
 



 
 
ABSTRACT: Neural nets are used in a growing variety of real-world applications, in a 
growing number of areas (including the modeling otural intelligence). But this has been a 
mixed blessing, as various subcultures have not kept up with each other. For example, at 
http://www.eas.asu.edu/~nsfadp/ applications of adaptive dynamic programming (aka 
advanced reinforcement learning) are reported whi beat the previous best performance in 
electric power grid control, aircraft control, in large-scale logistics, etc. --but best 
performance requires integrating concepts from many subcultures. Yet in some subcultures, 
people are still using "mappings from sensory to motor coordinates" (direct adaptive control), 
whose limits were clear years ago. Some are using indirect methods inspired by control 
theory with well-known stability theorems --theorems whose conditions are rarely satisfied, 
and methods which are easily improved upon. Similarly, in prediction, some subcultures 
falsely believe that recurrent networks are hard to train and of marginal benefit, even as 
people in industry u em routinely, and report performance better than extended Kalman 
filters and equal (at lower cost) to elaborate particle filter methods. e foundations of learning 
also bear on the practical choices. This tutorial will try to offer a kind of practical roadmap of 
these issues, and suggest how it points towards future functionality in tasks as large-scale as 
what brains can handle.  
As neural networks have been used in more and more fields, more and more courses have 
been taught from the viewpoint of other fields, such as AI, statistics, biology or control 
theory. This is good in a way, but it often doesn’t tell people what the neural network field is 
really about.  This tutorial will begin by discussing the core vision of the neural network field, 
which is still a revolutionary new paradigm and has yet to achieve full understanding from 
the mainstream. It will then go into depth into the best state-of-the-art tools for predictions 
(including diagnostics) and control or decision-making or management of large systems – 
including a discussion of the pathway for how to get to systems which replicate the kind of 
higher-level intelligence we see in mammalians brains.  
Some related slides (with Notes) are posted at www.eas.asu.edu/~nsfadp and at 
www.iamcm.org/~publications, and various URLS herein. Please forgive the informality of 
these notes, which reflect no official views and are tentative, oversimplified, etc.  



 

Today, I will really be talking about three things -the basic vision of the neural network field, 
-common pitfalls in the field and opportunities to get better results in practical applications 
-how to scale up to handling LARGER problems, in particular – problems like optimal 
management of large-scale power grids. Many people in engineering feel uncomfortable 
talking about broader goals and vision. Sometimes engineers even feel uncomfortable talking 
to the head of a factory, when the factory director tells them what he really needs. But the fact 
is that we all need to have a sense of goals and directions, or we can get lost. There has been 
a lot of confusion lately about neural networks and what they are, as people have sometimes 
forgotten the fundamental goals and principles of the field. But don’t worry, I also have some 
specific equations to point you towards. Almost never will I show 100 equations in a talk… 
but you can find a lot more than that if you follow up on some the citations I will give you. 
When I start talking about “what is a neural network” and “what this field is about,” let’s face 
up to the fact that there are really three DIFFERENT definitions of what the neural network 
field is about. All three are legitimate in their own way, and we are lucky that they are 
reasonably consistent with each other in practice. Some people define artificial neural 
networks (ANNs) as a collection of tools available off-the-shelf. That’s one definition, and 
it’s an important part of the field. But the neural network field is not really a collection of 
inherited tools. The field is defined by the QUESTIONS we ask, and the GOALS we are 
trying to achieve. The next two slides will describe two different definitions of what our 
goals are. These definitions may sound very different, but they actually turn out to be almost 
the same in practice.  



 

NSF initially funded “neuroengineering” as an offshoot of work in optical computing.  
Photonics people like Psaltis argued that optical computing could provide a kind of “sixth 
generation of computing,” far beyond the fifth-generation massively parallel computers then 
popular in funding agencies. People like Carver Mead said they could achieve the same 
benefits in VLSI – but only if we could devise new architectures or algorithms to allow such 
chips to be useful in GENERAL-PURPOSE computing. Is it possible to achieve really 
general-purpose kinds of capabilities within the constraints of enormously massive parallel 
processing, using very simple processing units?  

Mead cited the brain as living proof that it is possible. That then created a challenge to 
research: how can we make good on this example, by coming up with algorithms or designs 
for brain-like capabilities that we could implement on such chips?  

After initial enthusiasm to build neural chips, to make good on the high potential throughput, 
there was a long lull in interest. Most people using neural networks as tools deliberately used 
the simplest designs that they could easily implement on PCs or in MatLab – which reduced 
the motivation and market for new neural chips. There were a few important achievements 
nevertheless – a Motorola design that came close to real market; a chip from Mosaix LLC 
that came extremely close to widespread deployment (and may yet) and missed more for 
political reasons than technological reasons; the “sugarcube” design giving enormous 
throughput albeit in a specialized application (image matching for missiles); and Chua’s 
Cellular Neural Networks. But on the whole, it was hard to keep up with Moore’s Law.  

More recently, as more people have worried about how we can continue Moore’s Law, the 
need to increase functionality per chip has started to attract attention again. Some view 
quantum computing as the ultimate salvation of Moore’s Law… but, like 6

th 
gen computing, 

it has an “algorithm bottleneck,” and may need our kind of massively parallel distributed 
design.  



 

ANNs have also been defined as “Abstract Neural Networks.” They are defined as 
well-specified mathematical systems designed to capture the highest kind of intelligence that 
we find in mammalian brains. They are designed to capture the functional capability of the 
system, not the precise details of what is presently known about the hardware itself.  

But how can we understand what the brain as a whole system really does? What kind of 
mathematic is needed, in order to express the kind of function which this information 
processing system performs?  

In this slide, I remind us that the brain AS A WHOLE SYSTEM is an intelligent controller. It 
includes pattern recognition and memory and prediction and other key capabilities as 
subsystems – but you can’t really understand what a subsystem is doing unless you see how it 
fits in as part of the larger system. Every piece of the brain has evolved so as to contribute to 
the function of the whole – the function of calculating decision outputs (sometimes called 
“squeezing and squirting”) which contribute to the long-term goals of the organism.  

Thus in order to develop an integrated, functional understanding of how the brain performs 
this function, we need to understand the mathematics of effective intelligent control, that 
really works in flexibly learning to handle wide varieties of tough control problems.  

Many areas of technology try to teach their students a textbook of a hundred alternate 
methods to solve a hundred different tasks. And they often try to teach neural networks that 
way. But that does not do justice either to the brain or to what the neural network field is 
about. The brain provides a SINGLE flexible system which somehow INTEGRATES the 
various principles of learning and control, so that ONE system can do it all! There are still 
variations from brain to brain, but each individual mammal brain has a kind of universal 
learning ability. Mammal brains do not start out as an “empty slate” – but they are capable of 
relearning almost all of the specific abilities that they are normally born with. Our primary 
goal in ANN research is to capture that universal learning ability in designs we can 
implement and use.   



 

This slide repeats and stresses a key point I just made: in the neural net field, we try to 
develop UNIVERSAL designs. That’s a major part of what defines the field. The brain is 
living proof that it is POSSIBLE to design one system that “does it all,” that incorporates and 
unifies all the principles needed for intelligence and intelligent action.  

As a practical matter, we don’t need universal designs for everything. But when we have a 
universal design, we don’t have to make quite so many decisions about the details, and we 
can move on to new tasks much more easily than we can when we use narrow 
domain-dependent tools. The initial cost is higher when you develop a more universal design, 
but after that, each new task becomes much easier.  

There are many simple tools in the ANN field which really do have limited, narrow use in 
practice. But there is a ladder of ever more sophisticated tools, which do have more 
generality … a ladder which we can see rising up above us, through the clouds, to intelligent 
systems as powerful and flexible as the mammal brain.  

