

gives the output 

– optimal values using the constraint  

– optimal values without any constraint 

Wiener-Hopf equation

Mk
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Mixture of Experts (MOE)

Expert 2Expert 1

Gating network
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Mixture of Experts (MOE)

• The output is the weighted sum of the outputs of the 
experts

is the parameter of the i -th expert

• The output of the gating network: “softmax”  function

• is the parameter of the gating network
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Mixture of Experts (MOE)

• Probabilistic interpretation

the probabilistic model with true parameters

a priori probability
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Mixture of Experts (MOE)

• Training

– Training data

– Probability of generating output from the input

– The log likelihood function (maximum likelihood 

estimation)
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Mixture of Experts (MOE) 

• Training (cont’d)

– Gradient method

–

– The parameter of the expert network

– The parameter of the gating network 
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Mixture of Experts (MOE)

• Training  (cont’d)

– A priori probability

– A posteriori probability
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Mixture of Experts (MOE)

• Training  (cont’d)

– EM (Expectation Maximization) algorithm

A general iterative technique for maximum likelihood 

estimation

• Introducing hidden variables

• Defining a log-likelihood function 

– Two steps: 

• Expectation of the hidden variables 

• Maximization of the log-likelihood function
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Hierarchical Mixture of Experts (HMOE)

HMOE: more layers of gating 
networks, groups of experts
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• MOE construction

• Cross-validation can be used to find the proper 

architecture

• CART (Clasification And Regression Tree) for initial 

hierarchical MOE (HMOE) architecture and for the initial 

expert and gating network parameters

• MOE based on SVMs: different SVMs with different 

hyperparameters

Mixture of Experts (MOE)
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Application: 
modelling an industrial plant 

(steel converter)
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Introduction to the problem

• Task
– to develop an advisory system for a Linz-Donawitz

steel converter

– to propose component composition

– to support the factory staff in supervising the steel-
making process 

• A model of the process is required: first a system 
modelling task should be solved
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LD Converter modeling

The Linz-Donawitz

converter in Hungary

(Dunaferr Co.)

Basic Oxigen Steelmaking 

(BOS)
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Phases of steelmaking

• 1. Filling of waste iron
• 2. Filling of pig iron
• 3. Blasting with pure 

oxygen
• 4. Supplement additives
• 5. Sampling for quality 

testing
• 6. Tapping of steel and 

slag

Linz-Donawitz converter
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Phases of steelmaking
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• Nonlinear input-output relation between many 

inputs and two outputs

• input parameters  (~50 different parameters)

– certain features “measured” during the process

• The main output parameters (output 

measured values of the produced steel)

– temperature (1640-1700 CO -10 …  +15 CO)

– carbon content (0.03 - 0.70 % )

• More than 5000 records of data

Main featutes of  the process
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• The difficulties of model building

– High complexity nonlinear input-output relationship

– No (or unsatisfactory) physical insight

– Relatively few measurement data

– There are unmeasurable parameters of the process

– Noisy, imprecise, unreliable data

– Classical approach (heat balance, mass balance) gives 

no acceptable results

Modeling task
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Modeling approaches

• Theoretical model - based on chemical and
physical equations

• Input - output behavioral model

– Neural model - based on the measured process data

– Rule based system - based on the experimental 

knowledge of the factory staff

– Combined neural - rule based system: a hybrid model
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„Neural” solution

• The steps of solving a practical problem

Preprocessing

Neural network

Postprocessing

Results

Raw input 
data
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• Creating a reliable database 
– the problem of noisy data

– the problem of missing data

– the problem of uneven data distribution 

• Selecting a proper neural architecture
– static network (size of the network)

– dynamic network

• size of the network: nonlinear mapping

• regressor selection + model order selection

• Training and validating the model

Building neural models
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Creating a reliable database

• Input components 
– measure of importance

• physical insight
• sensitivity analysis (importance of the input variables)
• mathematical methods: dimension reduction (e.g. PCA)

• Normalization
– input normalization
– output normalization

• Missing data
– artificially generated data

• Noisy data
– preprocessing, filtering, 
– errors-in-variables criterion function, etc.
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Building database

• Selecting input components, sensitivity analysis

Initial databaseInitial database

Neural network trainingNeural network training

Sensitivity analysisSensitivity analysis

Input parameter 
of small effect on 

the output?

