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Outline
 |ntroduction
« System identification: a short overview

- Classical results
- Black box modeling

 Neural networks architectures
- An overview
- Neural networks for system modeling

* Applications
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Introduction

* The goal of this course:

to show why and how neural networks can be
applied for system identification

- Basic concepts and definitions of system identification
» classical identification methods
- different approaches in system identification

- Neural networks
« classical neural network architectures
« support vector machines
* modular neural architectures

- The questions of the practical applications, answers based
on a real industrial modeling task (case study)

Neural Networks for System Modeling « Gabor Horvath, 2005 Budapest University of Technology and Economics




System identification
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System identification: a short overview
* Modeling

* |dentification
- Model structure selection
- Model parameter estimation

* Non-parametric identification
- Using general model structure

» Black-box modeling

- Input-output modeling, the description of the behaviour of a
system
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Modeling
* What is a model?
* Why we need models?
* What models can be built?

* How to build models?
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Modeling

 What is a model?

- Some (formal) description of a system, a separable part
of the world.

Represents essential aspects of a system

- Main features:

* All models are imperfect. Only some aspects are taken
into consideration, while many other aspects are
neglected.

« Easier to work with models than with the real systems

- Key concepts: separation, selection, parsimony
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Modeling

« Separation:

- the boundaries of the system have to be defined.
- system is separated from all other parts of the world

« Selection:

Only certain aspects are taken into consideration e.g.
- information relation, interactions
- energy interactions

* Parsimony:
It is desirable to use as simple model as possible

- Occam'’s razor (William of Ockham or Occam) 14th Century English
philosopher)
The most likely hypothesis is the simplest one that Is consistent with

all observations
The simpler of two theories, two models is to be preferred.
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Modeling

* Why do we need models?

— To understand the world around (or its defined part)
— To simulate a system

to predict the behaviour of the system (prediction, forecasting),

to determine faults and the cause of misoperations,
fault diagnosis, error detection,

to control the system to obtain prescribed behaviour,

to increase observability: to estimate such parameters which are
not directly observable (indirect measurement),

system optimization.

- Using a model
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we can avoid making real experiments,

we do not disturb the operation of the real system,
more safe then working with the real system,
etc...




Modeling

 What models can be built?
- Approaches

* functional models

- parts and its connections based on the functional role
In the system

 physical models

- based on physical laws, analogies (e.g. electrical
analog circuit model of a mechanical system)

 mathematical models

- mathematical expressions (algebraic, differential
equations, logic functions, finite-state machines, etc.)
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Modeling

« What models can be built?
- A priori information

 physical models, “first principle” models
use laws of nature

« models based on observations (experiments)
the real physical system is required for
obtaining observations

- Aspects
o structural models

* input-output (behavioral) models
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|dentification

 What is identification?

- ldentification is the process of deriving a
(mathematical) model of a system using
observed data
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Measurements

* Empirical process
- to obtain experimental data (observations),
- primary information collection, or

 to obtain additional information to the a
priori one.

- to use the experimental data for obtaining
(determining) the free parameters (features) of
a model.

- to validate the model
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|dentification (measurement)

The goal of modeling

_______________________________________________________________________________________________

Collecting a priori knowledge

A priori model

! Experiment design

Identification

| v

Observations, determining
! features, parameters

| v

i
i </[odel validation /

Final model |
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Model classes

« Based on the system characteristics

« Based on the modeling approach

« Based on the a priori information
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Model classes
« Based on the system characteristics
- Static - dynamic
- Deterministic - stochastic
- Continuous-time - discrete-time
- Lumped parameter - distributed parameter
- Linear - non-linear

- Time invariant - time variant
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Model classes

« Based on the modeling approach

- parametric
 known model structure
e limited number of unknown parameters

- nonparametric

* no definite model structure

 described in many points (frequency characteristics,
impulse response)

- semi-parametric
 general class of functional forms are allowed

« the number of parameters can be increased
independently of the size of the data
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Model classes

» Based on the a priori information (physical insight)

- White-box
- gray-box

- black-box
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|dentification

* Main steps
— collect information
— model set selection
— experiment design and data collection

— determine model parameters (estimation)
— model validation
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|dentification

« Collect information
- physical insight (a priori information)

understanding the physical behaviour

- only observations or experiments can be designed
- application
« what operating conditions
- one operating point
- a large range of different conditions
« what purpose
- scientific
basic research
- engineering
to study the behavior of a system,
to detect faults,

to design control systems,
etc.
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|dentification

 Model set selection
— static — dynamic
— linear — non-linear

— non-linear
* linear - in - the - parameters
* non-linear - in - the - parameters

— white-box — black-box
— parametric — non-parametric
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|dentification

* Model structure selection

- known model structure (available a priori
information)

- no physical insights, general model structure
* general rule: always use as simple model as
possible (Occam’s razor)
- linear

- feed-forward
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Experiment design and data collection
« EXxcitation
- Input signal selection

- design of excitation

* time domain or frequency domain identification
(random signal, multi-sine excitation, impulse
response, frequency characteristics)

 persistent excitation

 Measurement of input-output data

- no possibility to design excitation signal
* noisy data, missing data, distorted data
* non-representing data
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Excitation

Step function

 Random signal (autoregressive moving
average (ARMA) process)

* Pseudorandom binary sequence

 Multisine
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Excitation

« Step function

Resonance frequency
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Excitation

 Random signal (autoregressive moving
average (ARMA) process)
- obtained by filtering white noise

- filter is selected according to the desired
frequency characteristic
- an ARMA(p,g) process can be characterized
* in time domain
* in lag (correlation) domain

* in frequency domain
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Excitation

* Pseudorandom binary sequence
- The signal switches between two levels with given probability

u(k) with probability p
u(k +1) = . N
—u(k) with probability 1-p
- Frequency characteristics depend on the probability p
- Example 1
1 1
-1/N
—th N W— e —
time function autocdrrelation function
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Excitation

K k
 Multisine u(k)=kZ_llUk 008(2ﬂﬁfmax+¢(k)j

- where f__ is the maximum frequency of the excitation signal,
K'is the number of frequency components
maXQu(t)D

U (1)
minimizing CF with the selection of ¢ phases

e Crestfactor CF-=

Multisine with
minimal crest factor

1 - = 4 = G 7 &
x 107
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Excitation

 Persistent excitation

- The excitation signal must be ,rich” enough to
excite all modes of the system

- Mathematical formulation of persistent excitation

* For linear systems

- Input signal should excite all frequencies,
amplitude not so important

* For nonlinear systems

- Input signal should excite all frequencies and
amplitudes

- Input signal should sample the full regressor
space
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The role of excitation: small excitation signal
(nonlinear system identification)
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The role of excitation: large excitation signal
(nonlinear system identification)

Model output
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Modeling (some examples)

Resistor modeling
* Model of a duct (an anti-noise problem)

* Model of a steel converter (model of a
complex industrial process)

* Model of a signal (time series modeling)
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Modeling (example)

* Resistor modeling

- the goal of modeling: to get a description of a
physical system (electrical component)

- parametric model
* linear model

- constant parameter [ — g; /@ —

* variant model U=R(D)I /@ —e

 frequency dependent C
v =znig  zn=-L zgn-—=2 L —% 1 Ac

1(f) j2r FRC+1
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Modeling (example)

* Resistor modeling
- nonparametric model

4 i 4 1i A
Inear noninear frequency dependent

DC AC
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Modeling (example)

* Resistor modeling
- parameter estimation based on noisy measurements

Input noise iSystem noise
Input Output Input Output
System System _’< : >—’l
n, n, n,—
Measurement noise
| U
A
linear
U
+ 7+
+
>
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Modeling (example)

 Model of a duct

- the goal of modeling: to design a controller for
noise compensation.

active noise control problem

Primary noise source

il ~ 0

| |
Reference signal g Error signal

Secondary noise source
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Modeling (example)

Primary noise source

- ~ :

Error signal

Reference signal
Secondary noise source

Noise Error

1 » HI1 »(—P >

H4

é% H3 > H2

»CONTROL
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Modeling (example)

 Model of a duct
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physical modeling: general knowledge about acoustical
effects; propagation of sound, etc.

no physical insight. /nput: sound pressure, oulput: sound
pressure

what signals: stochastic or deterministic: periodic, non-
periodic, combined, etc.

what frequency range
time invariant or not

fixed solution, adaptive solution. Model structure is fixed,
model parameters are estimated and adjusted: adaptive
solution




Modeling (example)
* Model of a duct

- nonparametric model of the duct (H1)
- FIR filter with 10-100 coefficients
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Modeling (example)

 Nonparametric models: impulse responses
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Modeling (example)
* The effect of active noise compensation

-80

Magnitude response (dB)

-90

P e =y |

-100

-110

-1 200 50 100 150 200 250 300 350 400 450 S00

Frequency in Hz
Output error magnitude response;

noise excitation.

Frequency responses of the system without (dashed
line) and with the application of adaptive controller
(solid line).
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Modeling (example)

 Model of a steel
converter (LD converter)
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Modeling (example)

* Model of a steel converter (LD converter)

- the goal of modeling: to control steel-making
process to get predetermined quality steel
- physical insight:
« complex physical-chemical process with many inputs
* heat balance, mass balance
* many unmeasurable (input) variables (parameters)
- no physical insight:
 there are input-output measurement data
- no possibility to design input signal, no possibility
to cover the whole range of operation
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Modeling (example)

* Time series modeling

- the goal of modeling: to predict the future
behaviour of a signal (forecasting)
« financial time series
physical phenomena e.g. sunspot activity
electrical load prediction
an interesting project: Santa Fe competition
e etc.

- signal modeling = system modeling
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Time series modeling
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Time series modelin
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Time series modeling

e Qutput of a neural model
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|dentification (linear systems)

« Parametric identification (parameter estimation)
- LS estimation
- ML estimation
- Bayes estimation
* Nonparametric identification
- Transient analysis
- Correlation analysis

- Frequency analysis
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Parametric identification

n
u
System y
& | |
y=f(u,n)
Criterion C
function -
f Clv.yy)
Model Ym
— |
yM=fM(u,9)

Parameter
adjustment

algorithm
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Parametric identification

« Parameter estimation
- linear system

y(@) =u@) O +n(i) = iuj(i)@j +n() i=12,.,N

.y
U= : y=U®+n
T
(V)| =yy =D -y
- linear-in-the parameter model
Yy () =u(@ O = u,(i)0, y, =U®
j

- criterion (loss) function

@) =y-y, (@) V( ) V(@) =V(y-y, )= V(y Yu (é))
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Parametric identification

e LS estimation

quadratic loss function

Lo 15 vl
V(©)=—¢'e= 2;‘9(1)
1 r AN NN A\ -
= bl)-uY 6)(()-uY &)=y, -ué) by, -vé)
LS estimate A
A S V(@) _
O, —arg(;nm V(O) 6 0

(:)LS = (UYZ;UN)_I UY];ny
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Parametric identification

* Weighted LS estimation

- weighted quadratic loss function

/@)= 36l = 3 (10)-u() ©)g, [oi) -V ©)= vy ~U6] lyy ~U6)

weighted LS estimate

N

Oy = (UJTVQUN)_IUZQYN
- Gauss-Markov estimate (BLUE=Dbest linear unbiased

estimate)
E{n}=0 cov[n]=X Q=2"

(:)WLS = (UJTVZ_IUN)_I UJTVZ_IYN
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Parametric identification

« Maximum likelihood estimation

- we select the estimate which makes the given
observations most probable

f(y‘@)l) f(y‘@m) 7l

B
-t
.