Sometimes people break off and ask the question:”Hey, how good are mammal brains 
anyway? Should I hire a mouse to do my trades on the stock market? If we want a mammal 
brain, why don’t I just use a human?” In fact, there certainly are times when we simply need 
to make better use of our own human brains, to solve an engineering problem! But with 
ANNs, we can make them pay attention. And we can insert them into little boxes in 
manufacturing plants or cars or airplanes, where they will keep working 24 hours a day, at 
gigahertz speed, and not cost a lot. If we use ANNs instead of humans to read ZIP codes and 
sort mail, they will not do a better job (it now seems) – but we can save a lot of money, and 
free humans to do more interesting things. But these are just a few examples.  



 

The core home for ANN research at NSF is in the CNCI program, for which I am one 
of the Directors. The magic words “neural network” help route proposals to me, if 
that is your intent. (The more the better!) 
But outside of the core, neural networks – while fundable – are often badly 
misunderstood. 



 

People often think of ANNs as a very narrow class of tools – in part because they are 
not aware of the large scope of what is being addressed in the field. ANNs are not just 
the designs NOW in MatLab; they include new designs in the literature, and any 
future designs which address the larger, more fundamental goals I just discussed.  
ANNs are actually the central glue of “embodied cyberinfrastructure,” a concept 
depicted on this slide.  
There has been growing interest in studying and enhancing the “embodied 
cyberinfrastructure” of the US – the vast “nervous system” of network connections 
from sensors to actuators on a national scale, used to manage and integrate all kind of 
physical infrastructure networks, like electric power, communications, transportation, 
finance, water, etc.  
And yet – this kind of “artificial nervous system” really is the kind of integrated 
system we are trying to design CORRECTLY in the ANN field! We have for decades 
been addressing the exact problem of designing the whole flow of information (“the 
information layer”) from sensors to actuators, in a complex distributed system.  
ANNs have sometimes been CALLED “parallel distributed processing” (PDP) 
systems. We have more work to do, of course, but this is what we have been working 
on, and we have made progress.  



 



 

This slide leads into many important issues. For now, I want to use it to discuss the relation 
between ANNs and AI.  

Back in the 1960’s, AI announced goals very similar to what I have just discussed. In fact, the 
early work on perceptrons was accepted as part of AI at that time. And now, many people 
teach courses in “modern AI” which do allow some work on ANNs to be included.  

But even today, the mainstream of hard-core classical AI addresses the question: “How can 
we build an artificial Einstein?” They recognize, quite correctly, that the highest level of 
intelligence we can all see in nature is the human level. That level of intelligence is based on 
some (partial) use of symbolic reasoning. And so they try to jump directly to symbolic 
reasoning.  

For practical purposes, the target we pursue in ANN research is SUBSYMBOLIC 
intelligence, the kind of general-purpose nonverbal intelligence that we can find even in the 
smallest mammal brain. Yes, our tools can be used as part of artificial symbolic reasoning 
systems, but that is not what guides our research. For now – achieving the level we see in the 
smallest mammal brain is a difficult enough mathematical challenge. Only recently have we 
begun to develop the tools which give us a practical roadmap for reaching this destination – 
and we have a lot of work left to do in implementing, integrating and applying these tools.  

For those more interested in the symbolic level… we need to remember how 99 percent of 
the human brain is “homologous” to the mouse brain. Thus a true scientific understanding of 
the symbolic level will require a firm grounding in what we are only now beginning to learn 
at the next level below that.  

Occasionally I hear psychologists or philosophers say: “You build things, therefore you must 
be reductionist.” This is as untrue as the worst racial stereotypes. But still – the question mark 
on this slide is beyond the scope of this tutorial.  



 

Engineers often ask “What do you need this vision piece for? Shouldn’t we just drop 
it?” In fact – the vast majority of neural net applications I have seen in the past two 
decades have fallen very far short of accomplishing as much as they could have, if 
they had had a better cause-and-effect top-down understanding of what they can get 
from neural nets. Understanding what the methods are FOR is crucial to using them 
effectively. When there are hundreds and  thousands of papers and software 
commands competing for attention, it is crucial to understand the LADDER (or 
upside-down tree) of capabilities which exists, rising up from the simplest most 
specialized methods through to more and more powerful methods which capture 
more and more of brain-like capabilities. To obtain funding from ECS, of course, it is 
especially important to know “how high” on the ladder the present state of the art is, 
in order to plan a project to take us up one step. The ladder provides a kind of sense of 
direction. In addition, to attract the best students, it really helps to have a broader 
vision, a vision of a field which will offer new and serious opportunities enough for a 
lifetime, a vision which offers the creative person more than JUST a meal-ticket. 
(Then again, many students may also realize that learning general-purpose methods 
will give them a lot more flexibility than domain-dependent details which can easily 
go out of date.)  



 

Many people think of ANNs as one kind of classifier system, for pattern recognition. 
But that is only one part of what they are.  
Back in the 1960’s, AI truly focused on the goal of trying to achieve brain-like 
intelligence, as such. The “perceptron movement” (including Widrow, Rosenblatt 
and others, inspired in part by Von Neumann!) was a kind of early neural network 
movement, WITHIN AI; they are the ones who tried to get started by addressing the 
classification problem. But, as they were unable to solve even simple classification 
problems like XOR, pessimism grew, and the mainstream started to view neural nets 
as the very worst and most unmentionable kind of taboo heresy – an “old discredited 
idea that could never work.” Minsky’s classic book Perceptrons became the 
Mainstream Official verdict on the field. Minsky’s most famous conclusion: “You 
can never do XOR without a multilayer training procedure; none is in sight.”  
In the early 1970’s I found a way to overcome that problem, and even offered to 
Minsky (and others) to collaborate on putting it forward. I learned a lot about heresy 
and taboos and the academic system. (See Talking Nets, MIT Press, for a small part 
of the story.) But eventually, the discovery of backpropagation – included in my 1974 
Harvard PhD thesis, and generally cited as the original source – did get out. The 
simplified, popularized version in the 1986 PDP books stimulated the “birth” or 
“rebirth” of the neural net field more than any other event.  
But in fact – backpropagation only halfway came from the perceptron school! I first 
formulated it as a way to solve the reinforcement learning problem, which had been 
ANOTHER mainstay of mainstream AI. (That stream was also blitzed in a paper of 
Minsky and Selfridge, who said they couldn’t make that work either, and many 
people in AI still conclude that no one could make it work on a useful scale. But as 
you will see, times have changed. We have found some solutions.)  
Just as important as AI to ANNs was the “Hebb” stream. One might even say that 
Hebb was the grandmother of ANNs, and AI the father.  



 

Hebb’s classic book was a great inspiration to all the mains schools of artificial neural 
networks – including the engineering school!  
I have seen hundreds of people excited by the New Vision of Emergent Behavior in 
Complex Adaptive Systems. But in my view, Hebb’s version of that vision – back in 
the 1940’s – was actually far more complete and real than the new reinvented 
versions!!  
Hebb never claimed that ANY complex system would automatically evolve into 
becoming intelligent as a whole system! The universe is full of complex and dynamic 
but dead planets, and live but low-intelligence swamps – and some would say that the 
federal government is the best proof that maximum complexity does not always yield 
maximum intelligence. Rather, Hebb argued that the right kind of simple dynamics 
could allow complex intelligence to emerge. He was inspired in great part by the 
great experiments in neuroscience by Lashley, Freeman, Pribram and others, 
demonstrating “mass action” – the ability of any part of the higher brain to learn 
almost anything, if connections were in place. (For example, many creatures are born 
with edge detectors in the rear of their brain… but neurons in middle part can learn to 
be edge detectors if the rear part is damaged!)  
Hebb inspired a great search for a “general neuron (learning) model” which would 
have the required property – the property that  a great heap of those neurons, all 
connected at random, could learn to do almost anything. He had an intuitive idea that 
this rule should reflect the idea that “behaviors are reinforced by repetition;’ the 
mathematical translation of that simple idea has come to be known as Hebbian 
learning, and is still a main foundation of computational neuroscience, both in its 
classical (continuous variable perceptron-like with differential equations) and 
“spiking neuron”  versions.  