Input parameter 
of small effect on 

the output?

New databaseNew database

Input parameter 
cancellation

Input parameter 
cancellation

no

yes
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Building database

• Dimension reduction: mathematical methods

– PCA

– Non-linear PCA, Kernel PCA

– ICA

• Combined methods
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The effect of data distribution

• Typical data distributions
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Normalization

• Zero mean, unit standard deviation

• Normalization into [0,1]

• Decorrelation + normalization
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Normalization

• Decorrelation + normalization = Whitening transformation

Original

Whitened
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Missing or few data

• Filling in the missing values

– based on available information

• Artificially generated data

– using trends

– using correlation

– using realistic transformations
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Missing or few data

• Filling in the missing values based on:

correlation coefficient between     and

previous (other) values

other parameters                          or

time dependence (dynamic problem)

• Artificially generated data

– using trends

– using correlation

– using realistic transformations
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Few data

• Artificial data generation

– using realistic transformations

– using sensitivity values: data generation around various 

working points  (a good example: ALVINN)

(ALVINN = Autonomous Land Vehicle In a Neural Net an onroad
neural network navigation solution developed in CMU)
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Noisy data

Inherent noise suppression
– classical neural nets have noise suppression property 

(inherent regularization)

– Regularization (smoothing regularization)

– averaging (modular approach)

• SVM
� ε-insensitive criterion function

• EIV
– input and output noise are taken into consideration

– modified criterion function
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Reducing the effect of output noise

• Inherent regularization of MLP (smooth sigmoidal function)
• SVM with ε - insensitive loss function
• Regularization: example regularized (kernel) CMAC
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Reducing the effect of input and output noise 

• Errors in variables (EIV)
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EIV

• LS vs EIV criterion function

• EIV training 

• Danger : overfitting  → early stopping
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Noisy data 

• Output noise is easier to suppress than input 
noise

• SVM, regularization can reduce the effect of 
output noise 

• EIV (and similar other methods) can take into 
consideration the input noise

• EIV results in only slightly better approximation

• EIV is rather prone to overfitting (much more free 
parameters)   → early stopping
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Model selection

• Static or dynamic
– why better a dynamic model

• Dynamic model class

– regressor selection
– basis function selection

• Size of the network
– number of layers

– number of hidden neurons

– model order
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Model selection

• NFIR
• NARX
• NOE
• NARMAX

NARX model, NOE model: model order selection

Model order: the input dimension of the static 
network
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Model order selection

• AIC, MDL, NIC, Lipschitz number

• Lipschitz number, Lipschitz  quotient
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Model order selection

• Lipschitz quotient
general nonlinear input-output relation, f(.) continuous, smooth 

multivariable function

bounded derivatives

Lipschitz quotient

Sensitivity analysis
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Model order selection

• Noisy case
Combined method 
of Lipschitz + EIV

Lipschitz-
algorithm

Model
creation

BP + EIV

BP+LS

Lipschitz-
algorithm

Comparing
results

Initial
Estimation

x
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x

x
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d

d
Trained
Network
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New
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Correlation based model order selection

• Model order 2...4 because of prcatical problems

• Too many input components

• (2...4) * (number of input components + 
outputs)

• Too large network

• Too few training data

• The problem of missing data 

• Network size: cross-validation
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Overview

• Introduction
• Modeling approaches
• Building neural models
• Data base construction
• Model selection
• Modular approach
• Hybrid approach
• Information system
• Experiences with the advisory system
• Conclusions
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Modular solution

• More neural modell for the different working 
conditions

• Processing of special cases

• Depending on the distribution of inputparameters

• Cooperative or competitive modular architecture
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Hybrid solution

• Utilization of different forms of information

– measurement, experimental data

– symbolic rules

– mathematical equations, physical knowledge
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• Solution: 
– integration of measurement information and experimental 

knowledge about the process results

• Realization:
– development system – supports the design and testing of 

different hybrid models

– advisory system

hybrid models using the current process state and input 
information,

experiences collected by the rule-base system can be used to 

update the model.