Measurements

- likelihood function, log likelihood function
fyy|®  logf(y,|®)
- maximum likelihood estimate

) . 0
®,, =argmax f(y,|®) ~ log f(yy
®
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Parametric identification

* Properties of ML estimates

consistency

VoY

}[11)1;10 P{@ML(N)—®‘>8}=O for any ¢ >0

asymptotic normality

N

®ML(N)
asymptotic efficiency: the variance reaches Cramer-Rao

converges to a normal random variable as N—x

lower bound

N—>w

lim var(© oy —9) = —(E {

Gauss-Markov if f(yN‘(:D) Gaussian
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Parametric identification

« Bayes estimation

- the parameter © is a random variable with known pdf
A

a priori

e

a posteriori

fie|y)

_ .
the loss function v, (@): .[C(@‘@)f@‘”d@
- Bayes estimate ®, =arg min j C(@)\(@y(@\y)d@
®
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Parametric identification
« Bayes estimation with different cost functions

- median c((»?) 0 )=

(3)—@\

. ( £ @ — <
-~ MAP C(®®):<Const if ‘(H) (*.*)‘_A
0 otherwise
A A 2
- mean C(@)@):‘@_@ A
A Cost functions
f(@l)’) \\,
N
/ﬂ \ > \A
MAP MEAN MEDIAN
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Parametric identification

e Recursive estimations

laN

- O(k) is estimated from ()},

- y(k) is predictedas y,, (k)=u(k)' @

the error e(k)=y(k)—y,, (k) is determined

update the estimate o(x+1) from @(k) and e(k)
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Parametric identification

* Recursive estimations
- least mean square LMS

Ok +1)=0(k)+ 1 (k)e (k )u(k)

- the simplest gradient-based iterative algorithm

- It has important role in neural network training
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Parametric identification

 Recursive estimations

- recursive least square RLS

/e N

Ok +1)= O(k)+ K(k + 1)z (k)

K(k+1)=P(k)U(k + 1|1+ Uk +)P(R)U” (& +1)]"
)

where P(k) is defined as P(k) = [U(k)T U(k)T1

K(k) changes the search direction from instantenous
gradient direction
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Parametric identification

* Recursive estimations
- recursive Bayes a posteriori df f (®\y)

0)/06 ,0 ,0
f(®\y1)= - f()ﬁ‘ )f( ) f(QY1aY2): - f(Y2 Yy, )f(Y1 )
If(Y1‘®)f(®)d® Jf(Y2 Y1a®)f(§'1a®)d®
f(® yl’yzj.”’yk): _ f(yk ylayza"°9yk—19®)f(y19y29'°°9Yk—19®)
[ W]y yor ¥ @) (¥, ¥s0 0¥, 1, ©)dO
observation observation
Y Yk
. k-1 )
a priori a posteriori a priori a posteriori
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Parametric identification

 Parameter estimation
— Least square less a priori information

— Maximum Likelihood

)

conditional probability density f. /(¥ v

— Bayes most a priori information

a priori probability density f. 1(©)
0)

conditional probability density f. /(¥ y

cost function C(6]@)
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Non-parametric identification

* Frequency-domain analysis
- frequency characteristic, frequency response

- spectral analysis
* Time-domain analysis
- impulse response

- step response

- correlation analysis

« These approaches are for linear dynamical systems
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Non-parametric identification (frequency
domain)

« Secial input signals
- sinusoid
- multisine

u(t) = iUke

j(ZW%fmax +¢(k)j

where fmax is the maximum frequency of the excitation signal
K'is the number of frequency components

max(]u(t)‘)
U5 (1)
minimizing CF with the selection of ¢ phases

crest factor (CfF =
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Non-parametric identification (frequency
domain)

* Frequency response
- Power density spectrum, periodogram
- Calculation of periodogram
- Effect of finite registration length

- Windowing (smoothing)

Neural Networks for System Modeling « Gabor Horvath, 2005 Budapest University of Technology and Economics



References and further readings

Eykhoff, P. System Identification, Parameter and State Estimation, Wiley, New York, 1974.
Ljung, L. "System Identification - Theory for the User” Prentice-Hall, N.J. 2nd edition, 1999.
Goodwin, G.C. and R.L. Payne, Dynamic System ldentification, Academic Press, New York,

1977.

Rissanen, J. “Stochastic Complexity in Statistical Inquiry”, Series in Computer Science”. Vol. 15
World Scientific, 19809.

Sage, A.P. and J.L. Melsa, Estimation Theory with Application to Communications and Control,
McGraw-Hill, New York, 1971.

Pintelon, R. and J. Schoukens, System Identification. A Frequency Domain Approach, IEEE
Press, New York, 2001.

Soderstrom, T. and P. Stoica, System Indentification, Prentice Hall, Englewood Cliffs, NJ. 1989.
Van Trees, H.L. Detection Estimation and Modulation Theory, Part I. Wiley, New York, 1968.

Neural Networks for System Modeling « Gabor Horvath, 2005 Budapest University of Technology and Economics



Black box modeling

Neural Networks for System Modeling « Gabor Horvath, 2005 Budapest University of Technology and Economics




Black-box modeling

* Why do we use black-box models?

Neural Networks for System Modeling « Gabor Horvath, 2005 Budapest University of Technology and Economics

the lack of physical insight: physical modeling is not
possible

the physical knowledge is too complex, there are
mathematical difficulties; physical modeling is possible
in principle but not possible in practice

there is no need for physical modeling, (only the
behaviour of the system should be modeled)

black-box modeling may be much simpler




Black-box modeling

« Steps of black-box modeling

Neural Networks for System Modeling « Gabor Horvath, 2005 Budapest University of Technology and Economics

select a model structure

determine the size of the model (the number of
parameters)

use observed (measured) data to adjust the model
(estimate the mode/ order - the number of
parameters - and the numerical values of the
parameters)

validate the resulted model




Black-box modeling

 Model structure selection
Dynamic models:yy (k)= f(©,0(k)) with ©(k) regressor-vectors

* how to chose ¢(k) regressor-vectors?
past inputs

o(k)=T[ulk —1)u(k =2),...,ulk = N)]
past inputs and outputs

(P(k): [u(k—l),u(k—z),. s u(k—N),yM(k—l),yM(k—2),...,yM(k—P)]
past inputs and system outputs
o(k)=[ulk=1),u(k=2),...,u(k=N),y(k=1), y(k =2),..., y(k - P)]

past inputs, system outputs and errors
o(k)=[ulk-1),...,ulk=N), y(k-1),...,y(k=P)g(k-1),...,e(k - L)]
past inputs, outputs and errors
olk)=[ulk=1),..,ulk=N),y, (k=1),....y,,(k=P), ek -1),...,e(k = L),&,(k=1),...,&,(k = K)]
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Black-box identification

* Linear dynamic model structures

FIR
v, (k)=aulk-1)+a,ulk-2)+.. +a yu(lk—N)

ARX

vy, (k)=aulk—1)+... +au(k—N)+bylk—1)+ ... +b,y(k—P)
OE

v, (k)= aulk-1)+...+aulk—N)+by, (k=1)+...+b,y,, (k- P)
ARMAX

v, (k)= au(k=1)+.. +aulk—N)+by(k —1)+...+b,y(k—P)+celk—1)+...+c,s(k— L)
BJ vy, (k)= au(k=1)+...+ ayu(k — N)+by(k—1)+...+b,y(k — P)+
+eelk—1)+...+c,elk—L)+de,(k—1)...+d e, (k- K)

T
®=[aa,..a,]
parameter VeCtor @ — [alaz e aN,bl b2 ...bP,Cl Cz... CL’dl d2 .
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Black-box identification

* Non-linear dynamic model structures
NFIR

v, (k)= flulk=1)ulk-2),..., u(k—N))
NARX

v, (k)= fulk=1),...,u(k—=N), y(k-1),.. ., y(k-P))

NOE
k)= flulk=1), .. ulk=N), 3, (k=1), ...y, (k= P))

NARMAX




Black-box identification

* How to choose nonlinear mapping?
vulk)= (0, (k)

- linear-in-the-parameter models

nb)=Ya 0k)  0-fna.c]

- nonlinear-in-the-parameters

yM(k): ilajfj(ﬁjﬂ(p(k)) 0 = [a1a2 P p,. B, ]T
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Black-box identification

 Model validation, model order selection
- residual test

- Information Criterion:
 AIC Akaike Information Criterion

« BIC Bayesian Information Criterion

 NIC Network Information Criterion

* etc.
- Rissanen MDL (Minimum Description Length)

cross validation
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Black-box identification

» Model validation: residual test

residual: the difference between the model and the measured (system)
output (k) = Y(k)—yM(k)

- autocorrelation test:
« are the residuals white (white noise process with mean 0)?
* are residuals normally distributed?

e are residuals symmetrically distributed?

- Ccross correlation test:;

« are residuals uncorrelated with the previous inputs?
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Black-box identification

* Model validation: residual test
autocorrelation test:

N

C_(r)= N—k;g(k)g(k 7)

1 A A T
o) C.) .. C,0m)

dist

\/_r —>N@O, 1)
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Black-box identification

* Model validation: residual test
- cross-correlation test:

C(0)=— S etk -1

N-71 k=r+1

rug(m)=\/%(éu€(f+l) é’ug(f+m)y

dist

\/ﬁrug—> N (O, ﬁuu)

A

1 N ”@—1
R — .

uu [uk—l o uk—m]

N_ m k=m+1 l/lk




Black-box identification

: Auto correlation function of prediction error
e residual test, P

i

0 5 10 15 20 25

lag
Cross correlation function of past input and prediction error

0.4

0.2
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Black-box identification

 Model validation, model order selection

- the importance of a priori knowledge
(physical insight)
- under- or over-parametrization

- Occam’s razor

- variance-bias trade-off
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Black-box identification
 Model validation, model order selection
- criterions: noise term+penalty term

* AIC: AIC(®) = (-2) log (max imum likelihood) + 2 p

AIC(p) = (-2)logL(® y }+ 2p
* NIC network information criterion
extension of AIC for neural networks
- MDL MDL(p)= (—2)10gL(@N)+§10gN+§log

p = number of parameters
M = Fisher information matrix

Oy
Ny
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Black-box identification

 Model validation, model order selection
- cross validation

* testing the model on new data (from
the same problem)

* leave out one cross validation

e leave out A cross validation
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Black-box identification

 Model validation, model order selection

- variance-bias trade-off

difference between the model and the real
system

* model class is not properly selected: b/ias

 actual parameters of the model are not
correct. variance
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Black-box identification

 Model validation, model order selection
- variance-bias trade-off

y(k)= £,(®,0(k))+n(k) n(k)white noise with variance &

V(@)= E{‘y - f(@)”2 }: G+ E{

1,(@.9(0)- 1(6.00) |

EYV(®)=c+ E{ 1,(©.0(k))- f((:)’q’(k)]‘z}

<o {1, (0.00) /(0" (m.000) 1 EL] (0 m010)- (6,00

noise bias variance

The order of the model (/m) is the dimension of @(4).
The larger m the smaller bias and the larger variance
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Black-box identification

 Model validation, model order selection

- approaches
* A sequence of models are used with increasing m

Validation using cross validation or some criterion e.g.
AIC, MDL, etc.

