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Abstract: the recent technological advances are producing huge data sets in almost all 
fields of scientific research, from astronomy to genetics. Although each research field 
often requires ad-hoc, fine tuned, procedures to properly exploit all the available 
information inherently present in the data, there is an urgent need for a new generation of 
general computational theories and tools capable to boost most human activities of data 
analysis. Traditional data analysis methods, in fact, are inadequate to cope with such 
exponential growth in the data volume and especially in the data complexity (ten or 
hundreds of dimensions of the parameter space). Among the data mining methodologies, 
visualization plays a key role in developing good models for data especially when the 
quantity of data is large. For a scientist, i.e. the expert in a specific domain, is essential 
the need for a visual environment that facilitates exploring high-dimensional data 
dependent on many parameters. Data visualization is an important means of extracting 
useful information from large quantities of raw data. The human eye and brain together 
make a formidable pattern detection tool, but for them to work the data must be 
represented in a low-dimensional space, usually two or three dimensions. Even quite 
simple relationship can seem very obscure when the data is presented in tabular form, but 
are often very easy to see by visual inspection. Many algorithms for data visualization 
have been proposed by both neural computing and statistics communities, most of which 
are based on a projection of the data onto a two or three dimensional visualization space. 
This tutorial embraces a number of these visualization techniques both linear and 
nonlinear: Principal Component Analysis (PCA), Probabilistic PCA (PPCA), Mixture of 
PPCA. PCA, PPCA and mixture of PPCA are appropriate when the data is linear or 
approximately piece-wise linear. An alternative approach is to use global nonlinear 
methods such as  Self Organizing Maps (SOM). However, SOM does not define any 
density model and suffers of other drawbacks which can be overcame employing 
nonlinear latent variable models: Generative Topographic Mapping (GTM) and 
Probabilistic Principal Surfaces (PPS). Finally, the tutorial reviews hierarchical linear 
(based on mixture of PPCA) and nonlinear (based on GTM) latent variable models and 
concludes by illustrating a new proposed hierarchical model based on PPS.
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Transformation

Transformed
Data

Data mining

Pattern

Data

Interpretation

Selection

Target
Data

Preprocessing

Preprocessed
Data

Knowledge

Data mining

KDD Main Steps

Process involved in whatever data-rich field aimed to extract 
meaningful information from data

Intro: Knowledge Discovery in Databases (KDD)
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Intro: KDD and Data Mining

Data Mining is a key step in KDD process 
aimed to find meaningful patterns in the 
data.
Data Mining Methods

Regression
Classification
Clustering
Data Visualization
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Intro: Data Visualization
Visualization plays a key role in developing good models for 
data, especially when the quantity of data is large.

It allows the user to interact with and query the data more
effectively.

It is an important aid in feature selection, gives information
about local deviations in performance and provides a useful

`sanity check' for objective quantitative measures (such as
generalization performance).

It plays an important role in the search for clusters of similar
data points, which are most easily determined by eye.

The quantity and complexity of many datasets means that
simple visualization methods, such as Principal Component
Analysis, are not very effective.
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Intro: sample data set

GOODS Catalog (7 optical bands: U,B,V,R,I,J,K)
28405 sources (WFI+SOFI)
21 parameters (Magnitude, Kron Radius, Flux, for each 
band)
24872 “drop outs”

Sources labeled as Star, Galaxy, DStar (Dropped 
Star) and DGalaxy (Dropped Galaxy)

The Great Observatories Origins Deep Survey (or GOODS) is an international project 
which joins together NASA, ESA (European Space Agency) and some of the most 
powerful ground-based facilities, to survey the distant universe to the faintest flux limits 
across the broadest range of wavelengths. At the end of the project, GOODS will survey 
a total of roughly 320 square arcminutes in two fields centered on the Hubble1 Deep 
Field North and the Chandra2 Deep Field South, respectively. The GOODS catalogue 
used in this tutorial is composed by 28405 objects. Each object has been measured in 7 
optical bands, namely U,B,V,R,I,J,K bands. For each band 3 different parameters, 
geometric (Kron radius) and photometric (Flux and Magnitudes) were measured, adding 
up to 21 parameters for each object in the catalogue. Objects are classified as angularly 
resolved (or galaxies, in the astronomical jargon) and non resolved (stars). Moreover, 
GOODS (and more in general astronomical surveys) data present a further peculiarity: 
the majority of the objects are "drop outs", id est they are detected only in some bands 
and not detected in the others due to either instrumental (different detection limits) or 
intrinsic (different spectral properties) reasons. Without entering into details we must 
stress that the characterization of an object as a "dropout" (id est as an object with a 
strong relative flux difference between two or more spectral regions) is very important 
from the astronomical point of view since it allows to discriminate among different 
classes of celestial objects. From our statistical clustering point of view, therefore, the 
data set contains four classes of objects, namely stars, galaxies, stars which are drop outs 
and galaxies which are drop outs (at this stage, we do not take into account the number of 
bands for which an object is a drop out).