 

I can remember how intensely inspired I was when reading Hebb’s book back in the summer 
of 1963 or 1964. I owed a paper to the University of Pennsylvania summer school in 
computers which I had attended the previous summer, showing how I was using computers 
in a summer job – and I decided to write a program implementing Hebb’s idea, and showing 
how it could be used on simple problems in learning in AI. I tried, very hard – but that was 
one course where I had an incomplete.  And I kept trying.  
In the end, I concluded that ONE kind of neuron simply could not do it – could not 
encompass learning the whole range of capabilities that a brain can learn. Later, Stephen 
Grossberg (then a young assistant professor at MIT) showed me his papers from 1969, where 
he COULD use Hebbian learning for an associative memory function.. And that is an 
important PART of brain function. But that is not the whole thing.  
In engineering applications, other than clustering, Hebbian learning methods and “Hopfield”  
or Cohen-Grossberg nets have become harder and harder to find in recent years. The real 
reason, in my view, is that they never were able to achieve competitive performance in the 
larger prediction and decision-making tasks engineers have to do well on. Certainly an 
all-encompassing design ought to be able to replicate what linear regression can do, more or 
less – but Hebbian learning essentially gives correlation coefficients, not regression 
coefficients. (Still, some people have tried to stretch the definition of Hebbian learning  to 
include even backpropagation through the back door, and it is amusing to see “Hebbian” 
interpretations of the backwards-flowing NMDA synapses observed by Bliss etc. a few years 
ago,  published in Science.)    
Strictly speaking, I think I can see a way that a general “neuron learning rule” could be 
constructed to cheat, to compress many  types of “neuron” into one – but it would be a mess, 
not like anything either nature or a good computer designer  would want.  



 

In my (personal) view, the engineering failure of Hebbian learning by itself is a 
lesson of extreme importance. If we can’t achieve strong functional capabilities – 
general-purpose abilities to handle the broadest range of tasks – by  using Hebbian 
learning, what does that say about the possibility that the brain itself uses Hebbian 
learning by itself to achieve these learning abilities?  
In fact, Sigmund Freud argued long ago that an addition kind of information flow 
between neurons would be indispensable, in understanding the basic learning 
abilities or psychodynamics of the brain. (See Karl Pribram’s statement on the back 
cover of my book, The Roots of Backpropagation.) Pribram and Freeman have both 
reiterated often the point that today’s modeling conventions in neuroscience are 
simply too restrictive to be able to capture or replicate those kinds of capabilities. The 
brain itself is a functional system, and we need to learn more about the mathematical 
design of functional systems, systems which can perform real engineering tasks, 
before we can hope to understand what is really going on there. We need to develop 
new types of higher-level brain models which try to COMBNE the best of what has 
been learned from all of the disciplines on this chart!! Engineers have a critical role to 
play in making this possible, by developing the kind of designs and mathematics that 
will be needed for this future crossdisciplinary effort.  
Almost ten years ago, I worked with Joe Young and Andy Molnar from the 
psychology parts of NSF, to start up a new research funding initiative, ultimately 
called Learning and Intelligent Systems (LIS). I like to believe that LIS played a key 
role (along with the successes of ANNs) in reinvigorating the attention played to 
learning in many fields, especially neuroscience and AI and statistics. But it also 
became clear that we on the technology side have a lot of homework to do first. We 
need to develop and consolidate what we have learned about learning, and to cut 
across the disciplinary barriers which exist even within technology. In the long-term 
---our ability to understand ourselves better, someday, will depend critically on this 
kind of tangible mathematical/engineering work.  



 

After I gave up on ever implementing Hebb’s vision of “one neuron does it all,” I 
aimed for a slightly relaxed version – which actually does work, in a formal 
mathematical kind of sense. It actually is possible to design a general-purpose 
learning system out of three types or block of neurons – a system which actually can 
learn to converge to the optimal “strategy of action” in the general case, in some 
sense.  
In actuality – this mathematical design turns out to be a direct translation of ideas 
from Freud into mathematics. That’s where backpropagation REALLY came from. 
(Some of the details are in chapter 10 of my book Roots.) Backpropagation is actually 
a general-purpose way of calculating derivatives through any large sparse nonlinear 
differentiable system. In fact, some of the people I sent my thesis to renamed this an 
“advanced adjoint method;” their work then  led to subsequent work implementing 
this in actual circuits, to calculate derivatives efficiently through local calculations in 
real hardware.  
The application to static classification is only one of many applications.  
It has taken many years for engineering practice to catch up to this level or 
complexity of design. It is much higher on the “ladder” of capabilities than what most 
people are doing even today with neural networks. I will take many slides to explain 
the basic ideas, and it will take further citations to explain how to implement it in 
detail.  
Back around 1987, I thought that the higher-level intelligence of the mammal brain 
might  be explained as an emergent result of something this simple underneath – 
more complex than Hebb’s ideas, but still in the same spirit. However, as the 
complexity of the sensor inputs X grow, the learning speed of this design gets slower. 
Recent research has extended the ladder upwards, to allow faster learning – as is 
needed when we try to truly integrate the management of very large systems like 
electric power grids!  



 

See previous slides. The entire PhD thesis is reprinted here. 
Chapter 8 also gives a more modern update of how to use backpropagation through 
time, etc. Chapter 7 gives the 1981/1982 published paper which, in my view, actually 
overcame the “heresy” barriers for the initial idea – and also showed how 
backpropagation permits intelligent control or reinforcement learning designs far 
more powerful than the simpler temporal difference ideas which it also discussed. 
The thesis proves the validity of the “chain rule for ordered derivatives,” the most 
general form of backpropagation for all kinds of ordered (feedforward) systems. And 
it includes applications to political forecasting models and to time-series estimation. 



 

When I started running the ANN area at NSF in 1988, I naturally did NOT restrict it 
to funding my own old ideas! But in considering these ideas, it seemed clear to me 
that there are two major tasks involved in trying to reach brain-like intelligence in 
future large ANN designs: (1) the “control” or decision-making task, which defines 
the overall system; and (2) the task of learning the dynamics (“Model”) of the 
environment or plant. Thus I would still see learning-to-predict and 
learning-to-decide(“control”) as the two main divisions of research needed to fulfill 
our goals. They are the two pillars of the ANN field. Areas like clustering and 
associative memory are important PIECES of these larger areas, when they are 
designed to contribute to the larger goals or systems.  