« A complex model structure is used with a lot of
parameters (over-parametrized model)
Select important parameters
- regularization
- early stopping
- pruning
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Neural modeling

* Neural networks are (general) nonlinear
black-box structures with “interesting”
properties
- general architecture
- universal approximator
- non-sensitive to over-parametrization
- Inherent regularization
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Neural networks

 Why neural networks?

Neural Networks for System Modeling « Gabor Horvath, 2005 Budapest University of Technology and Economics

There are many other black-box modeling approaches:
e.g. polynomial regression.

Difficulty: curse of dimensionality

In high-dimensional (V) problem and using M-th order
polynomial the number of the independently adjustable
parameters will grow as AV,

To get a trained neural network with good
generalization capability the dimension of the input
space has significant effect on the size of required
training data set.




Neural networks

* The advantages of neural approach

- Neural nets (MLP) use basis functions to
approximate nonlinear mappings, which
depend on the function to be approximated.

- This adaptive basis function set gives the
possibility to decrease the number of free
parameters in our general model structure.
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Other black-box structures

 Wavelets
- mother function (wavelet), dilation, translation

 \Volterra series

oo o0

Y (k) = Zgzu(k l)+ZZngu(k D) u(k—s)+ iglsru(k Du(k —s)u(k —r)+---

[=05=0 [=05=07r=0

Volterra series can be applied succesfully for weakly
nonlinear systems and impractical in strongly
nonlinear systems
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Other black-box structures

*Fuzzy models, fuzzy neural models

- general nonlinear modeling approach

Wiener, Hammerstein, Wiener-Hammerstein
- dynamic linear system + static nonlinear
- static nonlinear + dynamic linear system

- dynamic linear system + static nonlinear + dynamic linear

Narendra structures

- other combined linear dynamic and nonlinear static
systems

Neural Networks for System Modeling « Gabor Horvath, 2005 Budapest University of Technology and Economics




Combined models

* Narendra structures

(a) modell (b) model.
> N Ly x | N L bes| & LA
(W) W) ¥ W)
H(z) |«— H(z) |«
(c) model_ (d) model.
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Neural networks
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Outline

* Introduction

Neural networks
- elementary neurons
- classical neural structures
- general approach
- computational capabilities of NNs

Learning (parameter estimation)
- supervised learning

- unsupervised learning

- analytic learning

Support vector machines
- SVM architectures
- statistical learning theory

General questions of network design
- generalization
- model selection
- model validation
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Neural networks

« Elementary neurons
- linear combiner
- basis-function neuron

 (Classical neural architectures
- feed-forward
- feedback

* General approach
- nonlinear function of regressors
- linear combination of basis functions

« Computational capabilities of NNs
- approximation of function
- classification
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Neural networks (a definition)

Neural networks are massively parallel
distributed information processing systems,
implemented in hardware or software form

* made up of. a great number highly interconnected
identical or similar simple processing units
(processing elements, neurons) which are doing local
processing, and are arranged in ordered topology,

» have /earning algorithm to acquire knowledge from
their environment, using examples

» have recall algorithm to use the learned knowledge
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Neural networks (main features)

* Main features
- complex nonlinear input-output mapping
- adaptivity, learning capability
- distributed architecture
- fault tolerance
- VLSI implementation
- neurobiological analogy

Neural Networks for System Modeling « Gabor Horvath, 2005 Budapest University of Technology and Economics



The elementary neuron (1)
 Linear combiner with nonlinear activation function

')q Ky ZWTX
f(s)

activation functions
y(s)‘ v(s) y(s) ¥(s)

+1
+1

+1 s>0 +1 s >1
= = - _K
y 1 s<0 y _Sl 1 <s<1 y_l_e s |
< 1ok K0 1 +eKs

a.) b.)

“y




Elementary neuron (2)

 Neuron with basis function

Y= Zilwigi(x)

Basis functions g.(x)=g|x—c,

e.g. Gaussian




Classical neural networks

* static (no memory, feed-forward)
- single layer networks

- multi-layer networks
« MLP
- RBF
« CMAC

« dynamic (memory or feedback)

- feed-forward (storage elements)

- feedback

 local feedback
* global feedback
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Feed-forward architecture

« Single layer network: Rosenblatt’s perceptron

y=sgn(s)




Feed-forward architecture
« Single layer network

M1

Inputs 2 Outputs

Y

Ym

W

Trainable parameters (weights)
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Feed-forward architecture

« Multi-layer network (static MLP network )

x(ol)__ : xf)zL 1

Y,
K e )
e
2
Y
0 1) V(O
y
D f0) 0 =
N W W
x D y(1)= X 2) yQ=y
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Feed-forward architecture
* Network with one trainable layer (basis function

networks)
¢, (k) ()
Non-linear P.k) @
mapping '
y(ky=wlo(k)
L(]Q, Fixed 9
or trained
supervised or
unsupervised
?, (k) %

Linear trainable layer

oK) W
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Radial basis function (RBF) network

* Network with one trainable Iayer

AQ) 1

Radial, e.g Gaussian
basis function

gM(X):¢M
input layer hidden layer  output layer
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CMAC network

* Network with one trainable layer

W

Wi+l
Wit2
Wi+3
Wi+4
Wits

)

P X—a C=4

Space of possible R L.
_ Xj+l [ =W+l
input vectors o [ W

Xi+3 [ Twi+3

a w
Binary association weight vector
vector (trainable)
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Feed-forward architecture

* Dynamic multi-layer network

¢ () g

() FIR filter () >

5

() () >

[ -th layer
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Feed-forward architecture
« Dynamic multi layer network (single trainable layer)

e 2O eRTrer 12V
0, (k) -
layer of the F”? filter
network z,(k)
x(k) | ' y(k)
(non-linear
mapping)
Pull) FIR filter
2, (k)
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Feedback architecture

 Lateral feedback (single layer)
X1

N
Inputs ™3 ¥ Outputs
V= 2 WX,
Y3 j

Xy Feed-forward Lateral
parameters connections

Neural Networks for System Modeling « Gabor Horvath, 2005 Budapest University of Technology and Economics




Feedback architecture
* Local feedback (MLP)

X2
Input
X Xy 77

Input layer 1. hidden layer 2. hidden layer Output layer

a.)self feedback, b.) lateral feedback, c.) feedback between layers
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Feedback architecture
» Global feedback (sequential network)

x(k
Input 1

x(k)

T [ x(eD) —

bt

L[ x&N) | Multi-input NG

single output >

M) I static network Output

T |: yk-2)

D . >

L | ya=1) r’
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Feedback architecture
» Hopfield network (global feedback)

Wypm Wipw W Wy » Wy, =
Wor m Woo = ""23_%l Woq = Won,
Wpr Wapm Wagw W W, =
War m Wgp m ""43/L Wyq » W4WJ'




Basic neural network architectures

» (Genaral approach

- Regressors
e current inputs (static networks)
* current inputs and past outputs (dynamic networks)
 past inputs and past outputs (dynamic networks)

- Basis functions
* non-linear-in-the-parameter network
* linear-in-the-parameter networks
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Basic neural network architectures

* Non-linear dynamic model structures based on regressor
- NFIR

Input ﬂkll

k)= 1 (x(h), x(k=1), ..., x(k—N))

x(k) >
IT) ' x(k-1) »  Multi-input y(k)
1 e single output outp>ut
> static network
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Basic neural network architectures

* Non-linear dynamic model structures based on regressor
- NARX )= £(x(k), . ., x(k=N), d(k—1),. . ., d(k—M))

Input x(k) From the system’s output, d(k)
;' x(k)
| x(kD) ™
i (k-1) > |
L | kN .| Multi-input N
single output > Qutput
d(k-M) »| static network
T die2)
D" -
L | dkI) T
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Basic neural network architectures
* Non-linear dynamic model structures based on regressor
- NOE  y(k)=f(x(k), ....x(k=N), y(k 1), ..., y(k - M))
Input (k)

y

-

x(k)
U M——
D1
L| wm | Multi-input
single output YL output
y(k-M) »| static network
L V(k-2) q

|
(k1) T

A
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Basic neural network architectures

* Non-linear dynamic model structures based on regressor

- NARMAX
(k)= f(x(k), ..., x(k=N), d(k=1), ..., d(k-M) elk—1),.. ..e(k-L))
- NJB
(k)= fx(k)...,x(k=N), y(k=1),.... (k=M ),e(k =1),...,e(k = L).e (k=1),...,e (k= K))

- NSS nonlinear state space representation
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Basic neural network architectures

* Nonlinear function of regressor
(k)= f(w,o(k))

- linear-in-the-parameter models (basis function models)

y(k)= ZWf( k) w=[wwy..w, [

j=1
- nonlinear-in-the-parameter models

(k)= ZW(2) f( O ) [ @ @ @ W(l)]T
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Basic neural network architectures

» Basis functions  £;(e(k))

- MLP (with single nonlinear hidden layer)
1

l+e

» sigmoidal basis function sgm(s) = ——

y(k) = zwv( Do) 7 (W, k)= sgm(etk) Wl +wh)

- RBF (radial basis function, e.g. Gaussian)

v = (o) = Zw,fQ\w i) flo—c,)=exp|-fo—c? /262

- CMAC (rectangular basis functions, splines)
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Basic neural network architectures
« CMAC (rectangular basis functions)

overlapping regions

points of
subdiagonal

regions of
one overlay

points of < ----------------

main diagonal |

\/

quantization intervals
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Basic neural network architectures

* General basis functions of compact support
(higher-order CMAC)

* B-splines A two-dimensional basis function
advantages with compact support:

tensor product of a second-order B-spline

s R
£ A R T y
N
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Capability of networks
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Capability of networks
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Function approximation
Classification
Association

Clustering

Data compression

Significant component
selection

Optimization

Supervised
learning network

Unsupervised
learning network




Capability of networks

« Approximation of functions

- Main statements: some FF neural nets (MLP, RBF) are
universal approximators (in some sense)

- Kolmogorov’s Theorem (representation theory): any
continuous real-valued Atvariable function defined on
[0,1]”Ycan be represented using properly chosen functions
of one variable (non constructive).

2N N
f(x19x29"'9xN): Z (I)q[ Z \llpq(xp)j

g=0 \ p=l
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Capability of networks
* Approximation of function (MLP)

- Arbitrary continuous function 7: R~/ on a compact
subset K of #Vcan be approximated to any desired
degree of accuracy (maximal error) if and only if the
activation function, g(x) is non-constant, bounded,
monoton increasing.

(Hornik, Cybenko, Funahashi, Leshno, Kurkova, etc.)
. M N
J (X5 Xpy) = Zlcig( Zowl-jxj) ; Xg =1
1= j=

maxXy -k

f(xl,...,xN)—f(xl,...,xN)‘<g £>0
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Capability of networks

* Approximation of function (MLP)

- Arbitrary continuous function 7/: Y-/ on a compact
subset of AYcan be approximated to any desired
degree of accuracy (in the L, sense) if and only if the

activation function is non-polynomial (Hornik, Cybenko,
Funahashi, Leshno, Kurkova, etc.)