1 Hubble Space Telescope
2 Satellite for X-ray Surveys
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Traditional Visualization Methods 
Scatter Plots

Scatter Plot: simple plot of one variable against 
another. 
Scatter Plot Matrix: matrix of scatter plots 
showing the relationship between several pairs 
of variables.
Useful for determining whether the values of two 
variables or the relationship between those 
variables is the same.
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Scatter plot: example



9

9IJCNN 2005 Tutorial, Montréal, August 2

Scatter plots results less useful:

for very high dimensional data

the relations between variables are very complex and 
hard to interpret

Relations only between pairs of features

Traditional Visualization Methods 
Scatter Plots
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Traditional Visualization Methods 
Principal Component Analysis (PCA)

A classical linear projection method that preserves as much data
variance as possible. Fast and easy to compute.

Suppose that we are trying to map a dataset of vectors xn for
n = 1,…, N in V = RD to vectors zn in U = RQ , a subspace of V.
The quality of the approximation is measured by the residual
sum-of-squares error

where Σ is the covariance matrix of the data.

The minimal error is achieved by projecting the data into the space 
spanned by the eigenvectors corresponding to the largest Q
eigenvalues.
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For a comprehensive review please refer to:
Bishop, C. M., Neural Networks for Pattern Recognition, Oxford: Clarendon Press, 
1995



11

11IJCNN 2005 Tutorial, Montréal, August 2

PCA 2D illustration: In a linear projection down to one dimension, the 
optimum choice of projection, in sense of minimizing the sum of squares 
error, is obtained by first subtracting off the mean    of the data set, and 
then projecting the data into the first eigenvector u1 of the covariance 
matrix.

Traditional Visualization Methods
PCA

x
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PCA: 2D example

As the figure suggests, high nonlinear complex data can not be effectively characterized 
by linear PCA and …
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PCA: 3D example

… the 3D representation can not help us more than the 2D plots!!!
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Unable to capture the nonlinear nature of 
data.

Inadequate to characterize strong 
overlapping data.

Not effective for complex data 
visualization.

Traditional Visualization Methods 
PCA
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Latent Variable Models (1)
Goal: to express the distribution p(t) of the variable 
t=(t1,…,tD) in terms of a smaller number of latent 
variables x=(x1,…,xQ), Q<D.
How: by expressing the joint distribution

(1)

p(x) ≡ marginal distribution of the latent variables
p(t|x) ≡ conditional distribution of the data variables given the latent 

variables

∏
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The idea behind latent variable models is to have a sound probabilistic model describing 
the generative process underlying a set of user data points. This model is expressed in 
terms of two spaces: the original data space and an auxiliary space, called latent space, 
which needs to be of lower dimension. This latter issue can be useful exploited for 
visualization purpose if one chooses a latent space of  2 or at most 3 dimensions. Here we 
provide a theoretical review of latent variables defining the way the model can be 
probabilistically defined and giving details about the link between the latent space and 
the original data space. 
A complete review of latent variable models can be found in:
Bishop, C. M., Latent variable models. In M. I. Jordan (Ed.), Learning in Graphical 
Models, pp. 371–403. MIT Press, 1999. 
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Latent Variable Models (2)

p(t|x) is expressed in terms of a mapping from latent 
variables to data variables, so that

y(x,W) is a  function of the latent variable x with 
parameters W; u is an x-independent noise process.

If the components of u are uncorrelated, the 
conditional distribution for t will factorize as in (1).

uWxt += ),(y
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Latent Variable Models (3)
The definition of the model is completed by specifying 
y(x,W) and p(x). y(x,W) determines the type of the latent 
variable model: 

A linear y implies a linear latent variable model;
A nonlinear y implies a nonlinear latent variable model.

By margilizing over the latent variables, we obtain 

The integral is analytically intractable, except for specific 
forms of the distributions p(t|x) and p(x).

∫= xxxtt dppp )()/()(
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Linear latent variable models 
Probabilistic PCA (PPCA)

Classical PCA is made into a density model by using a 
latent variable approach, derived from factor analysis, in 
which the data t is generated by a linear combination of 
a number of hidden variables x:

t=Wx+µ+u

where x has a zero mean, unit isotropic variance, 
Gaussain distribution N(0,I), µ is constant and u is a t-
independent noise process

Refer to:
M. E. Tipping, C. M. Bishop, Probabilistic principal component analysis, Journal of 
the Royal Statistical Society, Series B 21(3), 611–622 , 1999.
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The probability model for PPCA is written as a combination of the conditional 
distribution

and the latent variable distribution

By integrating out the latent variable x, we obtain the marginal distribution of 
the input data points, which is also Gaussian: x~N(µ,C), with C=WWT+σ2I.

This model represents the data as consisting of a lower dimensional linear 
subspace surrounded by equal noise in all directions.