 
How can we achieve brain-like intelligent control by designing learning systems 
made up of simple processing units like neurons?  
Whatever the brain does – it does do “control” (i.e.deciding on action), and it is made 
up of neurons. It is a neurocontroller. Thus to achieve brain-like capabilities, we need 
to build up the science of neurocontrol as illustrated here.  
Neurocontrol is a subset of ANN design, since it does built up systems out of ANNs. 
But it is also a subset of control theory, since control theory addresses the general 
problem of all kinds of systems designed to output useful streams of control decisions 
over time. For best results, we clearly need to draw on BOTH disciplines, as much as 
possible. This is why my first action at NSF was to contact Tom Miller and Richard 
Sutton to organize the first workshop on neurocontrol, to try to bring these disciplines 
together and create a new area. The book from MIT Press was widely influential, and 
did inaugurate this new field.  
But there have been a lot of misunderstandings and lessons learned in later years.  
First, many people outside of engineering have a paranoid misunderstanding of what 
control theory is all about. “Are you turning the brain into a slave that you control, 
denying it all autonomy? These are not learning systems, they are just controlled 
systems..”  This is a gross misunderstanding. We are developing general purpose 
learning systems which THEMSELVES can control engineering plants, for example. 
Neurocontrol designs vary in regards to how much autonomy they have, but our 
ladder rises up to as much autonomy as a human brain possesses.  
Second, it is not necessary that everyone in this area possess a PhD both in control 
theory and in neural networks. There are few people like that. But it is critical that we 
do try to learn a few core ideas from each other. I hope that this tutorial will help. 
Very few people know enough about both fields to do the very best that ca be done in 
real-world applications; however, we all can learn a step or two more, and do that 
much better. I do strongly hope for more unified curricula in the future that will help 
overcome these gaps.  After 1990, some people decided to use the new word 
“neurocontrol” for different things…  



 

The success of the previous workshop led to a follow-on workshop in 1990, jointly 
sponsored by NSF and McDonnell-Douglas. The resulting book, the Handbook of 
Intelligent Control, is still the most advanced source now available for many of the 
key technologies and capabilities to be discussed here. It has served as a kind of 
“Bible” for my program, and has important details of implementation.  
Many of the new advancements since then have appeared only as papers of various 
sorts. However, there is a new Handbook of Learning and Approximate Dynamic 
Programming in press from Wiley and IEEE Press (see www.eas.asu.edu/~nsfadp) 
which substantially updates and elaborates many of the core themes of the Handbook. 
I will refer often to the old Handbook (HIC) and the new Handbook (HLADP) from 
here on.  



 

This slide completes my overview of generalities and philosophy. (I will probably be 
much faster on this aspect in Budapest.)  

But if you seriously wonder whether this kind of mathematics might help us 
somehow to understand human consciousness and the like, you might be interested in 
the paper mentioned on this slide.  
Actually, this book is the selected proceedings of a global conference Towards a  
Science of Consciousness, hosted by the United Nations University (UNU). My 
chapter discusses prior work on the connections to neuroscience and psychology, 
mainly in various books edited by Pribram but also by Levine and others. The chapter 
may be found on the web, at arXiv.org, in the q-bio series for 2003. My views here do 
not fit into any of the extreme positions widely publicized in the public debates on 
these complex issues.  



 

This is my one slide on diagnostics!  

Diagnostics are extremely important in engineering. But the neural network methods 
useful in diagnostics all boil down to methods for prediction. This slide describes the 
three main ways that general-purpose prediction tools can be used as part of a fault 
diagnosis system. There are many applications out there in the field, and I will say 
much about the art of how to apply prediction methods well for diagnosis. The book 
edited by Maren (Academic Press, 1990) does contain a lot of practical discussion of 
how such systems can be set up. In this tutorial, I will discuss how to do prediction 
better, which is important to all of these uses of prediction.  
I do have a couple of advanced suggestions, however. For optimal detection of 
“novelty events” (X(t+1) very different from trained predictor)… it is usually best to 
first train a TLRN predictor network robustly, as I will discuss below. And then the 
ERRORS and the recurrent nodes, or just the sensed data and recurrent nodes, can be 
plotted using one of Kohonen’s self-organizing maps. Either system alone has 
worked well in diagnostics, but the combination should work better. Alternatively, 
Principe’s new learning rule based on comparing pairs of observations could be used, 
perhaps to replace the SOM part.  



 

The term “supervised learning” is very precisely defined now. Supervised learning 
refers to the general task of trying to learn the mapping from a vector (or set) of inputs 
to a vector (or set) of desired outputs, based on previous examples of inputs and 
desired outputs. The idea is to learn the mapping based on a past history or database 
or “training set” of examples. The idea is to learn the mapping IN SUCH A WAY that 
the future predictions are likely to be good predictions of the actual or desired value, 
IN THE FUTURE, for new input vectors X not seen in the training set. (This is called 
“good generalization.”)  

Some people in AI now call this “learning from examples,” but we should not use 
that term because it is very ambiguous.  
If the desired outputs are binary or discrete, we call this a static classification task. 
That is a special case of supervised learning.  
Normally, the learning system contains parameters or weights W which we keep 
changing, in order to make the predictions fit the actual data better and better. 
Sometimes we examine the observations one-by-one, and change the weights based 
on observation-by-observation learning; this can be done in an offline simulation, as 
a way of training an engineering system that will be fixed in its operation. Sometimes 
it is true real-time “on the fly” learning. Sometimes we wait until we cycle through an 
entire training set in a “batch,” and only then update the weights, in “batch learning.” 
All have their place in engineering. The brain seems to be a real-time learning system 
– but that actually turns out to be an oversimplification!  
Universal supervised learning is a hard enough challenge by itself for today’s 
research! ANNs, statistics, AI, philosophy, psychology, etc., all have important 
contributions to make in helping us achieve more brain-like capability even in this 
“narrow” task. This task is a kind of subset or starting point for the more general 
dynamic prediction that the brain or an intelligent controller needs to perform.  



 

This slide is an example of how people have used neural networks in the past to do 
prediction over time, in chemical engineering. Basically, we convert a problem of 
prediction over time into a simple supervised learning task. We define the INPUTS to 
the SLS as the observations (pH) and decisions (F) over the last three time-periods, 
and then try to predict the current pH level as the desired output. When we use a static 
input-output neural network to make predictions over time, by “lagging” or 
“delaying” the inputs like this, it is called a “Time-Delay Neural Network.” (TDNN).  
In this example, the circles and arrows basically indicate WHAT KIND of static 
input-output network we used here. We used a three-layer “Multilayer Perceptron” 
(MLP), the most common ANN across all engineering applications. Some people call 
it a “backpropagation network,” but that is very confusing terminology, since MLPs 
were used back in the 1960s (before backpropagation even existed!), and also 
because backpropagation has been used on much wider classes of networks. (Some 
people like to use confusing terminology because it gives them a chance to invent 
dozens of new names for the same algorithm.) See www.iamcm.org (publications) or 
my book for the equations of the MLP; in essence, each circle represents a two-step 
computation – a weighted sum v followed by calculating tanh(v). The weights and 
intercept of the weighted sum form the weights to be trained or tuned.  
If we want to do prediction by using simple TDNNs, we face two decisions:  
(1) Should we really use an MLP, or should we use some other static architecture?; 
and (2) how should be train or tune the weights? The next slides address that.  



 

In practical engineering, people usually agonize over whether they should use an 
MLP (a “global” network) or a simple nearest-neighbor kind of network (a “local 
network”). This slide summarizes the practical tradeoffs. In essence, an MLP gives 
better generalization, if the input data really varies over a space of more than three or 
four dimensions. (But if the inputs are all heavily clustered around a few dozen strong 
attractor points, it may be good enough just to cluster the data and use a local 
network.) A local network – like a lookup table – gives much faster learning. People 
who want to prove that their local network is “faster than a backpropagation 
network” (??) will often use a trivial, slow implementation of backpropagation to try 
to prove their point; however, modern implementations such as the RPROP variation 
in the SNNS shareware package (see www.ieee.org, Neural Networks, for pointers) 
or the DEKF variations used by Feldkamp et al, or even the simpler Adaptive 
Learning Rate algorithm defined in HIC chapter 3,  tend to be much faster. But even 
with acceleration – dumping an observation into memory is still faster.  
As a rule then, applications demanding high accuracy or complexity tend to use 
MLPs (or complex extension of them), and may use offline learning with structures 
that allow high offline adaptive behavior from fixed weights. Many real-time systems 
use local networks. Mixture of experts models (Jordan et al, Weigand, Principe, etc.) 
provide a partial hybrid solution, using ensembles of global networks. Likewise, 
James Lo has a hybrid solution (which could be implemented simply by applying 
different ALR rules to different layers). A more brain-like solution would be to use a 
concept of “syncretism” (also to be found in Freud, and in HIC chapter 3); the closest 
thing to an operational version of this is Atkeson’s “memory-based learning,” 
combining fast memorization and slow learning/generalization from memory. 
Atkeson (CMU) and Schaal (USC) have beautiful demonstrations of physical 
humanoid robots learning agile movements like tennis backhands, by first learning to 
emulate a human role-model and then refining (optimizing) their performance. But 
that is the top of (one trunk) of the “tree” of designs, beyond what most applications 
need; there is also need for research to take this still further.  