The hybrid information system
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Validation

• Model selection
– iterative process

– utilization of domain knowledge

• Cross validation
– fresh data 

– on-site testing
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• The hit rate is increased  by + 10%

• Most of the special cases can be handled 

• Further rules for handling special cases should 
be obtained

• The accuracy of measured data should be 
increased

Experiences
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• For complex industrial problems all available information 
have to be used

• Thinking about NNs as universal modeling devices 
alone

• Physical insight is important

• The importance of preprocessing and post-processing 

• Modular approach: 
– decomposition of the problem

– cooperation and competition

– “experts” using different paradigms

• The hybrid approach to the problem provided better 
results

Conclusions
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Summary

• Main questions

• Open questions

• Final conclusions
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Main questions

• Neural modeling: black-box or not? 

• When to apply neural approach?

• How to use neural networks?

• The role of prior knowledge

• How to use prior knowledge?

• How to validate the results?
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Open (partly open) questions

• Model class selection

• Model order selection

• Validation, generalization capability

• Sample size, training set, test set, validation 
set

• Missing data, noisy data, few data

• Data consistency 
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Final coclusions
• Neural networks are especially important and proper architectures 

for (nonlinear) system modelling
• General solutions: NN and fuzzy-neural systems are universal 

modeling devices (universal approximators)
• The importance of the theoretical results, theoretical background
• The difficulty of the application of theoretical results in practice
• The role of data base
• The importance of prior information, physical insight
• The importance of preprocessing and post-processing 
• Modular approach: 

– decomposition of the problem
– cooperation and competition
– “experts” using different paradigms

• Hybrid solutions: combination of rule based, fuzzy, neural,
mathematical



Neural Networks for System Modeling  • Gábor Horváth, 2005  Budapest University of Technology and Economics

References and further readings
Parag H. Batavia, Dean A. Pomerleau, Charles E. Thorpe.: „Applying Advanced Learning Algorithms to 

ALVINN”, Technical Report, CMU-RI-TR-96-31 Robotics Institute Carnegie Mellon University Pittsburgh, 
Pennsylvania 15213-3890

Berényi, P.,, Horváth, G., Pataki, B., Strausz, Gy. : "Hybrid-Neural Modeling of a Complex Industrial 
Process" Proc. of the IEEE Instrumentation and Measurement Technology Conference, IMTC'2001. 
Budapest, May 21-23. Vol. III. pp. 1424-1429.

Berényi P., Valyon J., Horváth, G. : "Neural Modeling of an Industrial Process with Noisy Data" IEA/AIE-
2001, The Fourteenth International Conference on Industrial & Engineering Applications of Artificial 
Intelligence & Expert Systems, June 4-7, 2001, Budapest in Lecture Notes in Computer Sciences, 2001, 
Springer, pp. 269-280. 

Bishop, C, M.: “Neural Networks for Pattern Recognition” Clanderon Press, Oxford, 1995.

Horváth, G., Pataki, B. Strausz, T.: "Neural Modeling of a Linz-Donawitz Steel Converter: Difficulties and 
Solutions" Proc. of the EUFIT'98, 6th European Congress on Intelligent Techniques and Soft Computing. 
Aachen, Germany. 1998. Sept. pp.1516-1521 

Horváth, G. Pataki, B. Strausz, Gy.: "Black box modeling of a complex industrial process", Proc. Of the 1999 
IEEE Conference and Workshop on Engineering of Computer Based Systems, Nashville, TN, USA. 1999. 
pp. 60-66 

Pataki, B., Horváth, G., Strausz, Gy., Talata, Zs. "Inverse Neural Modeling of a Linz-Donawitz Steel
Converter" e & i Elektrotechnik und Informationstechnik, Vol. 117. No. 1. 2000. pp. 



Neural Networks for System Modeling  • Gábor Horváth, 2005  Budapest University of Technology and Economics

References and further readings
Strausz, Gy., G. Horváth, B. Pataki : "Experiences from the results of neural modelling of an 

industrial process" Proc. of Engineering Application of Neural Networks, EANN'98, Gibraltar 
1988. pp. 213-220 

Strausz, Gy., G. Horváth, B. Pataki : "Effects of database characteristics on the neural modeling
of an industrial process" Proc. of the International ICSC/IFAC Symposium on Neural 
Computation / NC’98, Sept. 1998, Vienna pp. 834-840. 

Bishop, C, M.: “Neural Networks for Pattern Recognition” Clanderon Press, Oxford, 1995.