The parameters of the distribution, W and σ can be computed by an iterative 
maximization of the log-likelihood function through the EM algorithm.
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The input data points are plotted, in the latent space, by 
using the posterior distribution of the latent variable x
given the observed data t. By using the Bayes’ theorem, 
we obtain the distribution

p(x/t)~N(M-1WT(t-µ),σ2M-1), 

where M=WTW+ σ2I (whose dimensions are QxQ).

In order to map t to a single point in the latent space, the 
mean of the posterior distribution M-1WT(t-µ) is 
computed.

Linear latent variable models 
PPCA
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Linear latent variable models 
Mixture of PPCA

PCA is a rather limited technique since it only defines a linear
projection of data.

An alternative approach is to model a complex nonlinear 
structure by a collection of local linear models.

A major advantage of developing a probabilistic formulation 
of PCA is that we can formalize the idea of a collection of 
models as a mixture of PPCA:

It is straightforward to obtain an EM algorithm to determine 
the parameters of the mixture.
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M
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Refer to:
M. E. Tipping, C. M. Bishop, Mixtures of probabilistic principal component 
analyzers, Neural Computation 11(2), 443–482, 1999. 
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However, the mixture of PPCA model is appropriate 
when the data is approximately piece-wise linear.

Linear latent variable models 
Mixture of PPCA
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A SOM is composed by neurons located on a regular 1 or        
2-dimensional grid.

Each neuron i of the SOM is represented by a n-
dimensional  weight or reference vector : 

][ T
inii mmm ,...,1= n = dimension of input vectors

SOM is based on an unsupervised competitive learning (training 
is entirely data-driven and the neurons compete with each 
other).

Neurons are connected to adjacent ones by a neighbourhood  
relation dictating the topology of the map.

Global nonlinear models 
Self-Organizing Maps (SOM)

PCA, PPCA and mixture of PPCA are appropriate when the data is linear or 
approximately piece-wise linear. An alternative approach is to use global nonlinear 
methods: Self Organizing Maps (SOM), a neural network algorithm based on a 
competitive learning which summarizes a set of data vectors in a high-dimensional space 
by a set of reference vectors organized on a lower dimensional sheet (usually two 
dimensional). SOM has been used for a wide variety of applications thanks to its 
simplicity and for its several plotting options. 
For theoretical details refer to:
S. Kaski, Data Exploration Using Self Organizing Maps, PhD Thesis, Helsinki 
Institute of Technology, 1997.
T. Kohonen, Self Organizing Maps, Springer, Berlin, Heidelberg, 1995.
J. Vesanto, SOM-Based Data Visualization Methods, Intelligent Data Analysis Journal, 
1999.
For details concerning with application to astrophysical data, refer to:
R. Tagliaferri R., G. Longo, A. Staiano A. et al., Neural Networks in Astronomy, in 
Neural Networks. Special Issue on Neural networks for analysis of complex scientific 
data: Astronomy and Geosciences, R. Tagliaferri, G. Longo, D'Argenio B. (Eds.), vol. 16 
(3- 4), 2003.
R. Tagliaferri R., G. Longo, A. Staiano et al., Applications of Neural Networks in 
Astronomy and Astroparticle Physics, invited review on "Recent Research 
developments in Astronomy and Astrophysics", 2 (2005), pp.27-58, by Research 
Signpost.
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Training: based on Competitive Learning 
(not only the most similar prototype vector, but also its neighbors on the 
map are moved towards the data vector).

In each training step, one sample vector t, from the input data set, is 
chosen and a similarity measure is calculated between it and all the weight 
vectors of the map.

The Best-Matching Unit (BMU) is the unit whose weight vector has the 
greatest similarity with the input sample t.

Global nonlinear models 
SOM

in the 2D dimensional 
case, the neurons of the 
map can be arranged 
either on a rectangular or a 
hexagonal lattice.



25

25IJCNN 2005 Tutorial, Montréal, August 2

U-Matrix (Unified distance matrix) 

Visualizes the clustering structures of the SOM as 
distances (in the assumed metric) between 
neighboring map units, thus high values of the U-
matrix indicate a cluster border, uniform areas of 
low values indicate clusters themselves.

Global nonlinear models 
SOM
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SOM: U-Matrix

Regions of   low
values (blue color)
represent clusters 
themselves

Regions of high values
(red color) represent
cluster borders
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SOM: Parameter Analysis

For each input parameter the corresponding map structure is computed. In this way the 
relation between the input parameters can be analyzed. If one or more input parameters 
lead to the same map structure this could mean that the parameters are redundant and so 
some of them could be removed.
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SOM parameter influence: pie charts and …

This graphical representation allows to derive the influence of each input parameter on 
each neuron of the map…
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… bar charts

…the same kind of graphical representation in another fashion. These kind of 
visualizations allow to derive the importance of each parameter in order to characterize 
the input data points. Eventually one could exploits this knowledge for parameter 
selection.
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Advantages

The SOM algorithm is quick in convergence.
It is good in pre-analysis.
In many problems it is good enough.