 
Based on the important theorems of Andrew Barron, many now believe that the MLP is 
a kind of practical, well-scaling universal approximation machine. When the task is to 
learn smooth functions of many inputs, it is clearly better than the ever-popular linear 
basis function methods (which include the easier local networks, Taylor series, and 
feature-based classification and its “new” kernel function versions). Not all functions 
are smooth – but don’t we have to make SOME realistic assumptions like smoothness 
in order to have any hope at all in learning?  
In fact – it is extremely important to basic research to reconsider – what DO we have to 
assume in order to make learning possible at all? What are the minimum apriori 
assumptions we have to make – or the most general class of worlds we can really learn 
to adapt to – consistent with learning? One key difference between the eld of statistics 
and the field of neural networks is that we absolutely MUST face up to this question, in 
order to have any hope of explaining how the brain copes with so many millions of 
input variables. We must face up to the kinds of questions which philosophers like 
Emmanuel Kant wrestled with – which turn out to be critical to performance in 
real-world applications like image processing, where Germans trained in Kant have in 
fact achieved outstanding performance!  
It turns out that many of the functions which the brain needs to learn, in order to survive 
in our world, are well beyond what MLPs can learn!! Intuitively, these are applications 
where there are many inputs that tend to have a kind of entangled sort of interrelation.  
The GMLP (above) is the most general, all-inclusive topology available for 
feedforward networks made up of the usual simple “sigmoidal” (e.g. tanh) neurons. It 
is an example of a universal design for what it does; ANY feedforward topology made 
up of sigmoidal neurons is just a special case of a GMLP, a special case in which some 
of the weights may be “cut” (fixed to zero). At the IJCNN1999, in the session led by 
Pribram, Russian mathematicians showed how such architectures give more general 
function approximation capabilities than MLPs. See www.iamcm.org for equations, 
etc. – and some discussion of the well-known issues of pruning and penalty functions 
important to optimal performance in ALL global feedforward networks. (Penalty 
function tools should also be in good ANN packages, to address the well-known 
“overfitting” problem, which I will discuss further.)  



 

But… certain supervised learning tasks simply cannot be performed by ANY 
feedforward network, global or local. (Or by any network trained by Hebbian 
methods, whose occasional success is based on nearest-neighbor prediction.) The 
theory behind this was discussed in HIC – but a practical example may be more 
useful.  
Consider the “simple” problem of trying the learn how to navigate through an N by N 
square maze. Many AI people have studied the problem of “learning the maze” – of 
sending a robot into an unknown maze, and having it bounce off the walls a few 
hundred times until it finally blunders its way through. But this is not what we want 
real robots to do. It is not even what we want unmanned ground vehicles to do. We 
want systems which, like humans, can learn the GENERALIZED ability to LOOK 
AT THE MAZE and see a way through, as fast as possible. (And, yes, humans may 
ALSO use mental simulation, but not ONLY that.)  
This leads immediately into the Generalized Maze task illustrated here. Usually 
people describe this as the task of learning to map from an “input vector” which is 
actually a 2D description of where the goals and obstacles are, to a target which is the 
direction to move to get to the goal as soon as possible. But for a simple experiment, 
it is easier to define the targets as the dynamic programming “map” or evaluation of 
different squares in the maze, which immediately shows the robot which neighbor to 
move to. It turns out that MLPs fail miserably in either version of the task. Likewise, 
“Simple Recurrent Networks” (a version with simple training popular amongst 
psychologists) fail miserably. But the web page above explains how Pang and I were 
able to perform this task, using another kind of neural network topology, called a 
Cellular SRN. (This generalizes the older type of “SRN,” as I will discuss.) There is 
reason to believe this is essentially the most general useful way to represent nonlinear 
input-output mappings – and that it is critical to brain-like success in applications 
such as autonomous navigation, segmentation and connectivity analysis, success in 
strategic games, etc. Thus if an MLP is not good enough… look up the web page…  



 

Why do I claim MLPs would not work on Go, and what alternatives might exist? This 
slide and the next slide depict a study I did with XiaoZhong Pang several years ago, 
on neural networks to approximate a deceptively simple-looking value function. (See 
xxx.lanl.gov/abs/adap-org/9806001 for the original study. These slides represent an 
extension I later presented at IJCNN.) The issue here is maze navigation --a problem 
often discussed in RL papers. But conventional RL papers discuss “learning a maze.” 
This is not how humans do obstacle avoidance. We do not just bump against the walls 
and “learn the room” every time we enter a new room. We learn a GENERAL skill, 
the skill of LOOKING at a room, of INPUTTING a visual image, and then seeing our 
way through. The goal here was to train a neural network to input the 5-by-5 pattern 
of obstacles (in black) and goal (in yellow), and then output the value function. In my 
final study,I trained a neural network on all squares in six easy mazes (shown here), 
and showed that the learning generalized to better performance on six hard mazes 
(the next slide) which the network was never trained to. But an MLP was absolutely 
unable to learn this task, or even to come close. The problems here are very similar to 
the problem of learning the “connectedness” map which Minsky talked about, years 
ago, in his book on Perceptrons. If ADP systems using MLP critics cannot even learn 
such a simple general obstacle-avoidance task like this, how could they ever learn 
more complex problems, like how to extract a car from a parking lot? Or how to 
navigate a dangerous outdoor field -something the mouse is very good at? Or how to 
play a game like Go, where patterns of connection are crucial to the strategic 
situation?  



 

After the work with Pang, I actually trained a simple cellular SRN on the six easy 
mazes (above), and then used these 6 as a test set. No matter how long I trained on the 
training set, performance on the test set kept improving.  
That was reported in several brief papers, including Proc. IEEE-SMC (Beijing) and 
the Proc of the Yale Workshop on Learning and Adaptive Systems (available from 
Narendra at Yale).  

In all fairness, however, the learning was slow. I believe it can be made much faster, 
just as basic backprop with MLPs was accelerated after some effort. I have a project 
in the works to try to show this (though my time is very limited). Certainly the brain 
does this somehow, and the web page describes several learning methods hardly 
explored in our brief study. For the time being, evolutionary computing provides one 
way to train such networks – especially if one uses methods (like particle swarm 
optimization) which are better than discrete genetic algorithms for tuning continuous 
variables. But their scaling abilities are limited, and it will be critical to work towards 
a more brain-like solution to faster training here.  



 

This slide depicts one aspect of the neural network which Pang and I used to solve the 
generalized maze problem.  
We used a special type of Simultaneous Recurrent Network (SRN). In a paper on 
recurrent networks and natural gas models (in Neural Networks, Oct. 1988), I 
proposed a more general version of SRN, discussed at great length in the Handbook 
of Intelligent Control (1992). For an ultimate, general-purpose time-series identifier 
(like a system to process video data), one needs two kinds of recurrence or feedback, 
and two time scales: one to provide “memory” (time-lagged) and one to provide 
“relaxation” or “iteration” (simultaneous). For the maze, we only needed iteration, 
because it was a static mapping problem.  
Psychologists have since used “SRN” to refer to simpler, less general networks 
trained in a simpler way. In our study, we found that such simpler recurrent nets 
worked as poorly as MLPs! In our work, the learning and the code was as slow and as 
crude as the early Rummelhart-et-al demonstrations of MLPs to learn XOR; however, 
there is lots of room for others to do better, even using methods described in that 
paper. Or one could use evolutionary computing, like Fogel, to demonstrate tangible 
results even before these learning-speed issues are mastered.  
Yang and Chua (Int’l J. Bifurcation and Chaos, June 1999) replicated the work with 
Pang, and showed it is  
compatible with the type of high-throughput CNN chips they have designed and had 
manufactured. Another key aspect of the design here was that the underlying 
feedforward component net was “cellular.” It exploited symmetry with respect to 
translation and rotation to drastically reduce the effective size and complexity of the 
network --allowing a simple network to handle a complex problem. There is no way 
to handle brain-like complexity without exploiting symmetry in some such way. But 
a more general version of symmetry will be needed to handle more general situations.  