A M N
f(xlr-':xN) — lecig( Z()Wijxj)a X0 =1
i= j=
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Capability of networks

* (Classification

- Perceptron: linear separation
- MLP: universal classifier

fx)=j,iff xexP  fiK {12,k
K compact subset of R"

x) j=1,..., k disjoint subsets of K

koo | . |
K=UXYand XPNXxY) isempty if i # j
j=l1
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Capability of networks

» Universal approximator (RBF)

An arbitrary continuous function 7/: R"—R on a compact
subset K of AV can be approximated to any desired
degree of accuracy in the following form

IR - X - C,
f(X);Wig( - j

l

if g: R"— Ris non-zero, continuous, integrable function.

Neural Networks for System Modeling « Gabor Horvath, 2005 Budapest University of Technology and Economics




Computational capability of the CMAC

* The approximation capability of the Albus binary
CMAC

+ Single-dimensional (univariate) case
« Multi-dimensional (multivariate) case
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Computational capability of the CMAC

-

nnEy

|/

Space of possible i Wi
X+l =Wl
input vectors Xy [

Xi+3 | Twi+3

a w
association vector weight vector (trainable)
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Computational capability of the CMAC

* Arrangement of basis functions: uni-variate case

’% overlays
|
| >

C=4

regions of one overlay

uantization intervals : :
1 (supports of basis functions of one overlay)

Number of basis functions: M =R+C-1
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Computational capability of the CMAC

* Arrangement of basis functions: multi-variate case

overlapping regions

Coverlays 4 | Number of basis functions
u |
C:4 2 ° 1 |_ 1 o
M :‘ cV! H(Ri +C—1)
i=0
points of _—
subdiagonal . — regionsof
....................................... one overlay
points of < """"""""
main diagonal . """" -

quantization intervals
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CMAC approximation capability

C overlays

Consistency equations:

f(a)- f(b)
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CMAC modeling capability

One-dimensional case: can learn any training
data set exactly

Multi-dimensional case: can learn any training

data set from the additive function set
(consistency equations)
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CMAC generalization capability

Important parameters:

C generalization parameter

d

~ain distance between adjacent training data

Interesting behavior
C=I*d, . : linear interpolation between the
training points

C#l*d,, . : significant generalization error

train

non-smooth output
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CMAC generalization error

CMAC output for C =8 and d;,,;, = 8 param

0

1201

16D

L L L L J
EQ &0 100 120 140
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CMAC generalization error

CMAC output for C =8 and dy, 4, = 10

1 1 1 1 ] 1 1 1 1
0 &l 100 10 20 =0 00 =0 100 150 0 20
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CMAC generalization error

CMAC output for C' =8 and dyp;, = 5




CMAC generalization error

Multidimensional case

CMAC oulput over test mesh

08T

0.6 b

04

ozt

s
s
_.__

. fé‘ f.t
ey
; ’fﬂ,‘r’?ﬂ,&,{{?

",

'i i J 0 .'."!, ‘“ ‘ NN
i il pﬂ’!"ﬂ -.-.{ ‘ ‘l \ \t\‘l“
;1” wﬁmﬂﬁ"{l{ ""f,"'f ( ‘\“d\‘“ ‘a‘t ‘“\“\““‘ “ “\‘““t\‘ -
2 ,"t 75 , ‘ t“‘\ \‘:m‘n

60 :' 70
0 0
without
regularization

Neural Networks for System Modeling « Gabor Horvath, 2005 Budapest University of Technology and Economics

08t
08t
0d oot

024t

60

CMAC output over lest mesh

;,« :_,.Hn
i '::::: G
on l

n 0‘
f
s ‘.

\\'\\
‘-“'—."

i LU
J.fuﬂfmf i, : \\“‘“\m‘\‘.
ity I/# l/’ﬂi ‘“ ““ AW
% Uittty iiutinaiti
’“'«'ff,"’fa%" Ul ey ;i‘ ot TR
o/ fﬁﬂ fﬂeﬁa il e u\ﬂ“ IIGS
‘f i W M:i““" t\‘i“}‘“‘“é‘\‘:\\t\":\\\“ s -
!"a? f ”"‘ AR “ . "t 70
”"’!:ff,";' 2% '::‘&‘m st 60
0 o




CMAC generalization error univariate case (max)
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Application of networks (based on the capability)
* Regression: function approximation

- modeling of static and dynamic systems, signal
modeling, system identification

- filtering, control, etc.
o Pattern association

- association
 autoassociation (similar input and output)
(dimension reduction, data compression)
« Heteroassociation (different input and output)

« Pattern recognition, clustering
- classification
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Application of networks (based on the capability)

* Optimization
- optimization

« Data compression, dimension reduction

- principal component analysis (PCA), linear
networks
- nonlinear PCA, non-linear networks

- signal separation, BSS, independent component
analysis (ICA).
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Data compression, PCA networks

« Karhunen-Loeve tranformation
y=®x ®=[p,0,,...05] ¢ ¢, =5, further ®'®=1, > &' =0

N M
X:Zyiq)i )A(:Zyi(Pi’MSN
i=1 i=1
; . N M 2 N ,
e ZE{Hx—X }:E Zyi(pi_zyi(pi = ZE{(yz) }
i=1 i=1 i=M+1
é = 82 B i/lz((PzT(Pz _1): ZN:[(PITCXX(PI _ll((PIT(Pl _1)] CXX = E{XXT}
i=M+1 i=M+1

85_5 _ i C, 0, -240,F0

i i=M+1

2 v T . N Tﬂ« _ N},
C.0, =10, =2 9, Cu0,= 2 ¢; 4o, = 24

=M +1 =M +1 =M +1
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Data compression, PCA networks

* Principal component analysis (Karhunen-
Loéve tranformation

y = Ox

X
X A X
x g%x)()s(
X y
E RIRRALY
X X ¢ X %
[ IO 0
X kXK 2 XK ol
X }
X x| Foax X MEMEAR
X R YLK 3
X )‘?%: &0 XX
X % X
X XX X B X % X
X LEX ROX
X X X g e RRX X
X X X XX
X XX X X
X XXX
X >z< Xx
x  Xx x X X % X x x Xx
X X X
X X X
< X
X
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Nonlinear data compression

* Non-linear problem (curvilinear component
analysis) X2




ICA networks

« Such linear transformation is looked for that restores the
original components from mixed observations

« Many different approaches have been developed
depending on the definition of independence

(entropy, mutual information, Kullback-Leibleir information,
non-Gaussianity)

* The weights can be obtained using nonlinear network
(during training)

* Nonlinear version of the Oja rule
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The task of independent component analysis
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Learning
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Learning in neural networks
* Learning. parameter estimation

- supervised learning, learning with a teacher
X, Yy, d training set: {Xiﬂdi}il
- unsupervised learning, learning without a teacher

)

- analytical learning
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Supervised learning

* Model parameter estimation: x, y, d

l

X System d
® . |
d=f (x,n)
Criterion C:C(g)
function |
f C(d.y)
Neural model y
> -
y=f, (X,w)

Parameter

adjustment
algorithm
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Supervised learning

 Criterion function
- quaderatic criterion function:

c<d,y>=c<e>=E{(a—y>T(d—y>}=E{z(dj—y,.y}
- other criterion functions /
* e.g. € insensitive

Cot

& E
- regularized criterion functions: C(d,y)=C(g)+ ACp

adding a penalty (regularization) term
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Supervised learning

 Criterion minimization
W = argmin C(d, y(w))
* Analytical solution w

only in linear-in-the parameter cases
e.g. linear networks: Wiener-Hopf equation
* |terative solution
- gradient methods

- search methods
« exhaustive search
* random search
* genetic search
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Supervised learning

* Error correction rules
- perceptron rule  w(k +1) = w(k) + pe(k)x(k)
- gradient methods w(k+1)=w(k)+ zQ(-V(k))

- steepestdescent Q=1
» Newton Q=R"

* Levenberg-Marquardt

w(k+1)=w(k)-H(w(k) ' VC(W(k) B =EFy(w)Vy(w) [+10
e conjugate gradient

w(k +1) = w(k) + o8, g'Rg, =0 if j=k
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Perceptron training

Xo=1 @ w(k+1)=w(k)+ ue(k)x(k)

"O == T
ST WX

xl 2%
o G 2 e

Converges in finite number of training steps if
we have a linearly separable two-class problem with finite number of
samples with a finite upper bound x| <M >0
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Gradient method

* Analytical solution
- linear-in-the parameter model

(k) =w" (i )x(k)
- quadratic criterion function

Ck) = E{(d(k)—wT(k)x(k))z}
= E{d2 (k)}— 2E{d(k)xT (k)}w(k)+ w' (k)E {x(k)xT (k)}w(k)

= B2 (k) 2p"w(k)+ w! (k)Rw (k)
- Wiener-Hopf equation

w' =R7'p. R = E{XXT} p= E{X)’}
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Gradient method

e |terative solution

w(k +1) = w(k)+ u(=V(k))

- gradient

viK)= 2C%) o ewlk) - w)

owl(k)

- condition of convergence

1

O<u< T Aoax - maximal eigenvalue of R

max
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Gradient method

 LMS: iterative solution based on instantaneous error
e(k)=d(k)-x"(k)w(k) Clk)=¢e*(k)

- instantaneous gradient ()= oC(k) _ 26(k) 280

- owl(k) ow(k)

- weight updating

) wlk +1) = wlk)+ ul= V(%)= wlk)+ 2.6k x (k)
- condition of convergence

1
O< u<——
7

max
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Gradient methods

« Example of convergence

W, s
w(0)
WO>
a.) small u b.) large u C.) conjugate gradient

steepest descent
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Gradient methods

 Single neuron with nonlinear activation function

s(k) = d (k) y(k)= d (k) - sgm(s(k)) = d (k) - sgm(w” (k )x(k)}
wik +1) = wlk)+ 2ulk) ek ) sgm!(s( (k) = wlk )+ 2ulkc) ok ) x()

w— Lo
RE o JV I
x(b) " T
Vi

- Parameter < e(k) D +  dk)
adjustment




Gradient methods

« Multi-layer network: error backpropagation (BP)

[ = layer index
i = processing element index
k = iteration index
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MLP training: BP

A o o)
il 24 1) s
x(zl) d, l"‘ 4
0 1) ) 2
.d n l+
y
e 2] pudls

1 2
W( : updating VV( )updating
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Designing of an MLP

e Important questions

Neural Networks for System Modeling « Gabor Horvath, 2005 Budapest University of Technology and Economics

the size of the network (model order: number of
layers, number of hidden units)

the value of the learning rate, u
initial values of the parameters (weights)

validation, cross validation learning and testing set
selection

the way of learning, batch or sequential
stopping criteria




Designing of an MLP

* The size of the network: the number of hidden
units (model order)
- theoretical results: upper limits

* Practical approaches: two different strategies
- from simple to complex
* adding new neurons
- from complex to simple
* pruning
- regularization
- (OBD, OBS, etc)
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Designing of an MLP

 Cross validation for model selection

CA Bias (underfitting) Variance (overfitting)

Test error

Training error

>

Best model
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f Model complexity (Size of the network)