Limitations

The SOM algorithm is not derived by optimizing an 
objective function.
SOM does not define a density model.
Neighbourhood preservation is not guaranteed by the 
SOM procedure.

Global nonlinear models 
SOM

Although SOM provides easy of computation and powerful visualizations it, indeed, does 
not define any density model and suffers of other drawbacks which can be overcame 
employing nonlinear latent variable models…
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GTM is a latent variable model with a non-linear function 
y, mapping a (usually two dimensional) latent space Q to 
the data space D. This is a generative probabilistic 
model.

For the purpose of data visualization, the Bayes' theorem 
is used to invert the transformation y.

This model assumes that the data lies close to a two 
dimensional manifold; however, this is likely to be a too 
simple model for interesting data.

Nonlinear latent variable models 
Generative Topographic Mapping (GTM)

Refer to:

C. M. Bishop, M. Svensèn, C. K. I. Williams, GTM: the Generative Topographic 
Mapping, Neural Computation 10(1), 215–234, 1998. 

For details concerning with application to astrophysical data, refer to:
R. Tagliaferri R., G. Longo, A. Staiano A. et al., Neural Networks in Astronomy, in 
Neural Networks. Special Issue on Neural networks for analysis of complex scientific 
data: Astronomy and Geosciences, R. Tagliaferri, G. Longo, D'Argenio B. (Eds.), vol. 16 
(3- 4), 2003.
R. Tagliaferri R., G. Longo, A. Staiano et al., Applications of Neural Networks in 
Astronomy and Astroparticle Physics, invited review on "Recent Research 
developments in Astronomy and Astrophysics", 2 (2005), pp.27-58, by Research 
Signpost.
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Goal: to express the distribution p(t) of the variable t=(t1,…,tD), in terms of a 
smaller number of latent variables x=(x1,…,xQ), Q<D. The link between the 
latent and data spaces is obtained by the nonlinear function y(x,w).

• RBF Neural Network 
• Generalized Linear         

Regression Model
The data is modeled as a constrained mixture of Gaussians with unoriented
COVARIANCE. The latent variable model can be trained using an EM algorithm
that is a generalization of the standard EM for (unconstrained) Gaussian 
mixtures.

Nonlinear latent variable models 
GTM
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Defining a probability distribution over the 
latent space, p(x), will induce a 
corresponding probability distribution in 
the data space:

t point in data space
β -1 noise variance
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Nonlinear latent variable models 
GTM
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By integrating out the latent variable, we get

which is intractable, but choosing p(x) as a set of M 
equally weighted delta functions on a regular grid, i.e.

the integral turns into a sum

,)(),,|(),|( xxWxtWt dppp ∫= ββ
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Nonlinear latent variable models 
GTM

(2)
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Equation (2) defines a constrained mixture of 
Gaussians in which:

the centers of the mixture components can not move 
independently of each other;

depends on the mapping y(x;W);

all components of the mixture share the same 
variance, and the mixing coefficients are all fixed to 
1/M.

Nonlinear latent variable models 
GTM



36

36IJCNN 2005 Tutorial, Montréal, August 2

GTM: topographic ordering

Provided the mapping function y(x;W) is 
smooth and continuous, any two points xA
and xB, which are close in the latent space, 
will map to points y(xA;W) and y(xB;W)
which are close in the data space.

Nonlinear latent variable models 
GTM
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GTM visualization (1)

A trained GTM defines a probability distribution 
p(t|xm), m=1,…,M.
We can compute the corresponding posterior 
distribution in latent space for any given point in 
data space t, as
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Nonlinear latent variable models
GTM
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GTM visualization (2)

To visualize whole sets of data, two possibilities are, for 
each data point tn, to plot:

The mode of the posterior distribution in latent space,

The mean of the posterior distribution

),|(maxarg nmmd
n pm txx x=

∑
=

=
M

m
nmm

mean
n p

1
)|( txxx

Nonlinear latent variable models
GTM

posterior-mode projection

posterior-mean projection
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GTM: latent space visualization

Two-dimension latent space with input data point projections.
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Magnification Factors

We can measure the stretch in the manifold 
using magnification factors, and this can be used 
to detect the gaps between data clusters.
More stretched areas indicate gaps between 
clusters, conversely less stretched areas 
correspond to regions of high density (clusters).

Nonlinear latent variable models 
GTM
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GTM: Magnification Factors

High stretch

Low stretch
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PPS=GTM+oriented covariance

0<α<D/Q

{eq(x)}q=1,…,Q set of orthonormal vectors tangential to the 
manifold at y(x;W)
{ed(x)}d=Q+1,…,D set of orthonormal vectors orthogonal to the 
manifold at y(x;W)
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Nonlinear latent variable models
Probabilistic Principal Surfaces (PPS)

Probabilistic Principal Surfaces are a non linear latent variable model with very powerful 
visualization and classification capabilities which seem capable to overcome most of the 
shortcomings of other neural tools such as SOM, GTM, etc. PPS generalizes the GTM 
model by building a unified model and shares the same formulation as the GTM, except 
for an oriented covariance structure for the Gaussian mixture in the data space. This 
means that data points projecting near a principal surface node (i.e., a Gaussian center of 
the mixture) have higher influences on that node than points projecting far away from it. 
Particularly interesting is the case in which the latent space is 3 dimensional which 
allows to project the patters on a spherical manifold (of unit radius) which turns out to be 
optimal when dealing with sparse data. 