 

The electric power grid provides a beautiful testbed or example of a complex problem which requires 
us to exploit a more general type of symmetry. (The cellular SRN is a special case of this.)  

Many classical AI people would argue that the maze problem and the electric power grid are systems 
which simply prove that a general-purpose learning approach is impossible. Some would even argue 
that general-purpose learning is impossible. But we know from biology that this is wrong. Some 
organisms may be born with specialized units like edge-detectors hard-wired into their brains; 
however, when those areas are damaged, even in organisms like frogs, researchers like Lettvin have 
proven that other neurons (in areas parallel to our “language” regions of the brain) can LEARN to be 
edge-detectors.  

The real challenge, then, is how to assume as little as possible apriori, so that we can LEARN all the 
rest. How to do this?  

In the book on complexity edited by Karny et al, I suggested one crude possibility. Perhaps the notion 
of a network of objects and relations would ITSELF be powerful enough to achieve brain-like 
capability, if embedded in a powerful enough framework. Certainly the electric power grid is an 
example of a system which can naturally be described as a network of objects and relations, and 
variables attached to objects. There are many other such systems, like communications grids, 
transportation networks, and so on. AI has certainly used relational nets.  

There are many difficult research questions which we need to explore here. But there are also many 
near-term research opportunities and applications involving those special cases where we already 
know what the objects and connections are, in the grid, and our goal is to learn how to make 
predictions for that grid. For example -given a training set made up of “input vectors” which describe 
the state of DIFFERENT electric power grids, with different topologies, how do we train a neural 
network to predict the next fault? (Or to approximate “J” over the entire grid?”) No traditional neural 
net could be trained on such an irregular training set. But there is a new kind which can. (See later 
slides) I have said enough for now about the “ladder” of neural network structures for supervised 
learning. To summarize – there are simple designs which work well enough on simple tasks, and more 
powerful designs which work on the simple tasks but also on more general kinds of tasks.  



 

Some statisticians have argued that “neural networks are just a branch of statistics.” 
Textbooks are sometimes written which contain dozens of methods which are 
essentially just a choice of canned topologies. The user is sometimes urged to 
remember the “law of no free lunch;” the idea is that different methods work on 
different problems, that there is no universally better method, and that serious people 
always operate by studying the specific domain problem, picking a chapter, and 
developing expertise relevant only to that narrow domain. General purpose 
competence is impossible. Thus to build robots for space application, we may 
identify 2,000 standard tasks, and propose that NASA fund 2,000 back-to-back 3 
years studies to develop specialized methods for each of the tasks. Some theorists call 
this “practical.”  
The “law of no free lunch” (as normally interpreted) is only HALF true. It is true that 
statisticians have the right to complain when a person tries out tweak number 166 on 
one narrow test problem, and draws universal conclusions from one example. But is 
possible, for example, for the domain of competency of  one topology to be subset of 
another, more universal topology; that’s what the Turing theorem is all about, and the 
capabilities of Object Nets are closely related to Turing concepts.  
But in the end, as I described before, we cannot escape from the issue of analyzing 
the prior assumptions like smoothness, symmetry and robustness which make it 
possible to develop universal brain-like capabilities. That research challenge is at the 
core of the neural network field, and we have already learned a lot that goes well 
beyond what classical maximum likelihood statistics can do.  



 

What does all of this theory tell us about practical issues, like how to train an MLP or 
linear classifier for best performance?  
In most ANN work today, people train MLPs to do supervised learning, based on a 
very simple concept: they train the weights so as to minimize the square error of the 
predictions over the training set. The equations for doing that, using backpropagation, 
are widely published in simple texts (and my book). The capability is available in 
many canned packages as well. Statisticians have rightly pointed out that this is 
basically an extension or example of the concept of “nonlinear regression,” known 
for decades.  
But practical statisticians have come to accept that minimizing square error isn’t 
always the best way to go when there are many, many input variables. Instead of 
minimizing square error, many minimize a weighted sum of prediction errors plus the 
size of the weight vector. This is called “ridge regression” in the linear case. In 1987, 
I proposed that we can apply this to what we minimize in training MLPs. (This is 
different from an earlier suggestion by Hinton that we use an equivalent term on a 
temporary basis, called “weight decay,” in order to speed up convergence to the 
weights which minimize square error.) But more sophisticated “penalty” terms have 
been developed in the meantime. For example, Phatak of UMBC has developed 
penalty terms which prevent statistical problems WITHOUT reducing the number of 
neurons or connections; this allows a kind of redundancy and fault-tolerance closer to 
what we actually see in the brain. More research is needed, of course and many 
approaches need to be pulled together.  
Recently, Vapnik, “Father of the SVM,” has elicited great excitement with the idea of 
minimizing losses directly, instead of using Bayesian concepts grounded in the idea 
of “probability of truth.” I used an extension of that general approach to the 
time-series case to improve political forecasts in my 1974 thesis – but found later that 
we really need a kind of compromise for the general case.  



 

In fact, in 1990, I joined with a famous chemical engineer, Prof. Tom McAvoy of 
UMCP, to use the same statistical concepts I used in my thesis, in order to improve 
the training of a simple TDNN to predict data form simulated and real chemical 
plants. Notice that there is no advanced topology here, and no penalty functions.  

The example published in HIC begins with a review of neural networks for the 
chemical industry, and describes some of the application tests in detail. But after that 
part, it describes the ladder of more advanced methods in far more detail than I can 
here today.  



 

At the time of publication of HIC, we had done four test studies on simulated and real data, 
including a proprietary mulation of a polymer plant and real data from a wastewater 
treatment plant.  
 
This is a case where improved prediction can translate directly into improved control, and a 
factor of two reductions in pollution (waste).  
 
On average, when we trained the TDNN using the “pure robust” method of training, we cut 
errors by two-thirds, in the kind of multiperiod backcast testing from the training set to the 
test set that really represent the value of the predictor to the application.  
 
Subsequent 5 studies by Ted Su, a PhD student of Tom’s, strengthened the conclusion here.  
There was one interesting technical aspect. Training tended to be easier, but the benefits 
smaller, for simulated plants. Training was harder, but far more valuable, for predicting 
real plants. Tricks like using good initial values and “shaping” turned out to be critical to 
the training.  
 
The key idea in shaping is to train one network to perform an easier task – and then use 
those weights as the INITIAL VALUES in training a network to perform a harder task. The 
new networks could have the same structure as the older one, or it could have some (zero) 
new connections added. Shaping can be done in stages, task by task, step by step. In fact – 
even humans need to use step-by-step learning, in order to learn very complex tasks.  



 

This slide basically describes what the pure robust method is like. Some people in control 
theory would say “this is just parallel training” – but it is drastically different in practice. (See 
HIC for a discussion of why.)  

In ordinary statistical training, one minimizes the square error between the observed X(t+1) 
and the prediction for X(t+1) which results when the ACTUAL, OBSERVED values for X(t) 
and u(t) are plugged into the model. But in the pure robust method, for any starting X(1), one 
builds up an entire chain of predictions, by plugging in the PREDICTION for X(t) instead of 
the actual value. One minimizes the square error in this multiperiod approach. In fact, a 
number of very competent engineers have quietly called this “the multiperiod method which 
we all know about” – without referring back to the original theory, which warns about its 
limitations.  