Horváth, G (ed.),” Neural Networks and Their Applications”, Publishing house of the Budapest 
University of Technology and Economics, Budapest, 1998. (in Hungarian)  

Jang, J. -S. R., Sun, C. -T. and Mizutani: E. „Neuro-Fuzzy and Soft Computing. A Computational 
Approach to Learning and Machine Intelligence”, Prentice Hall, 1997.

Jang, J. -S. R: „ANFIS: Adaptive-Network-Based Fuzzy Inference System” IEEE Trans. on 
Sysytem Man, and Cybernetics. Vol. 23. No.3. pp. 665-685, 1993. 

Nguyen, D. and Widrow, B. (1989). "The Truck Backer-Upper: An Example of Self-Learning in 
Neural Networks," in Proceedings of the International Joint Conference on Neural Networks
(Washington, DC 1989), vol. II, 357-362.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986b). "Learning Internal Representations 
by Error Propagation," in Parallel Distributed Processing: Explorations in the Microstructure 
of Cognition, vol. I, D. E. Rumelhart, J. L. McClelland, and the PDP Research Group. MIT 
Press, Cambridge (1986).


	Outline
	Introduction
	System identification: a short overview
	Modeling
	Modeling
	Modeling
	Modeling
	Modeling
	Modeling
	Identification
	Measurements
	Identification (measurement)
	Model classes
	Model classes
	Model classes
	Model classes
	Identification
	Identification
	Identification
	Identification
	Experiment design and data collection 
	Excitation
	Excitation
	Excitation
	Excitation
	Excitation
	Excitation
	The role of excitation: small excitation signal (nonlinear system identification)
	The role of excitation: large excitation signal� (nonlinear system identification)
	Modeling (some examples)
	Modeling (example)
	Modeling (example)
	Modeling (example)
	Modeling (example)
	Modeling (example)
	Modeling (example)
	Modeling (example)
	Modeling (example)
	Modeling (example)
	Modeling (example)
	Modeling (example)
	Modeling (example)
	Time series modeling
	Time series modeling
	Time series modeling
	References and further readings
	Identification (linear systems)
	Parametric identification
	Parametric identification
	Parametric identification
	Parametric identification
	Parametric identification
	Parametric identification
	Parametric identification
	Parametric identification
	Parametric identification
	Parametric identification
	Parametric identification
	Parametric identification
	Parametric identification
	Non-parametric identification
	Non-parametric identification (frequency domain)
	Non-parametric identification (frequency domain)
	References and further readings
	Black-box modeling
	Black-box modeling
	Black-box modeling
	Black-box identification
	Black-box identification
	Black-box identification
	Black-box identification
	Black-box identification
	Black-box identification
	Black-box identification
	Black-box identification
	Black-box identification
	Black-box identification
	Black-box identification
	Black-box identification
	Black-box identification
	Black-box identification
	Neural modeling
	Neural networks
	Neural networks
	Other black-box structures
	Other black-box structures
	Combined models
	References and further readings
	Outline
	Neural networks
	Neural networks (a definition)
	Neural networks (main features)
	The elementary neuron (1)
	Elementary neuron (2)
	Classical neural networks
	Feed-forward architecture
	Feed-forward architecture
	Feed-forward architecture
	Feed-forward architecture
	Radial basis function (RBF) network
	CMAC network
	Feed-forward architecture
	Feed-forward architecture
	Feedback architecture
	Feedback architecture
	Feedback architecture
	Feedback architecture
	Basic neural network architectures
	Basic neural network architectures
	Basic neural network architectures
	Basic neural network architectures
	Basic neural network architectures
	Basic neural network architectures 
	Basic neural network architectures
	Basic neural network architectures
	Basic neural network architectures
	Capability of networks
	Capability of networks
	Capability of networks
	Capability of networks
	Capability of networks
	Capability of networks
	Computational capability of the CMAC
	Computational capability of the CMAC
	Computational capability of the CMAC
	Computational capability of the CMAC
	CMAC approximation capability
	CMAC modeling capability
	CMAC generalization capability
	CMAC generalization error
	CMAC generalization error
	CMAC generalization error
	CMAC generalization error univariate case (max)