For theoretical details refer to:
K. Chang,  Nonlinear Dimensionality Reduction Using Probabilistic Principal
Surfaces, PhD thesis, The University of Texas at Austin, USA, 2000
K. Chang, J. Ghosh,  A unified model for probabilistic principal surfaces, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 23, (1), 2001

For details concerning application to astrophysics and both visualization enhancement 
and classification refer to:
A. Staiano, Unsupervised Neural Networks for the Extraction of Scientific 
Information from Astronomical Data, PhD thesis, Università di Salerno, Italy, 2003.
A. Staiano, R. Tagliaferri, G. Longo, P. Benvenuti, Committee of Spherical 
Probabilistic Principal Surfaces, Proceedings of IJCNN 2004.
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Under a spherical Gaussian model of the GTM, points 1 and 2 have equal 
influence on the center node y(x) (a) PPS have an oriented covariance 
matrix so point 1 is probabilistically closer to the center node y(x) than point 
2 (b)

Nonlinear latent variable models
PPS

Why oriented covariance?

The figure is taken from K. Chang,  Nonlinear Dimensionality Reduction Using 
Probabilistic Principal Surfaces, PhD thesis, The University of Texas at Austin, USA, 
2000.
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Unified model

The unified PPS model reduces to GTM for α=1 
and to the manifold –aligned GTM for α>1

0<α<1 ┴ to the manifold

α=1 ID or spherical

1< α< D/Q ║ to the manifold

Σ(x)=

Nonlinear latent variable models
PPS
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Training algorithm

Based on a generalized EM for parameters W, 
α, β,

Computationally more complex than GTM, but ...

Faster convergence!

Nonlinear latent variable models
PPS
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Spherical PPS

Manifold composed by nodes regularly arranged 
on the surface of a sphere in 3D space (Q=3)

Use manifold as a classification reference 
template

Use projections for visualizations

Nonlinear latent variable models
PPS
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Spherical PPS: example

(a) The spherical manifold in R3 latent space.  
(b) The spherical manifold in R3 data space.   
(c) Projection of data point t onto the latent spherical manifold.

Nonlinear latent variable models
PPS

The figure is taken from K. Chang,  Nonlinear Dimensionality Reduction Using 
Probabilistic Principal Surfaces, PhD thesis, The University of Texas at Austin, USA, 
2000.
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Spherical PPS visualization (1)

A spherical manifold is first fitted to the data.

The data is projected into the manifold in R3.

The projected locations are plotted into R3 as 
points on a sphere.

Nonlinear latent variable models
PPS
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Spherical PPS visualization (2)

Probabilistic Projection: the projected latent coordinate is computed 
as a linear combination of all latent nodes weighted by the 
responsibility matrix,

Since ||xm||=1 for m=1,…,M and Σmrmn=1 for n=1,…,N,   all 
projections lie within the sphere, i.e. ||xm||≤1 and

rmn is the responsibility of latent variable xm with respect to data point 
tn
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Nonlinear latent variable models
PPS
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Spherical PPS: graphical user interface

We built a graphical user interface which extends 
the visualization possibilities offered by PPS:

Visualization on the sphere surface;
Possibility to interact with points on the sphere;
Visualization of the data probability density function on 
the sphere;
Cluster determination and visualization.

Nonlinear latent variable models
PPS

Refer to:
A. Staiano, Unsupervised Neural Networks for the Extraction of Scientific 
Information from Astronomical Data, PhD thesis, Università di Salerno, Italy, 2003.
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PPS
Latent Projections

A latent spherical manifold with data points probabilistic projections.
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The user is allowed to:

Visualize latent variables on the sphere;

Select a chosen latent variable and color that variable 
and all the data points for which it is responsible 
and vice versa;

For each data point compute its coordinates, 
confidence level and the index of the corresponding 
source in the catalog space; 

Create a report of all the information deriving from the 
previous operations.

PPS
GUI: User-Data Interaction
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PPS
GUI: User-Data Interaction

Latent spherical manifold with data points projections (black dots), and latent variables 
(cyan bigger dots) superimposed. The user is allowed to:
1)select a data point and color the latent variable which is responsible for it and the 
remaining points for which the same latent variable is responsible. 
2)select a latent variable and color the latent variable and all the points for which it is 
responsible. 
All the points belonging to the same latent variable share some similarity property.
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PPS
Density in latent space

GOODS Catalog

Class Star: 421 Sources

Latent spherical manifold with probability density function superimposed. The red areas 
are zones with higher probabilities.
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PPS
Density in latent space

GOODS Catalog

Class Galaxy: 3112
Sources
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GOODS Catalog

Class DStar: 473
Sources

PPS
Density in latent space
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GOODS Catalog

Class DGalaxy: 24399
S.