Designing of an MLP

e Structure selection

A
C training error

Increasing the number of hidden units decreasing

- 7’ ~
L a).—
- ’ ~ ”
L~ / SN s
/ B A
7
/ > N S
’ N 7o
. ~ 117
‘ 7
/
/
/

>
(©Xd)®)  Number of training cycles
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Designing of an MLP

* (Generalization, overfitting
OLitput

Proper fitting to training points

Generalization

7
s 7

Overfittiﬁg

Training points
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Designing of an MLP
 Early stopping for avoiding overfitting

Training error

>
f Number of training cycles
Optimal stopping point

-----
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Designing of an MLP

* Regularization
- parametric penalty

C,(W)=C(w)+A) |w;
i,
Aw;; = ,u(— _aﬁC J—,ul sgn(w;;)
Wij

C.(W)=C(W)+A > |w

y-\
<O

Wi

- nonparametric penalty
C, (W) =C(w)+ 20| (x))

where di(f (x)) 1s some measure of smoothness
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MLP as linear data compressor

(autoassociative network)

Subspace transformation

Input: x Output of the ~ Desired output = Input
hidden layer: z

Z ﬁ
7,

\\,

4

4 5

./
7N

X

Z '
XN W W ».
Yn
Hidden layer Output layer
M neuron (in learning phase)
(Output of the compression) N neuron
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Nonlinear data compression (autoassociative network)

Z. compressed output

nonlinear linear nonlinear linear

layer




RBF (Radial Basis Function)

input layer hidden layer  output layer

y=2we(x)=Smeglx—c)=w'x  gx)=exp|-|x—c [ /20]
l l
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RBF training

 Linear-in-the parameter structure
- analytical solution
- LMS
* Cetres (nonlinear-in-the-parameters)
- K-means
- clustering
- unsupervised learning
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Designing of an RBF

* |Important questions
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the size of the network (number of hidden units)
(model order)

the value of learning rate, u

initial values of parameters (centres, weights)
validation, learning and testing set selection
the way of learning, batch or sequential
stopping criteria




CMAC network

* Network with one trainable layer

W

Wi+l
Wit2
Wi+3
Wi+4
Wits

)

<

: X—a C=4 a—y
Space of possible R L.

_ Xj+l [ =W+l

input vectors o [ W

Xi+3 [ Twi+3

a w
association vector weight vector (trainable)
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CMAC network

Network with hash-coding
—_ Ax1=0 —_— —_
X a =0 a zZ Z7y
7 x:1
X = lzi W,
X 1= —
X +3— —
Zi+] Wi+l
i+2 W, .» Y
Zi+3 MWii3
Input space —
— P
C=4 N
=0
| 17 z W
association compressed  weight vector
vector association vector
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CMAC modeling capability

« Analytical solution
* |[terative algorithm (LMS)

Aw

y(w)y=a(u)'w =1,2,..,P y

w'=A'd AT =AT(AAT)
for univariate cases: M > P for multivariate cases: M < P
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Networks with unsupervised learning

» Selforganizing network

- Hebbian rule
- Competitive learning
- Main task

* clustering, detection of similarities
(normalized Hebbian + competitive)

« data compression (PCA, KLT) (nomalized Hebbian)
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Unsupervised learning

* Hebbian learning

Aw =1 xy OXL,O%:

« Competitive learning Normalized Hebbian rule
Output
! Aw,, = /U(X - Wi*)
" Vi
Input
" Vu
N W W;XZWZTX Vi
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PCA network Sk +1) = w(k)+ sxy

. Oja rule W(k+1)_ W(k+1)

- =Wk +1)|[Wwlk+1)"
IIlpU.t HW(k+1N W( + )HW( + )H

[k + 1) = |wle) + 228 (k) x(k)y(k)+ 0lu?)

T ) 5 5
2 Y =Wx = W) +24[y(k)F +0(?)
Output
3 >
y

1/2

=1 p1y*(k)+ Ofus?)

e+ 1) = (e + 1))

Aw = uy(x=yw)= ulx— > w)

wk+1)=[w(e)+ aox(k)y ()] |1 - 2 (k) + Ols* )|
It can be proofe_d: W converges ~ w(l)+ 2o () [x (k) — wlk )y (k)]
to the largest eigenvector
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PCA network

* QOja rule as a maximum problem (gradient search)

Input . f(w): E{;;Z}_ WTFW
| Y _W'X WW WWw

Vf(w) =2Rw — (WTRW)2W
2

5 OU'tput Viw = ZE{XXT }w - ZE{WTXXTW}W
£ T — >
y = 2E{xy} - 2B}y jw
V rw) =2Xy —2°W =2p(X— W)
) Wl 1)= k) () w0

N

Solution: gradient method with instantenous gradient
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PCA networks

 GHA network (Sanger network)

Aw, = ulyx" — y’w
Input 1 ﬂ()ﬁ Y 1)
X x@ = xO _ (wfx(l))\wl =x" - pw,
Output
X -7, Aw, = H()’zX(Z) _J’ng):
px® = y,w, — 2w, )

T aw el x¥ -2 w)

-= v, - ﬂ(yix(l) V2 W; _“'_yizwi)

i—1
= yxV = yyw, —yfwij
j=1

AW =lyx” - LT(yy” W]
Oja rule + Gram-Schmidt orthogolarization

Neural Networks for System Modeling « Gabor Horvath, 2005 Budapest University of Technology and Economics




PCA networks

* Qja rule for multi-output (subspace problem)

7 AW =qlyx" —(yy" W]
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PCA networks

GHA (Sanger) network
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ICA networks

« Such linear transformation is looked for that restores the
original components from mixed observations

« Many different approaches have been developed
depending on the definition of independence

(entropy, mutual information, Kullback-Leibleir information,
non-Gaussianity)

* The weights can be obtained using nonlinear network
(during training)

* Nonlinear version of the Oja rule
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|CA training rule (one of the possible methods)

x(k)= As(k)+ n(k) = 3 a,s, (k) + n(k) v(k) = Bx(k) = §(k)

i=1

First step: whitening
v(k) = Vx(k) Efv(e () =1
V(k+1)=V(k) - plk)lv(k)v(k) -1V (k)

Second step: separation
Cly)= ﬁ: cum(y,")| = ﬁ:\E{yf}— 3E Y,
B(k)=W(k)V(k)

Wk +1) = Wik)+ 7 (k)[v(k) - Wk ) g(y (k)] gly" (k) g(H=tanh(?)
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Networks with unsupervised learning
* clustering

* detection of similarities

» data compression (PCA, KLT)
* Independent component analysis (ICA)
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Networks with unsupervised learning

» Kohonen network: clustering

Input 3

Xy FF weights Lateral connections
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Independent component analysis

ICA network
architecture

Input Whitened Restored
complex signal complex signal signal
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Dynamic neural architectures
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Dynamic neural structures

« Feed-forward networks
- NFIR: FIR-MLP, FIR-RBF etc.
- NARX

 Feedback networks
- RTRL
- BPTT

 Main differences from static networks

- time dependence (for all dynamic networks)

- feedback (for feedback networks: NOE, NARMAX,
etc.)

- training: not for single sample pairs, but for sample
sequences (sequantial networks)
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Feed-forward architecture
 NFIR: FIR-MLP

(winner of the Santa Fe competition for laser signal
prediction)
(-1y_ (D () 0)

y —X

IO i W 7,@}%) e
%ﬁi £0)

Dl ) o}

[ -th layer

O _ (D
: Y, =M
FIR filter () >

vl
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Feed-forward architecture

FIR-MLP training' temporal backpropagation

) o2 g e ol
i T B s R
oe*(k)  O&* 55()(]‘)
owD " a5 owd

- output |
OUPHEIYET Lk 1) = Wi (k) 2008, 1[50 1)) k)

- hidden layer
w(k+1)=w, (k)+2u0; (k—M)x (k—M)

5 (k=M)=1"(s; ())ZAT(k M)w,

A {5 ()(k+1) 5()(k+M,S£))J
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Recurrent network

 Architecture

x, (k)
D X, (k) y1(k+1) -
Input D wktl) o
xalk ) | Output
k) >
%(k ) yM(k+1)
yk)
1
-




Recurrent network

« Training: real-time recursive learning (RTRL)

e R I s A s YO
- 250 vyvf-j(@

ﬂ;if(;)l) f(s,(k){;wh(k)@”(("))whu](k)}

[eC reB

10205 a6 020 )|

u,.<k)={xz-<k>) ifieA 8z(k):{<di<k>—y,-<k>>2 if i (k)

0 otherwise




Recurrent network

 Training: backpropagation through time (BPTT)
unfolding in time

(1) ¥(2) y(3) y(4)
a.) b.)
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Dynamic neural structures

 Combined linear dynamic and non-linear
dynamic architectures

SN RPA N 7Y "G SN I SN 77 N [ R
(W) (W) (W)
o feed-forward architectures
oe(k) _ oy(k) _1() oV de(k) _ aylk) :Zay(k) oV,

Dynamic backpropagation
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Dynamic neural structures

S>> N Ly AREEN N, Lo Ni LA
+T+ (W) (W) T (W)
H(z) |« H(z) j

a.) feedback arhitectures b))
o) oelk) _oylk) _aNGy) o av(k) | N ()

Gwl-j Gwl-j OV Gwl-j 8wl-j

b.) oe(k) o) 8N1(v)[8N *(u) +H(z) @(k)]

oy owy v




Dynamic system modeling
« Example: modeling of a discrete time system

y(k+1)=0.3y(k)+0.6y(k —1)+ f[u(k)]

- where

flu)= w +0.3u” —0.4u

- Training signal: uniform, random, two different
amplitudes
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Dynamic system modeling

The role of excitation: small excitation signal
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Dynamic modeling

« The role of excitation: large excitation signal

Model output
NON DO

0 500 1000 1500

Plant output

Error
O DN
|
(

_2 = | 1 |
0 500 1000 1500
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Support vector machines

Neural Networks for System Modeling « Gabor Horvath, 2005 Budapest University of Technology and Economics




Outline

 Why we need a new approch

e Support vector machines
- SVM for classification
- SVM for regression
- Other kernel machines

 Statistical learning theory
- Validation (measure of quality: risk)
- Vapnik-Chervonenkis dimension
- Generalization
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Support vector machines

* A new approach:

gives answers for questions not solved using
the classical approach

- the size of the network

- the generalization capability
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Support vector machines

* (Classification

>
X1
Optimal s o
hyperplane
Classical neural learning Support Vector Machine

(perceptron)
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Support vector machines

* Linearly separable two-class problem

P 1 2
{(Xiayi)}izl XiEX y,-=+1, Xl-EX y-=—1

l

separating hyperpalne

wix+b=0 ¢
w'x, +hb>+1if x, e X' .
and ' /
T ; 2
wx, +b<-1L1f x, e X *
s
(WTXZ- +b)y, 21, Vi Optimal
hyperplane
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Support vector machines

« Geometric interpretation y
The formulation of optimality i

‘WTX+4

d(w,b,x) = ‘MH

p(w,b)= min d(w,b,x;)+ min d(w,b,Xx;)=

{x;50:=1} {x;;yi=—1}
‘WTXZ- + b‘ ‘WTXZ- + b‘ 0
= min + min —
I L I B U L
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Support vector machines