	Application of networks (based on the capability)
	Application of networks (based on the capability)
	Data compression, PCA networks
	Data compression, PCA networks
	Nonlinear data compression
	ICA networks
	The task of independent component analysis
	References and further readings
	Learning in neural networks
	Supervised learning
	Supervised learning
	Supervised learning
	Supervised learning
	Perceptron training
	Gradient method
	Gradient method
	Gradient method
	Gradient  methods
	Gradient  methods
	Gradient  methods
	MLP training: BP
	Designing of an MLP
	Designing of an MLP
	Designing of an MLP
	Designing of an MLP
	Designing of an MLP
	Designing of an MLP
	Designing of an MLP
	MLP as linear data compressor �(autoassociative network)
	Nonlinear data compression (autoassociative network)
	RBF (Radial Basis Function)
	RBF training
	Designing of an RBF
	CMAC network
	CMAC network
	Analytical solution
	Networks with unsupervised learning
	Unsupervised learning
	PCA network
	PCA network
	PCA networks 
	PCA networks
	PCA networks
	ICA networks
	ICA training rule (one of the possible methods)
	Networks with unsupervised learning
	Networks with unsupervised learning
	Independent component analysis
	References and further readings
	Dynamic neural structures
	Feed-forward architecture
	Feed-forward architecture
	Recurrent network
	Recurrent network
	Recurrent network
	Dynamic neural structures
	Dynamic neural structures
	Dynamic system modeling
	Dynamic system modeling
	Dynamic modeling
	References and further readings
	Outline
	Support vector machines
	Support vector machines
	Support vector machines
	Support vector machines
	Support vector machines
	Support vector machines
	Support vector machines
	Support vector machines
	Feature space
	Kernel space
	Support vector machines
	Support vector machines
	SVR (regression)
	SVR (regression) 
	SVR (regression)
	SVR (regression)
	SVR (regression example)
	SVR (regression example)
	SVR (regression)
	Support vector machines 
	SVM versions
	LS-SVM
	LS-SVM
	Main features of LS-SVM and ridge regression
	Improved LS Kernel machines
	Kernel CMAC (an example)
	General goal
	Special goal: improving the capability of the  CMAC
	Regularized CMAC
	Kernel CMAC
	Kernel CMAC (ridge regression)
	Kernel CMAC with regularization 
	Regularized Kernel CMAC ( example)
	References and further readings
	Statistical learning theory
	Statistical learning theory
	Statistical learning theory: ERM principle
	Statistical learning theory
	Model complexity, VC dimension
	VC dimension
	Generalization error
	Generalization error
	Structural risk minimization principle
	Constructing a learning algorithm 
	SVM
	References and further readings
	Modular solution
	Cooperative networks
	Linear combination of networks
	Ensemble of networks
	Ensemble of networks
	Ensemble of networks
	Linear combination of networks
	References and further readings
	Mixture of Experts (MOE)
	Mixture of Experts (MOE)
	Mixture of Experts (MOE)
	Mixture of Experts (MOE)
	Mixture of Experts (MOE) 
	Mixture of Experts (MOE)
	Mixture of Experts (MOE)
	Hierarchical Mixture of Experts (HMOE)
	Mixture of Experts (MOE)
	References and further readings
	Overview
	Overview
	Introduction to the problem
	LD Converter modeling
	Linz-Donawitz converter
	Linz-Donawitz converter
	Linz-Donawitz converter
	Linz-Donawitz converter
	Linz-Donawitz converter
	Linz-Donawitz converter
	Main featutes of  the process 
	Modeling task
	Modeling approaches
	The modeling task
	Overview
	„Neural” solution
	Building neural models
	Creating a reliable database
	Building database
	Building database
	The effect of data distribution
	Normalization
	Normalization
	Missing or few data
	Overview
	Missing or few data
	Few data
	Noisy data
	Reducing the effect of output noise
	Reducing the effect of input and output noise 
	EIV
	Noisy data 
	Overview
	Model selection
	Model selection
	Model order selection
	Model order selection
	Model order selection
	Correlation based model order selection
	References and further readings
	Overview
	Modular solution
	Hybrid solution
	The hybrid information system
	The hybrid-neural system
	The hybrid-neural system
	The hybrid-neural system
	The hybrid-neural system
	The hybrid-neural system
	Validation
	Experiences
	Conclusions
	Summary
	Main questions
	Open (partly open) questions
	Final coclusions
	References and further readings
	References and further readings