PPS
Density in latent space
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PPS
Clusters computation and visualization
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PPS
Clusters computation and visualization
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Hierarchies of latent variable models
Overview

Most of the visualization algorithms described so far, 
project the data onto a two-dimensional visualization 
space...

But a single two-dimensional projection, even if 
nonlinear, may not be sufficient to capture all of the 
interesting aspects of the data.

This intuition is behind the hierarchical development of a 
linear latent variable model, namely mixture of PPCA, 
and the nonlinear counterpart based on the GTM. 
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When exploring a data set through low-dimensional 
projections in a hierarchical way, one first constructs a top-
level plot and then focuses the attention on local region of 
interest by recursively building the corresponding sub-
projections.

The regions of interest are chosen interactively by the user 
which clicks on those areas considered as particularly 
complex and thus hiding potential substructure not visible at 
a first glance.

All the models in the hierarchy are organized in a tree and 
need to be a consistent probabilistic model of the data.

Hierarchies of latent variable models
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From a technical point of view,  it is necessary to derive 
the hierarchical version of the EM algorithm in order to 
make the hierarchy of sub-models a consistent 
probabilistic model as a whole.

A further appealing possibility offered by the hierarchical 
versions of the latent variable models, is that if the base 
model provides special kind of plots then all the 
visualization power of these plots can be exploited at any 
level of the hierarchy.

Hierarchies of latent variable models
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Hierarchies of latent variable models
Example: hierarchical linear model (PPCA)

Refer to:
C. M. Bishop, M. E. Tipping, A hierarchical latent variable model for data 
visualization, IEEE Transactions on Pattern Analysis and Machine Intelligence 20(3), 
281–293, 1998.
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Hierarchies of latent variable models
Example: hierarchical nonlinear model (HGTM)

Refer to:
P.Tino, I. Nabney, Hierarchical GTM: constructing localized nonlinear projection 
manifolds in a principled way, Pattern Analysis and Machine Intelligence, IEEE 
Transactions on ,Volume: 24 , Issue: 5 , May 2002, Pages:639 - 656
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Hierarchical models: linear vs nonlinear

Allowing for non linearity in the projection manifolds lead to 
create more detailed and parsimonious visualization plots.

While PCA can introduce, in the visualization plot, only global 
stretching along the principal axes, the nonlinear projection 
manifold of GTM can locally stretch and fold in the data 
space.

This gives the possibility to the hierarchical GTM to make full 
use of the latent space when describing the local distributions 
of points.

On the contrary, the PPCA-based linear hierarchy, provides 
plots often characterized by dense isolated clusters. 
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Obviously the hierarchical extension may be applied to 
PPS as well. 

The power and the variety of PPS visualization plots can 
be fully exploited by developing a hierarchical PPS 
model in the HGTM fashion.

We are currently implementing the HPPS model so the 
work is still in progress…

…however, we provided a second hierarchical view of 
PPS…

Hierarchies of latent variable models
PPS
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PPS: hierarchical agglomeration
PPS can be used in conjunction with a type of 
hierarchical agglomerative clustering for the construction 
of a powerful visualization-clustering tool.

The idea is to start with the probability density function 
computed by PPS and then applying a hierarchical 
clustering which merges the Gaussian components of 
the mixture model.

This task could be accomplished by any clustering 
algorithm (eventually even not hierarchical as k-means), 
but…
… we developed a special kind of clustering algorithm 
mainly able to find autonomously the correct number of 
clusters.
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Neg-entropy based Clustering 
(NEC)

Starting from the PPS density function its Gaussian 
components can be clustered using information based on 
entropy.

Several approaches have been introduced based on the 
hypothesis test or Kullback-Leibler divergence. 

We introduced an approach based on the Neg-entropy.

The algorithm permits to agglomerate automatically the 
clusters using non-Gaussianity information.

Refer to:
A. Ciaramella, A. Staiano, R. Tagliaferri, G. Longo,  NEC: an Hierarchical 
Agglomerative Clustering based on Fischer and Negentropy Information, 
Proceedings of WIRN 2005, (LNCS Springer volume, to appear)
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Neg-entropy is based on the information-theoretic 
quantity of differential entropy.

It is used to obtain a measure of non-Gaussianity that is 
zero for a Gaussian variable:

where tGauss is a Gaussian random variable of the same 
correlation (and covariance) matrix as t.

Neg-entropy is always non-negative and it is zero if and 
only if t has a Gaussian distribution

)()()( ttt Gauss HHJ −=

NEC
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The classical method to approximate neg-entropy is using high-order 
cumulants

where kurt is the kurtosis.

A different and more robust approximation of the neg-entropy is

where υ is a standardized Gaussian variable and t has zero mean and 
unit variance.