In 1977, I published a paper in the IEEE SMC Transactions, applying this method to the 
prediction of social trends (conflict and economics) in Latin America. The method failed 
very badly, for theoretical reasons I discussed beforehand. The pure robust method – the 
method of “just minimizing the bottom line,” is not a good universal approach. The 
theoretical reasons(discussed in HIC) are a bit subtle for today; crudely, I would say that 
reality involves a COMBINATION of hidden order (what forces the robust approach) and 
hidden mixing or noise (which forces stochastic approaches); only by finding a method 
which unifies the two can we have a universal system, or a system able to handle plants 
which combine both aspects. The 1977 paper demonstrated a “compromise method” to do 
that – a special penalty function, in effect – which was able to cut in half the errors in 
predicting GNP in Latin America. It worked better both short-term and long-term. HIC 
discusses the neural net version and possible extensions – and the need for further research to 
do even better.   

The pure robust and compromise methods both require the use of true backpropagation 
through time (BPTT), to work. My original definition of BPTT as a specific exact, low-cost 
closed method was unambiguous; however, some psychologists have used the term as a kind 
of buzzword for inexact methods, leading to the false mpression that it is harder to train such 
recurrent systems than it really is. Ford and Principe, among others, have irly bulletproof 
implementations of BPTT available.  



 

The TLRN is essentially The General Case for neural networks with “short term memory” or 
“working memory” in a certain sense. Everything else is a subset, a special case. In the 
extreme case – if an ObjectNet is used as the Static Network inside this diagram, one winds 
up with a kind of universal (deterministic) system, a universal approximator for time-series 
dynamic relations. (Sontag has in fact proved some universal approximation theorems for the 
dynamic case.) Note that this flow chart does NOT require that R(t-1) be fed back only to the 
“input layer” of the static network inside; it does not even require that the static network 
HAVE layers at all!  
Some have misunderstood, saying “You are only inserting recurrence outside the network. 
Others insert it inside.” But this is a matter of mathematical convention. The arrow refers to a 
flow of information, reflected in the equations. For example, I give examples of this using the 
“sticky neuron,” in the book edited by Maren (1990), in which the time delay is from the 
“membrane” of a neuron to itself in the next time period, bypassing the tanh function. 
(Schmidhuber and Ford have presented examples of how this kind of placement may or may 
not be useful, in different applications. But the brain does appear to contain sticky neurons, in 
my view!) Chapter 8 of Roots gives the actual equations of a TLRN for the case of nonsticky 
neurons.  

Others have said “TDNNs represent NARMA functions, which are the most general case and 
much easier to train.” Unfortunately, some strands of control theory have misconstrued the 
original literature on autoregressive moving-average (ARMA) processes. Even neural 
network people should at least read the classic text by Box and Jenkins (the multivariate case 
of which is discussed in chapter 3 of Roots), which explains in clear practical terms why the 
TDNN (ARX) kind of design is NOT universal. In fact, there are many other reasons. Linear 
ARMA models are a special case of TLRNs.  

The TLRN (with MLPs inside) is the crucial workhorse for all the most impressive 
real-world applications of ANNs today, for many reasons. HLADP explains some of the 
reasons. For example, Feldkamp et a give examples where simple TLRNs dramatically 
outperform extended Kalman filters in nonlinear state estimation, and do as well as far more 
expensive less brain-like particle filter designs now growing in popularity. I will say more in 
later slides.  



 

This slide summarizes several ways to calculate the derivatives needed for any 
derivative-based method to train TLRNs or SRNs or hybrids. See the web page for 
details.  

In this tutorial, I have given a kind of top down view of what a TLRN is – the general 
case. For a more concrete bottom-up view of the same thing, see the book by Principe 
and Euliano, and the software at www.nd.com. That software provides a kind of 
“tinker toy” kit for building up all kinds of examples of TLRN. (Of course, it can also 
build TDNNs and MLPs, which are a special case.)  

In other words – there is a GENERAL TLRN structure. To define the specific TLRN 
which does what you want, you can simply look for the right weights. In that general 
structure; you can set of them to zero, which is the same as “cutting the connection.” 
But you can reach the same set of possibilities in a bottom-up way, by starting from 
zero connections and ADDING neurons one at a time.  
It is important to understand that both viewpoints are equivalent. It is also important 
to understand that the growing, pruning and weight adjustment can all be automated. 
The easiest way, conceptually, is to start from the general structure, and use 
automatic learning systems to adjust the weights.  



 

At least four kinds of problems explain why some people give up prematurely When 
trying to use recurrent networks. This is a tragedy, because recurrence is usually 
essential to the kind of power one can get from neural networks.  
Bugs may actually be the biggest problem. It’s easy to say “I never do bugs,” when 
it’s not true. It’s critical in the early stages to have sensible debugging – for example, 
to use reductions in error as predicted by new versus old gradient and weight changes, 
versus actual error changes, versus learning rates, to get a handle on where problems 
are coming from, in the early stages of software development (with an option to turn 
on again). Many “plateau problems” (low slope) have been misdiagnosed as”local 
minima.” With plateau problems, better ways of using derivatives 9as discussed 
above) are generally needed.  
Local minima are important but are widely misunderstood. Anyone who claims a 
universal infallible easy magic wand for local minima is misconstruing reality. With 
MLPs and simple systems, local minima are far rarer and far less harmful than often 
believed. (Typically it is useful to IMPROVE performance, and not strictly necessary 
to guarantee that nothing better is possible!) There is a kind of Murphy’s Law at work 
– the more precise the training method, the sharper the error surface, and the greater 
the danger of local minima; thus the number one practical approach to local minima 
is “shaping” – training weights on an easy problem, using the results as initial values 
on a harder problem, and so on. Even for training humans, I would argue that this 
practical approach is “the right way.”  
The more complex the task, the more unavoidable are local minima. Thus in living 
human life, we are ALL stuck in local minima. That simply means we can do better, 
if we exercise more creativity. Symbolic reasoning has helped humans get out of ruts 
that other mammals have remained deeply stuck in; once again, I would agree with 
AI that symbolic reasoning offers a higher level of intelligence – when we have the 
foundations built to do it right.  



 

How can we achieve brain-like intelligent control by designing learning systems 
made up of simple processing units like neurons?  
Whatever the brain does – it does do “control” (i.e.deciding on action), and it is made 
up of neurons. It is a neurocontroller. Thus to achieve brain-like capabilities, we need  
to build up the science of neurocontrol as illustrated here.  
Neurocontrol is a subset of ANN design, since it does built up systems out of ANNs. 
But it is also a subset of control theory, since control theory addresses the general 
problem of all kinds of systems designed to output useful streams of control decisions 
over time. For best results, we clearly need to draw on BOTH disciplines, as much as 
possible. This is why my first action at NSF was to contact Tom Miller and Richard 
Sutton to organize the first workshop on neurocontrol, to try to bring these disciplines 
together and create a new area. The book from MIT Press was widely influential, and 
did inaugurate this new field.  
But there have been a lot of misunderstandings and lessons learned in later years.  
First, many people outside of engineering have a paranoid misunderstanding of what 
control theory is all about. “Are you turning the brain into a slave that you control, 
denying it all autonomy? These are not learning systems, they are just controlled 
systems..”  This is a gross misunderstanding. We are developing general purpose 
learning systems which THEMSELVES can control engineering plants, for example. 
Neurocontrol designs vary in regards to how much autonomy they have, but our 
ladder rises up to as much autonomy as a human brain possesses.  
Second, it is not necessary that everyone in this area possess a PhD both in control 
theory and in neural networks. There are few people like that. But it is critical that we 
do try to learn a few core ideas from each other. I hope that this tutorial will help. 
Very few people know enough about both fields to do the very best that ca be done in 
real-world applications; however, we all can learn a step or two more, and do that 
much better. I do strongly hope for more unified curricula in the future that will help 
overcome these gaps.  After 1990, some people decided to use the new word 
“neurocontrol” for different things…  



 
 

This slide summarizes what control theory “is.” Some people in AI have told me that 
I should not call it “control theory,” after I explain that the field is not a narrow effort 
to control or enslave people; however, I do not have the power to change this 
standard terminology! Still… I should note that the premiere theoretical conference 
in that field is the IEEE Conference on Decision and Control (CDC); it really is 
decision AND control.  