Criterion function (primal problem)

minHwH2 — max margin
cp(w):%Hsz with the conditions  (w'x, +b)y, >1, Vi

a constrained optimization problem

(KKT conditions, saddle point)

P .
J(w,b,a) = lHWHZ _ Zai{[wTXi +b]y, -1} max min J(w,b, )

2 i—1 a Ww,b
conditions
oJ /s oJ P P P
—=W-— —=>a;y; =0 W= a;X;y; v, =
Gw RS b~ 50 Lo Xy =0
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Support vector machines
« Lagrange function (dual problem)

1 PP P
max W (a) = max{—— . Zaiajyiyj(xixj) +2a;)
a 24 121]:1 l:l
P
>a;y; =0 o, =20 forall i
i=1
support vectors optimal hyperplane
* P
X;: a; >0 W =2 4.)X
i=1
output

T

P
y(x) = W X+b= 2.0, (XiTX)+b
i=1
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Support vector machines

margin

: 4]
* Linearly nonseparable case o
(slightly nonlinear case) s
separating hyperplane "IN 5
ywIx, +b]21-&  i=1..,P A 2
L
criterion function (slack variable &) ,/
1. P Optimal
q)(W,f):EHWH +Cz§1§i hyperplane

Lagrange function
1 ) P T P
J(W,b,é‘,a,ﬂ)zszH +C§1§i—2ai{yi[w Xi+b]—1+§i}—§ﬂi§i

0<qg,<C

. P
support vectors  x,: «, >0 optimal hyperplane w* =% 4,y x,

i=1
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Support vector machines

* Nonlinear separation, feature space
- separating hypersurface (hyperplane in the ¢ space)
w o(x)+5 =0 f‘équ)j(x): 0
decision surface J
P P M
glaiyiK(Xiax) = a a;iyi 2. Q; (x; )%‘(X) =0

J=0

kernel function (Mercer conditions)

K(Xi’xj) = (PT(Xz‘)(P(Xj)
criterion function

P 1 PP
W)= Zlai - Zl ZlaiajJ’iJ’jK(Xin)
1= 1=1j=
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Feature space

input (x) space (higher dimenzional)
feature () space
A separating curve

Ofo & N

. 3

g = z”j%w,.gaj(x): wio(x)

4 separating plane

W = [WO,WI,..., W, ]T (P=[(DO(X),%(X)a---a(OM(X)]T
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Kernel space

- Kernel trick
feature representation (nonlinear transformation) is not used
kernel function values (scalar values are used)
K(x,,x,) =0 (x,)olx,)
y(X) = W*T(p(x)+b = iaiyl. ((pT(xl.)(p(x))+b = iaiyl.K(xix)er
P P

A separating curve separating N separating line
4 plane
© O O \
O o _
O
O O -
> >

Input space feature space kernel space
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Support vector machines

« Examples of kernel functions

- Polynomial
K(x,x;)= (x"x; +1)9, d=1,.

- RBF | )
K(X, xl-): exp(——Hx—xl-H j

207

MLP (only for certain B, and 3,)

K(X, X; ) = tanh(ﬂoxTxi + ﬂl)

- CMAC B-spline
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Support vector machines

« Example: polynomial basis and kernel function
- basis functions

€0(Xz‘):[l: xizla\/zxﬂxiza 129\/_’%1:\/_’%2]

- kernel function

B 2 2 2 2
K(x, X, ) =1+x{x;+ 2x1 XoXjXip+ X3 Xjn + 2x1 X+ 2x2xi2
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SVR (regression)

e-insensitive loss(criterion ) function

C(e) !

B ha |y-f(x,0)|<e
e |y—f(x,a)|—8 otherwise

C,(nf(xa)=|y-f(x.a)
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SVR (regression)

f(X) — ij(Dj (X)

Constraints: Minimize:

—wlo(x,)< e+, o) jw'wof s 5|

=1




SVR (regression)

Lagrange function

P 1 P -
J(w, EE a,d,y, 7/’) = Cz (& +E)+ EWTW — z a, W o(x,) -y, +&+ é:i]_
i=l1 i=1

_Zai’[yi _WT(P(XI')"'E"'&’:_Z(%@ +7:6)

y;=C-a; y;i=C-aqaj
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SVR (regression)
Dual problem

W(aiaz{)zgyi(ai_az{) 35(05 +a)_l§§ 0‘ 0‘ (0‘ - )K( Xi» j)

i=l1 i=1 2 j=1j=1
constraints support vectors
P ’ ’
Zi(ai—ai)ZO 0<eg; <C, 0= <C, X;:Q; *Q;
1=
solution

:i(ai _ai’)(p(xi)

i=l

Y =w* o(x)=3 (@ —a Yo" (x Jolx)) = 3 (@ ! K (x,x)

i=l i=1




SVR (regression example)

04 | | | | | | | | |
-10 -8 -5 -4 -2 o 2 4 B =] 10
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SVR (regression example)




SVR (regression)

04 | | | | | | | | |
-10 -3 -5 -4 -2 a 2 4 ] g 10
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Support vector machines

« Main advantages

automatic model complexity (network size)
relevant training data point selection
allows tolerance (&)

high-dimensional feature space representation is not
used directly (kernel trick)

upper limit of the generalization error (see soon)

« Main difficulties
- quadratic programming to solve dual problem

Neural Networks for System Modeling « Gabor Horvath, 2005 Budapest University of Technology and Economics

hyperparameter (C, &, o) selection
batch processing (there are on-line versions to0)




SVM versions
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Classical Vapnik’s SVM (drawbacks)
LS-SVM

classification regression

R

i=l1 i=1
equality constraints
yiw'x;+bl=1-¢,  i=1..P vi=w o(x;)+b+e,  i=1..P

no quadratic optimization to be solved : a linear set of equations

Ridge regression
similar to LS-SVM




LS-SVM

Lagrange equation

1 1 P P
L(W,b,e;a)zszWJrE;/Ze,f—Zak{wT(p(xk)+b+ek—yk}
k=1 k=1
The results
oL P
—=0 > w=) o,0(x
ow kzz; (O(X,)
oL P
—=0 - a, =0
ob ,; ¢
Lo 5 a=ye k=1,.,P
Oe,
Ly S wio(x,)+b+e,—y, =0 k=1..P
oa,
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LS-SVM

Linear equation

Regression Clasification
0 17 b| |0 0 y' b| |0
1 Q+y'1|e] |y y Q+y'1|a| |1
where
Qi,j:K(Xiaxj):(PT(Xi)(p(Xj) Qi,j:yiyjK(Xiaxj)

the response of the network

y(x) = ZIJL akK(Xaxk)+ b y(x) = Z;]j:lakykK(Xaxk)er
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Main features of LS-SVM and ridge regression

 Benefits

- Easy to solve (no quadratic programming , only a
linear equation set)

- On-line, adaptive version (important in system
identification)
* Drawbacks

- Not sprase solution, all training points are used
(there are no ,support vectors”)

- No ,tolerance parameter” (&)
- No proved upper limit of the generalization error

- Large kernel matrix if many training points are
available
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Improved LS Kernel machines

* There are sparse versions of the LS-SVM

- The training points are ranked and only the most
important ones are used (iterative solution)

- The kernel matrix can be reduced (a tolerance
parameter is introduced again)

- Detailes: see the references

» Additional contraints can be used for special
applications (see e.g. regularized kernel CMAC)
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Kernel CMAC (an example)

* Goal
- General goal:

to show that additional constraints can be used in the
framework of LS-SVM

here: the additional constraint is a weight-smoothing
term

- Special goal:

to show that kernel approach can be used for
improving the modelling capability of the CMAC
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General goal

* |ntroducing new constraints
* General LS-SVM problem

Criterion function: two terms
weight minimization term + error term

Lagrange function
criterion function+ Lagrange term
Extension
adding new constraint to the criterion function

Extended Lagrange function

new criterion function (with the new constraint) +
Lagrange term
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Special goal: improving the capability of the
CMAC

* Difficulties with multivariate CMAC:

- too many basis functions (too large weight memory)
- poor modelling and generalization capability

* Improved generalization: regularization

* Improved modelling capability:

- more basis functions:

difficulties with the implementation
kernel trick, kernel CMAC

* Improved modelling and generalization capability
- regularized kernel CMAC
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Regularized CMAC

* Regularized criterion function (weight smoothing)

04

0 5io 1[‘30 1:i50 zLiJo 2%0 300 o 5io 1ci]o 1%0 QEi]D zéo 300
without with
regularization
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Kernel CMAC

« Classical Albus CMAC: analytical solution
ydk — WTak k — 1,...,P yd — AW
% _1 %
w =A'y, AT= AT(AAT) y(x)=a’ (x)w =a’ (x)AT(AAT) 'y,
« Kernel version

L . : 1 7 Y & s
criterion function (LS) mmJ(W,e)——w W+ e

w 2 2 k=1
constraint Vo =W a, +e
. P
Lagrangian L(w,e,0) = J(w,e)—zak (WTak T € —J’dk)
k=1
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Kernel CMAC (ridge regression)

« Using the derivatives the resulted equations

- OL(w,e,0) Z
=0 > w=) ,a
aW kzz; k" k
) oLw.e @) o a =ye k=1,..,P
Oe,
LW o wax,)+e,~y, =0 k=1,.,P
oa,, ‘
1
{K+—I}1=yd K =AA"
Y

y(x)=a' (x)w=a' (x)i o, = iakK(x,xk): K' X)a

i=1
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Kernel CMAC with regularization

Extended criterion function:

2
P P

rrgnJ(w,e):%wTW+%;e,f +%;Z(yék _Wk(i)j
=1 =1 i

Lagrange function

2
y . <
ék _Wk(l)j _Zak(wTak T e _J’dk)

k=1 k=1 i k=1
y & P
L(w,e,a) = Swiwa . Zei - Zak (afdiag(ak)w +e, — ydk)
k=1 k=1
P 12 P P
P23 2073 deal diag(a, yw+ 23 W diag(a, w
2i57C  &ac 255

Output

y(x)=a" (x)(I+D)" A’ [(l + %y d} where D= idiag(ak)

k=1
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Regularized Kernel CMAC ( example)
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Kernel network output over test mesh c=4 d=3 m=32 msge=0.0028355

Y l,o"o‘t L
‘\"‘-—"‘)" 3

YA et
Co T

— LD
S T T

35

without

regularization

/ % A

Neural Networks for System Modeling « Gabor Horvath, 2005 Budapest University of Technology and Economics




References and further readings

Haykin, S.: "Neural Networks. A Comprehensive Foundation" Prentice Hall, N. J.1999.

Saunders, C.- Gammerman, A. and Vovk, V. "Ridge Regression Learning Algorithm in Dual
Variables. Machine Learning", Proc. of the Fifteenth International Conference on Machine
Learning, pp. 515-521, 1998.

Scholkopf, B. and Smola, P. "Learning with Kernels. Support Vector Machines, Regularization,
Optimization and Beyond" MIT Press, Cambridge, MA, 2002.

Suykens, J.AKK., Van Gestel, T, De Brabanter, J., De Moor, B. and Vandewalle, J. "Least
Squares Support Vector Machines", World Scientific, Singapore, 2002.

Vapnik, V. "Statistical Learning Theory", Wiley, New York, 1995.
Horvath, G. "CMAC: Reconsidering an Old Neural Network" Proc. of the Intelligent Control
Systems and Signal Processing, ICONS 2003, Faro, Portugal. pp. 173-178, 2003.