Choosing a G that does not grow fast, one obtains more robust  
estimators. The following choices of G have proved very useful:
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NEC: approximate neg-entropy
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Starts from M clusters (one for each PPS 
mixture component);
Agglomerates two components, i and j: 
– if the new cluster candidate Neg-entropy 

value is less of a fixed threshold 
• then i U j replaces clusters i and j. i U j becomes 

cluster i and j=j+1;
• else j=j+1

– the steps are repeated until all the     
components are processed

Ends with the final number of clusters.

NEC: algorithm
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NEC: Gaussians not merged by the 
algorithm

NegE=750
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NEC: two merged Gaussian 
distributions

NegE=4
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NEC: search for structures in the data
plateau’s

Using the threshold 
we can study the 
structure of the data 
focusing our 
attention on the 
stable points
(plateau’s)

Obviously, the threshold used in the algorithm determines the clustering results one 
obtains. An interesting approach we can use here, however, is to exploit an interval of 
values for the threshold in order to study the substructures hidden in the data. The idea is 
to have a plot of the threshold values vs the number of corresponding clusters that the 
algorithm returns and to focus the attention on those threshold values which correspond 
to plateau’s in the plot: these, in fact, reveal a substructure which is a stable configuration 
of the clustering structure. These approach is especially useful when the user has no a 
priori information at all about the data under investigation.
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P. T. Spellman et al., Comprehensive Identification of Cell 
Cycle-regulated Genes of the Yeast Saccharomyces
cerevisiae by Microarray Hybridization, Molecular Biology 
of the Cell, Vol. 9, 3273-3297, December, 1998
6178 genes each one subject to 6 experiments:
– cln3
– clb2
– alpha factor arrest
– cdc15 temperature-sensitive mutant 
– cdc28
– elutriation

73 features associate to each gene. After a preprocessing 
phase the features were reduced to 32.

Case Study
Yeast Gene Microarray Data

Refer to:
R. Amato, A. Ciaramella, A. Staiano, R. Tagliaferri, G. Longo, et al., NEC for Gene 
Expression Analysis, Second International Meeting on Computational Intelligence 
Methods For Bioinformatics and Biostatistics, Crema, Italy, 2005
A. Staiano, A. Ciaramella, G. Raiconi, R. Tagliaferri et al., Data Visualization 
Methodologies for Data Mining Systems in Bioinformatics, Proceedings of  IJCNN 
2005, special session on Neural Networks Applications in Bioinformatics, Montreal 
(Canada), 2005
A. Staiano, L. De Vinco, R. Tagliaferri, G. Longo et al., Probabilistic Principal 
Surfaces for Yeast Gene Microarray Data Mining, Proceedings of the Fourth IEEE 
International Conference on Data Mining: ICDM 2004, pp. 202-209, Brighton, UK, 2004
A. Staiano, R. Tagliaferri, G. Longo et al., Novel Techniques for Microarray Data 
Analysis: Probabilistic Principal Surfaces and Competitive Evolution on Data, 
Journal of Computational and Theoretical Nanoscience, Special Issue on Computational 
Intelligence for Molecular Biology and Bioinformatics, in print.
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Case Study
Computational Steps

2. DATA MINING: 3D Spherical PPS3D Spherical PPS
and and ClusteringClustering

1. PREPROCESSING: Noise EstimationNoise Estimation
MethodMethod and Nonlinear PCANonlinear PCA
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The genes behaviour is periodic. The period is the 
cell cycle.

This implies that a gene behaviour, sampled for two 
cell cycles, can be considered as two measurements 
of the same thing.

This can be used to obtain an estimation for the 
uncertainty of the measurement.

Case Study
Gene Noise Estimation Method



78

78IJCNN 2005 Tutorial, Montréal, August 2

Cell cycle  duration, i.e. period, depends on some 
parameters such as temperature, nutrient source, 
density of cells and so on (for our  experiments, 
periods were in the limits 90 ± 11 min).

To find the exact period length of each experiment we 
divided the gene time series in two parts and searched 
for (moving the cutting point in the interval 90 ± 11) the 
point of best correlation between the two parts.

Case Study
Gene Noise Estimation Method
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Once obtained the period length, we have computed      
the noise/signal ratio of each gene, considering:

the difference between the two periods of each gene as 
an estimation of its noise;

the mean of the two periods as the “real” signal of the 
gene.

This value was used to exclude too noisy genes.

This estimation is accomplished independently for  
each experiment.

Case Study
Gene Noise Estimation Method
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90 t

c

Consider a generic gene signal over an experiment

Case Study
Gene Noise Estimation Method

Gene expression signal vs time
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90 t

c

90 t

r

We estimate the 
signal time period

Case Study
Gene Noise Estimation Method

A time window (about 90 min) runs over the signal and the correlation 
coefficient between the two curve pieces is computed.  
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Case Study: Gene Noise Estimation Method
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Case Study
Gene Noise Estimation Method
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Case Study
Gene Noise Estimation Method
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90 t

r Best correlation
point

90

c

Case Study
Gene Noise Estimation Method

The best correlation point is set as time period.
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90 t

c

The signals (before and after the cutting point) are superimposed: the average 
between them it’s the “true” signal. The difference is our estimate of the noise

Case Study
Gene Noise Estimation Method

… the two curve pieces are overlapped. Afterwards, their semi difference 
represents the noise amplitude.
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Noise to signal plot in the experiment CDC15. In red are represented the genes of the  
whole data set while in cyan are the genes used by Spellman et al. This preprocessing 
step is consistent with the results obtained by Spellman.
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Case Study
Preprocessing (nonlinear PCA)

The data of the experiments are unevenly 
sampled;  

To extract the features from the experiments we 
apply a non-linear Principal Component 
Analysis; 

In details, we apply for each experiment the non-
linear PCA to extract the components (1 in our 
case) to obtain the features. 

Refer to:
Tagliaferri R., Ciaramella A., Milano L., Barone F., Longo G., Spectral analysis of 
stellar light curves by means of neural networks, Astronomy and Astrophysics 
Supplement Series, 137:391--405, 1999.
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Case Study
3D PCA of Yeast Gene Microarray Data
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It is clear that a method based on PCA gives no visual information at all since the high 
nonlinearity of the genetic data, therefore…
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Case Study
PPS: data point projections

…we recall to spherical PPS. As it is clear from the figure here the data points become 
more sparse and several little groups are visible bye eye.
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Case Study
PPS: probability density function (pdf)

Further studies concerning with the probability density function reveal the presence of 
several groupings which need to be detailed.
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Case Study
PPS: pdf and data point projections
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Substructures in the Yeast Gene Data

Initializing the NEC algorithm with the PPS previously trained, we studied the threshold 
values in the interval  [0,20]. Zooming on the upper subfigure some little plateaus 
appear: we decided to investigate on the plateau corresponding to 56 clusters.
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Case Study: PPS+NEC results

For each cluster the prototype behavior is computed and plotted with the corresponding 
error bars. In each sub plot the behavior of each of the 4 experiment is shown (each 
experiment is identified by the vertical lines). Furthermore, the numbers on the top of 
each plot represent the cluster number and the number of its elements, respectively.
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Case Study: PPS+NEC results
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Case Study: PPS+NEC results

Looking at the prototypes it is possible to discriminate between meaningful clusters (the 
ones with a regular periodic behavior) from the “noisy” ones (the ones with a constant 
behavior).
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Case Study
PPS+NEC Results

Front view Back view

P-Value: 8x10-7

P-Value: 2x10-3

P-Value: 1.5x10-9

So, let’s take a look on some significant clusters: they are very well separated and the 
corresponding points are not very spread on the sphere surface. The p-value computation 
confirms the importance of the discovered clusters.
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Cluster Comparisons
Rows: PPS Clusters
Col: Spellman Clusters

ij-th entry: 
fraction of Spellman’s 
cluster j falling in the 
PPS cluster i

The table illustrates a comparison between the 8 clusters computed by Spellman et al. 
and the 56 clusters found by PPS+NEC. While some clusters share some genes and is 
evident that some Spellman clusters are divided in two (see, as an example, PPS+NEC 
clusters 23 and 24 which contains Spellman cluster 2 and that are very similar) or more 
PPS+NEC clusters, there are other PPS+NEC meaningful clusters (high p-value) which 
do not contain any Spellman genes. As an example look at PPS+NEC cluster 49…
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P-Value: 1.6 x 10-21

Case Study
Cluster 49…
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Case Study
Cluster 23

29 genes;
p-value = 8x10-7;
48,98% intersection with Spellman CLN2 cluster;
– Most of these genes are strongly cell-cycle regulated, 

peak expression occurs in mid–G1 phase;
– strongly induced by GAL-CLN3 but are strongly 

repressed by GAL-CLB2;
– All these genes are involved in DNA replication;

The rest of cluster contains some genes with  unknown 
functions.

Here are some biological motivation of cluster 23. The same interesting studies have 
been done on other meaningful clusters (such as  cluster 49).
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Conclusions

Visualization is an important tool in data 
mining applications for all types of user.

The domain expert must be involved in the 
process.

Interaction with the plots allows the user to 
query the data more effectively.
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Conclusions (2)
Spherical PPS exhibits a number of attractive abilities for 
classification (not treated here) and visualization of high-
D data.

The spherical manifold is able to better characterize and 
represent the periphery and the sparsity of high-D data 
due to  the curse of dimensionality.

Overcome border effects as in rectangular manifold 
(GTM) and grid (SOM).
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Conclusions (3)
We built a graphical user interface which allows to 
interact with the data projected on a unit sphere 
surface.

A user is allowed to
Interact with data by selecting points on the latent 
manifold retrieving the corresponding source in the 
original catalog.

The user is able to localize clusters of data on the 
sphere which correspond to clusters of similar data in 
the input space.

Useful for data mining in whatever data rich field.
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