Horvath, G. "Kernel CMAC with Improved Capability" Proc. of the International Joint Conference
on Neural Networks, I[JCNN’2004, Budapest, Hungary. 2004.

Lane, S.H. - Handelman, D.A. and Gelfand, J.J "Theory and Development of Higher-Order
CMAC Neural Networks", /EEE Control Systems, Vol. Apr. pp. 23-30, 1992.

Szabd, T. and Horvath, G. "Improving the Generalization Capability of the Binary CMAC” Proc.
of the International Joint Conference on Neural Networks, IJCNN'2000. Como, ltaly, Vol. 3,
pp. 85-90, 2000.

Neural Networks for System Modeling « Gabor Horvath, 2005 Budapest University of Technology and Economics




Statistical learning theory

* Main question: how can the quality of a learning
machine be estimated

« Generalization measure based on the empirical
risk (error).

« Empirical risk: the error determined in the
training points
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Statistical learning theory

 Goal: to find a solution that minimizes the risk

R(w) = [1(x,w) p(x,y)dxdy = [[y—f(x, W)’ p(x, y)dxdy ~ R(W’

P)
* Difficulties: joint density function is unknown

Only the empirical risk can be determined

Ry ) =3[, = £, W] Ry (W'[P)

optimal value

minimizing the empirical risk

Neural Networks for System Modeling « Gabor Horvath, 2005 Budapest University of Technology and Economics




Statistical learning theory: ERM principle

« Asymptotic consistency of empirical risk
‘ Ro(W'

P R(w’) when P—oo

P — RW’) when P—w

Rw

Expected Risk R(w|P)

min R(w)=R(w®°)

Empirical Risk R(w'|P)

P
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Statistical learning theory

« Condition of consistency of the ERM principle
Necessarry and sufficient condition: finite VC dimension
Also: this is a sufficient condition of fast convergence

« VC (Vapnik-Chervonenkis) dimension:

A set of function has VC dimension A if there exist A
samples that can be shattered (can be separated into
two classes in all possible ways: all 2”7 possible ways) by
this set of functions but there do not exist #+1 samples
that can be shattered by the same set of functions.

Neural Networks for System Modeling « Gabor Horvath, 2005 Budapest University of Technology and Economics




Model complexity, VC dimension

*\VC dimension of a set of indicator functions
- definition
VC dimension is the maximum number of samples for

which all possible binary labellings can be induced by a
set of functions

- 1llustration

/

linear separation no linear separation
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VC dimension

« Based on VC dimension upper bounds of the
risk can be obtained

 Calculating the VC dimension

- general case: rather difficult
e.g for MLP VC-dimension can be infinite

- special cases: e.g. linear function set

* VVC dimension of a set of linear functions
(linear separating task)
h=N+1 (N:input space dimension)

An important statement: /t can be proved that
the VC dimension can be less than N +17
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Generalization error

* Bound on generalization

- Classification: with probability of at least 1-77 (confidence
level; nis a given value within the additional term)

R(W) < Ry (W) + additional term(/2) (confidence interval)
h < min(R2 /Mz,N)+1;

R = Radius of a sphere containing all data points

1 : . :
M =— margin of classification

W
- regression

R(W) < ( Remp (W) B h[log(azN/h)+ 1]— ]Qg(n/4)

efen), N
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Generalization error

AT

FVC,.

P/h large = R~R,,
P/h small = R>>R_

Generalization error

training error

e

VC dimension

Tradeoff between the quality of approximation and
the complexity of the approximating function
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Structural risk minimization principle

* Good generalization: both terms should be minimized

S set of approximating functions
The elements of S, nested subset of S, with finite VC dimension A,
S;cS,c.cS.c.
The ordering of complexity of the elements
h< h <.<h<.
Based on a priori information S'is specified.
For a given data set the optimal model estimation:
selection of an element of the set (model selection)
estimating the model from this subset (training the model)

there is an upper bound on the prediction risk with a given
confidence level
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Constructing a learning algorithm

 Structural risk minimization
- Such S, will be selected for which the guaranted
risk is minimal
- SRM principle suggests a tradeoff between the

quality of approximation and the complexity of the
approximating function (model selection problem)

- Both terms are controlled:
 the empirical risk with training
* the complexity with the selection of S

R(w')<R__(w')+additional term(P/ h,)

confidence interval

emp
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SVM

« Support vector machines are such a learning
machines that minimize the length of the weight

vector

* They minimize the VC dimension. The upper
bounds are valid for SVMs.

* For SVMs not only the structure (the size of the
network) can be determined, but an estimate of

its generalization error can be obtained.
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Modular network architectures
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Modular solution

* A set of networks: competition/cooperation
- all networks solve the same problem (competition/cooperation)

- the whole problem is decomposed: the different networks solve
different part of the whole problem (cooperation)

« Ensemble of networks

- linear combination of networks

« Mixture of experts
- using the same paradigm (e.g. neural networks)

- using different paradigms (e.g. neural networks + symbolic
systems, neural networks + fuzzy systems)
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Cooperative networks

Ensemble of cooperating networks
(classification/regression)

 The motivation

— Heuristic explanation
« Different experts together can solve a problem better
« Complementary knowledge

- Mathematical justification

 Accurate and diverse modules
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Linear combination of networks
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Ensemble of networks

« Mathematical justification

M
— Ensemble output v (xo)=> a,y;(x)
j=0
— Ambiguity (diversity) a, (x) = :yj (x)—y (x, oc)]2
— Individual error €, (X)= :d(X)—yj (X)]2
— Ensemble error e(x) = [d(x)—? (x,a)]2
M
— Constraint Z a, =1
j=1
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Ensemble of networks

« Mathematical justification (cor}lt’d)
— Weighted error exa)=> a:,(x)
j=0

— Weighted diversity a (x,oc)z a.a; (x)

1M

— Ensemble error  gx)=ldx)-y(xo =gxa)-a(xaq)

— Averaging over the input distribution

E=[e(x0)f(0)dx  E= j Ex,a)f(X)dx A= j a(x, o) f(x)dx

E=FE—-A4

Solution: Ensemble of accurate and diverse networks
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Ensemble of networks

 How to get accurate and diverse networks
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different structures: more than one network structure (e.g.
MLP, RBF, CCN, etc.)

different size, different complexity networks (number of
hidden units, number of layers, nonlinear function, etc.)

different learning strategies (BP, CG, random search,etc.)
batch learning, sequential learning

different training algorithms, sample order, learning samples
different training parameters
different initial parameter values

different stopping criteria




Linear combination of networks

« Computation of optimal (fix) coefficients
— akzﬁ, k=1..M — simple average
- o =1a;=0, j#k ,kdepends on the input

for different input domains different network (alone)
gives the output

M
- optimal values using the constraint Z a, =1
k=1

- optimal values without any constraint

Wiener-Hopf equation ag) =R;'P
R, - E[y(x) ()’ P=E[y(x)d(x) |
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Mixture of Experts (MOE)
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[ Gating network —~
A
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Mixture of Experts (MOE)

« The output is the weighted sum of the outputs of the
experts

M M
= g  4=r(x0) >.g =1 g=20 wi
i=1 =

®. is the parameter of the /-th expert

« The output of the gating network: “softmax” function

Si
e
g & =v,x

i T M
e
=1

* Vv, is the parameter of the gating network
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Mixture of Experts (MOE)

* Probabilistic interpretation
w =Ely|x,0,] g, =P@[x,v;)

the probabilistic model with true parameters

P(y|x,0%) =2 g,(x,v))P(y|x,0})

a priori probability  g.(x,v?) = P(|x,v?)
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Mixture of Experts (MOE)

* Training
- Training data X = {(X(l)»y(l) )};

- Probability of generating output from the input

P(y"x,0) =2, P(Ix",v)Py"x".0))

P P
Py|x,0)=]]Py" x",0) =H{ > Pi|x",v)Py" x"e, )}
/=1 /=1

i

- The log likelihood function (maximum likelihood

estimation) - y @) - Zlog{ > P |x? v )Py [x".0 )}
l i
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Mixture of Experts (MOE)

« Training (cont’d)

- Gradient method

oL (x,0
é’L(X,@):O and (x ):0
00, ov,
oL(x,0) JL(x0)0u, oL(x0) JL(x0) o
- 00, ou. 00, v, ok, Ov,

- The parameter of the expert network

S () () U,
®i(k+1):®i(k)+772hi (y _:Uz')
/=1 0/)(9 i

- The parameter of the gating network

P
v,(k+1)=v,()+7 (n" - g® k®
/=1
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Mixture of Experts (MOE)
Training (cont’'d)

- A priori probability

g =g,x",v,)=Pi|x",v,)

- A posteriori probability

Jo__ g PaUx0.e
l Zg, P(y”\x )
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Mixture of Experts (MOE)

« Training (cont’d)
- EM (Expectation Maximization) algorithm

A general iterative technique for maximum likelihood
estimation
* Introducing hidden variables
» Defining a log-likelihood function
- Two steps:
« Expectation of the hidden variables
« Maximization of the log-likelihood function
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Hierarchical Mixture of Experts (HMOE)

HMOE: more layers of gating
networks, groups of experts

Gating
Network

&>
xT
W
811 &2
Gating —L| Gating
Network |- I | Network
82| 812
: : 21 22
xT My [ H H T X
Expert Expert Expert Expert
Network Network Network Network

f

I

]

|
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Mixture of Experts (MOE)

« MOE construction

» Cross-validation can be used to find the proper
architecture

« CART (Clasification And Regression Tree) for initial
hierarchical MOE (HMOE) architecture and for the initial
expert and gating network parameters

« MOE based on SVMs: different SVMs with different
hyperparameters
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Application:
modelling an industrial plant
(steel converter)
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Overview

 |ntroduction

 Modeling approaches

* Building neural models

« Data base construction

* Model selection

« Modular approach

* Hybrid approach

* |Information system

* Experiences with the advisory system
* Conclusions
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Introduction to the problem

« Task

- to develop an advisory system for a Linz-Donawitz
steel converter

- to propose component composition

- to support the factory staff in supervising the steel-
making process

* A model of the process is required: first a system
modelling task should be solved
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LD Converter modeling

The Linz-Donawitz
converter in Hungary
(Dunaferr Co.)

Basic Oxigen Steelmaking
(BOS)
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Linz-Donawitz converter

Phases of steelmaking

1. Filling of waste iron
2. Filling of pig iron

3. Blasting with pure
oxygen

4. Supplement additives

5. Sampling for quality
testing

6. Tapping of steel and
slag
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Linz-Donawitz converter

Phases of steelmaking

* 1. Filling of waste iron
2. Filling of pig iron

3. Blasting with pure
oxygen

4. Supplement additives

5. Sampling for quality
testing

6. Tapping of steel and slag
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Linz-Donawitz converter

Phases of steelmaking

* 1. Filling of waste iron
2. Filling of pig iron

3. Blasting with pure 11
oxygen ()
4. Supplement additives :

5. Sampling for quality
testing

6. Tapping of steel and slag
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Linz-Donawitz converter

Phases of steelmaking

* 1. Filling of waste iron
2. Filling of pig iron

3. Blasting with pure
oxygen

4. Supplement additives

5. Sampling for quality
testing

6. Tapping of steel and slag
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Linz-Donawitz converter

Phases of steelmaking

« 1. Filling of waste iron
2. Filling of pig iron

3. Blasting with pure
oxygen

4. Supplement additives
5. Sampling for quality
testing

6. Tapping of steel and slag
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Linz-Donawitz converter

Phases of steelmaking

* 1. Filling of waste iron

2. Filling of pig iron

3. Blasting with pure
oxygen

4. Supplement additives

5. Sampling for quality
testing

6. Tapping of steel and slag
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Main featutes of the process

* Nonlinear input-output relation between many
Inputs and two outputs

* input parameters (~50 different parameters)

- certain features “measured” during the process

* The main output parameters (output
measured values of the produced steel)
- temperature (1640-1700 C°-10.. +15 CO©)
- carbon content (0.03-0.70 % )

More than 5000 records of data
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Modeling task

* The difficulties of model building
- High complexity nonlinear input-output relationship
- No (or unsatisfactory) physical insight
- Relatively few measurement data
- There are unmeasurable parameters of the process
- Noisy, imprecise, unreliable data

- Classical approach (heat balance, mass balance) gives
no acceptable results
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Modeling approaches

 Theoretical model - based on chemical and
physical equations

* |nput - output behavioral model

- Neural model - based on the measured process data

- Rule based system - based on the experimental
knowledge of the factory staff

- Combined neural - rule based system: a hybrid model
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The modeling task

oxygen

—> temperature
System N

components »
(parameters)

predicted
temperature

model output
temperature

components
(parameters)
measured
temperature

redicted
oxygen
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Overview

* Building neural models
 Data base construction
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,Neural” solution

* The steps of solving a practical problem
Raw input

data l l

‘ Preprocessing \

Ll

Neural network

Postprocessing

Results
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Building neural models

« Creating a reliable database
- the problem of noisy data
- the problem of missing data
- the problem of uneven data distribution

« Selecting a proper neural architecture

- static network (size of the network)

- dynamic network
* size of the network: nonlinear mapping
 regressor selection + model order selection

Training and validating the model
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Creating a reliable database

* |nput components
- measure of importance
 physical insight
 sensitivity analysis (importance of the input variables)
* mathematical methods: dimension reduction (e.g. PCA)
* Normalization
- Input normalization
- output normalization

« Missing data
- artificially generated data
* Noisy data

- preprocessing, filtering,
- errors-in-variables criterion function, etc.
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Building database

« Selecting input components, sensitivity analysis

Initial database

Neural network training

Sensitivity analysis Input parameter
cancellation

Input parameter
of small effect on
the output?

yes
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Building database

* Dimension reduction: mathematical methods
- PCA
- Non-linear PCA, Kernel PCA
- ICA

e Combined methods
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The effect of data distribution
* Typical data distributions

1000 T - - T T 70
900
601
800
700 . 501
000 401
500
301
400
300 T 20k
200 T
100 7 |
0_._.__..-“- . 1 1 1 0 sl
0 10 20 30 40 50 60 1600 1620 1640 1660 1680 1700 1720 1740
Uneven distribution Approximately Gaussian distribution
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Normalization

 Zero mean, unit standard deviation

(p) o
SIPNLIECIN V) Be SR B SN OB Y () X%
l l l l 1

« Normalization into [0,1]
o _ x; —min{x;}

max {x; } —min{x; }
. Decorrelation + normalization
ﬁ Z(x(p) X)(xP) —x)T Lo, =40, A= diag(4;...Ax)
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Normalization

* Decorrelation + normalization = Whitening transformation

A

/\\

Original
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Missing or few data

 Filling in the missing values
- based on available information

* Artificially generated data

- using trends
- using correlation

- using realistic transformations
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Missing or few data

* Filling in the missing values based on:
C(, j)

correlation coefficient between x; and x;, C(, )= e
VC(@. 1) €, )

previous (other) values %; =X; +o0,¢

other parameters x¥ f(x(")) or M = f(xP,x )

time dependence (dynamic problem) R.(t,7) = E{x,;(¢) x;(t + 7)}
* Artificially generated data

- using trends

- using correlation

- using realistic transformations
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Few data

* Artificial data generation
- using realistic transformations

- using sensitivity values: data generation around various
working points (a good example: ALVINN)

(ALVINN = Autonomous Land Vehicle In a Neural Net an onroad
neural network navigation solution developed in CMU)
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Noisy data

Inherent noise suppression

- classical neural nets have noise suppression property
(inherent regularization)

- Regularization (smoothing regularization)
- averaging (modular approach)

« SVM

1 e-insensitive criterion function

« EIV

- Input and output noise are taken into consideration
- modified criterion function
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Reducing the effect of output noise

* Inherent regularization of MLP (smooth sigmoidal function)
« SVM with ¢- insensitive loss function
» Regularization: example regularized (kernel) CMAC

C=32 d=3 mx=512 m=se=00165658 gamma=0.1 C=32 d=3 mx=512 ms=e=0.007057 lambda=4000 gamma=0.1 ny=0.3
T T T T T T T T T T

1.5

"o 100 200 300 400 500 E00 "o 100 200 300 400 500 E00




Reducing the effect of input and output noise

 Errors in variables (EIV) Ty
) y

k System i @ >

n[i] ”;[;] k

m,x, y,_><_D

)CE:] v y/[:]
1 & 1 &
= —Zxk Vi :—Zyk
M5 M5

O Z(x[’] -X,)" Z(y“] y
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EIV

« LS vs EIV criterion function

1 P ES *
Cps = ;Z(J’k _fNN(xkﬂw))z
k=1

Cpy = : ZP:((yk — S (6, W) n (x"% _xk)zj

s 2 2
P k=1 O Jx,k

v,k

« EIV training

AW :77 M & ef,k afNN(xka H) M ef,k afNN(’xk’ "") ex’k
/ 2PZ= o OW. Ax, =1 > +—

€ri = Vi — v (X, W)

« Danger : overfitting — early stopping
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Noisy data

» QOutput noise is easier to suppress than input
noise

« SVM, regularization can reduce the effect of
output noise

« EIV (and similar other methods) can take into
consideration the input noise

* EIV results in only slightly better approximation

« EIV is rather prone to overfitting (much more free
parameters) — early stopping
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Model selection

« Static or dynamic
- why better a dynamic model

* Dynamic model class

- regressor selection
- basis function selection

 Size of the network

- number of layers
- number of hidden neurons
- model order
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Model selection

* NFIR

« NARX

* NOE

« NARMAX

NARX model, NOE model: model order selection

v, (k)= flx(k),x(k =1),x(k =2),...,x(k —n), y(k =1), y(k = 2),..., y(k —m)]

Model order: the input dimension of the static
network
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Model order selection
* AIC, MDL, NIC, Lipschitz number
y(k)= fIx(k),x(k =1),x(k =2),...,x(k —n), y(k 1), y(k = 2),..., y(k —m)]
» Lipschitz number, Lipschitz quotient

e Vi~ Yi
¢ = [H Jn q“)(k)j gy =

18

g

gV |

noiseless case noisy case

14

12 |

optimal model order; no definite point

10 |

model order model order
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Model order selection

* Lipschitz quotient
general nonlinear input-output relation, {.) continuous, smooth
multivariable function  j = f[xpxz,---,x n]

bounded derivatives ‘fl‘ = z <M i=12,....n
Ox;
Lipschitz quotient
Vi = Vi L
X, —X;

Sensitivity analysis

Ay = fo1+ fo2+ +iﬁxn=f1'Ax1+f2'Ax2+...+fn'Axn
5x1 5x2 5xn
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Model order selection

log of Lipschitz quotients

Noisy case

Combined method
of Lipschitz + EIV

X

Lipschitz quotient for noisy data

std=0.01
std=0.05
std=0.1

bibd

std=0.2

3 L
2 1 1 1 1 ]
013 {U.3) {U.4] {05 (ERE)]

model order

Lipschitz-
algorithm

'

Model
creation

Initial
Estimation

Untrained

Neural
Network

Q-v*bﬂ

Y

BP+LS

Comparing
results

Trained
Network

Q.va

BP + EIV

X

| |—> Trained

Network

Lipschitz-
algorithm

A

New
Estimation
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Correlation based model order selection

* Model order 2...4 because of prcatical problems
 Too many input components

e (2...4) * (number of input components +
outputs)

* Too large network

* Too few training data

* The problem of missing data
* Network size: cross-validation
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Modular solution

* More neural modell for the different working
conditions

Processing of special cases
« Depending on the distribution of inputparameters
Cooperative or competitive modular architecture
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Hybrid solution

o Utilization of different forms of information

- measurement, experimental data
- symbolic rules

- mathematical equations, physical knowledge
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The hybrid information system

o Solution:

- integration of measurement information and experimental
knowledge about the process results

e Realization:

- development system - supports the design and testing of
different hybrid models
- advisory system

® hybrid models using the current process state and input
information,

® experiences collected by the rule-base system can be used to
update the model.
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The hybrid-neural system

Information
processing

. No prediction
Oxygen prediction (explanation)

Output expert system
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The hybrid-neural system

Data preprocessing and correction

*

Neural
Model

Data preprocessing

Input data
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The hybrid-neural system

Conditional network running

ot

< - Expert for

NN selectin
NN (] g

Lo [ e a neural
model

Input data

Neural Networks for System Modeling « Gabor Horvath, 2005 Budapest University of Technology and Economics




The hybrid-neural system

Ox. prediction

Output expert

Expert

for Parallel network
............. selecting

......... N running -
model postprocessing

Input data
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The hybrid-neural system

lterative network running

Y

Neural network
running, prediction
making

Result
satisfactor

Modification of input
parameters
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Validation

* Model selection

- Iterative process

- utilization of domain knowledge
* Cross validation

- fresh data
- on-site testing
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Experiences

* The hitrate is increased by + 10%
* Most of the special cases can be handled

* Further rules for handling special cases should
be obtained

* The accuracy of measured data should be
Increased
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Conclusions

* For complex industrial problems all available information
have to be used

* Thinking about NNs as universal modeling devices
alone

* Physical insight is important
* The importance of preprocessing and post-processing

 Modular approach:
- decomposition of the problem
- cooperation and competition
- “experts” using different paradigms
* The hybrid approach to the problem provided better
results
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Summary

* Main questions
* Open questions
* Final conclusions
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Main questions

* Neural modeling: black-box or not?
* When to apply neural approach?

* How to use neural networks?

* The role of prior knowledge

 How to use prior knowledge”?

* How to validate the results?
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Open (partly open) questions

* Model class selection
* Model order selection
« Validation, generalization capability

e Sample size, training set, test set, validation
set

* Missing data, noisy data, few data
« Data consistency
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Final coclusions

* Neural networks are especially important and proper architectures
for (nonlinear) system modelling

* General solutions: NN and fuzzy-neural systems are universal
modeling devices (universal approximators)

« The importance of the theoretical results, theoretical background
« The difficulty of the application of theoretical results in practice
* The role of data base
« The importance of prior information, physical insight
« The importance of preprocessing and post-processing
 Modular approach:

- decomposition of the problem

- cooperation and competition

- “experts” using different paradigms

« Hybrid solutions: combination of rule based, fuzzy, neural,
mathematical
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