Control theory is basically just the principled design of control systems, systems 
which are supposed to send out “control signals” (the vector u) at each period of time, 
in order to improve the state of some kind of external environment or “plant.” (Like a 
manufacturing plant.) Throughout control theory, it is understood that the vector we 
observe (X) is only a small window into the state of the larger external reality or state 
vector, which I show here as R.  

My choice of letters here is a little different from what they generally use – because 
we in the ANN field have to try to unify ideas from many different areas, where 
different ideas appear, and also because it helps to use letters that stand for something. 
For example, “R” stands for “reality” or’”representation” or “recurrent” – which end 
up being the same thing here very often!!!  

Of course, this is a very broad and inclusive concept here. There are many different 
types of control system. For example, there are different ideas for what we want to do 
to the external environment; those lead to different types of control design.  



 

I don’t have time to say all that can be said about this. It is said that no PhD program 
in control theory in the US guarantees that all its graduates have a background broad 
enough to embrace all the aspects of control theory shown here! (Thus few people in 
the US can legitimately claim to “know control theory” in an inclusive sense. It is 
said that Sweden tries harder.)  
The last two bullets are most essential to real-world applications of neural nets. Pure 
mathematicians sometimes have problems with “learning” versus “adaptation,” but 
this distinction is essential to success in real-world applications. Learning is 
cumulative and basically universal; adaptation means changing to adapt to changing 
conditions. You can see the difference when a new driver first encounters a patch of 
ice; if he/she tries to learn how to survive – often the learning is just too slow, and 
he/she hits a tree. But as he/she learns to drive better, over a variety of conditions, 
he/she learns to adapt quickly – by habit or reflex – to slippery feelings on the road. 
Adaptive control systems (either classical or neural) tend to be very slow in adapting 
to changing conditions, leading to “bad transients” (high waste, pollution, an 
explosion on occasion). They do so because their designs essentially try to use 
learning methods to adapt key parameters. But if TLRNs are trained on a variety of 
possible conditions, covering the range of likely types of divergence, the recurrent 
nodes can implicitly detect the changing conditions, and yield fast adaptation; this is 
why the Ford diagnostic systems can adapt easily and automatically to varying 
engine types, without a need to retrain the neural network! In fact changing 
conditions and parameters and other unobserved variables are crucial in most 
real-world applications.  
In control – including neurocontrol or AI control – there are only three relevant 
families of basic design types: cloning designs (to imitate or model a human), 
tracking designs (to make something follow a path ordered “from above”), and 
designs for optimizing a performance or utility measure.  



 
This slide elaborates on the previous trichotomy. There are two versions of cloning – 
copying what a person says (as in traditional AI or fuzzy control), or copying what 
they do. For copying what they do, effectively, it is essential to think of this as 
predictive modeling of what the human would do. Thus, as in any dynamic prediction, 
use of a TLRN structure is essential to max capability. Cloning can be used to 
generate initial weights for an optimizing controller. 
Many classical controllers focus on tracking tasks, without analyzing how to 
maximize performance. Many will say that the folks who fund them don’t care about 
performance. Many people who fund them say they are looking for new support 
services. When tracking is the only consideration, the only real challenge left is  
to try to stabilize a plant; however, it turns out that optimization can give often 
greater stability than more direct, brute force tracking methods! I will discuss that 
more. 
People have claimed at times to develop hundreds of optimization methods… but all 
of them boil down to the three core methods noted here. There is LQG for linear 
plants, of some historic importance and a useful starting point for some of us. For the 
nonlinear case, there are a host of methods for considering an action plan, looking 
ahead N steps to see how well it does, and then updating the plan over and over again 
to get better performance in explicit N-ahead lookup. 
And then there is learning and approximate or adaptive dynamic programming (ADP) 
which, in my view, is the only family of methods even remotely plausible as a model 
of how the brain does it. Still, explicit N-period lookaheads and ADP both provide 
great capacity; they are the “top of the tree”(or of the first staircase?) in developing 
more powerful neurocontrol capabilities. 



 

Cloning has had many amazing applications important to the aerospace sector. I 
usually have time to discuss how Accurate Automation developed a robust nonlinear 
controller for the model National Aerospace Plane in only two weeks using cloning, 
after others had spent many millions. But the Atkeson and Schaal example I 
mentioned, with robots, may be more critical to some new directions we are now 
pursuing.  
One potential testbed area for cloning followed by optimization design is depicted in 
this slide. NASA, NSF and the Electric Power Research Institute (EPRI) have join 
together in 2002 to support a new research thrust related to Space Solar Power 
(SSP).For more information, see the NSF web page and the URLs which appear in 
publication NSF 02-098.  
This initiative was partly an outgrowth of an earlier workshop with NASA, which 
explored the possible role of computational intelligence in making SSP a viable 
approach to the world’s primary energy problems. Many of the old roadblocks to SSP 
have been solved, in principle, or are now being solved. Possibly the number one 
roadblock, in terms of underlying technology, is the need to better automate the 
assembly of large structures in space, using large numbers of semi-autonomous 
robots. This will require breakthrough capabilities in robotics, beyond what 
conventional robotics has given us. A few advanced people in robotics, like Fukuda 
in Japan and Hirzinger in Germany, have exploited computational intelligence to 
achieve real-world results far beyond the mainstream of what is available in the US. 
Yet we could do even better, if we could build on their success and use the more 
powerful types of learning algorithm discussed here.  

Some of Hirzinger’s work is reviewed in the article Neurocontrollers in the 
Encyclopedia of Electronics and Electrical Engineering.  
Some of the new possibilities here are mentioned in my paper on energy in the State 
of the Future 2004 CDROM (www.stateofthefuture.org), and new NSF-NASA 
partnerships seem promising.  



 

There are three major pillars in “modern control theory” – and few people who really 
know all about them all. Neurocontrol people should at least learn the big picture of 
what they are, however.  
The big three are: (1) optimal control (including LQG and dynamic programming and 
N-period ahead optimization, discussed in classic texts by Bryson and Ho or Stengel); 
(2) adaptive control; (3) robust control. I have already stressed optimal control as an 
approach, but many people rely more on robust or adaptive control, which focus on 
tracking problems.  
The distinction between adaptive and robust control is actually like a famous versus 
from the Chinese classic, the I Ching. They ask: “Which is stronger, the oak tree or 
the grass? The oak tree looks so much stronger – massive an unmoving. The grass 
looks so weak. But when the typhoon comes, it is the oak tree which falls.” Robust 
control, like the oak tree, tries to find control designs AND parameter values which 
stay fixed in application, and are able to keep a plant stable under a wide range of 
external conditions. Adaptive designs try to change the parameters as conditions 
change.  
Yet engineering today does not seem to follow the I Ching. The adaptive control 
designs used today are famous for being much less stable and reliable than the robust 
control designs. How can that be?  
The usual form of robust control popular today are linear feedforward methods, 
easily constructed in MatLab. But there is a third way to solve tracking problems, 
where neural networks  
(e.g. ala Ford but with ADP) and advanced, nonlinear robust control converge to the 
same design. It is learning offline to be adaptive online. Or the ADP version could be 
called “using neural nets to provide the most accurate available approximation 
solution to the HJB of the nonlinear robust control problem with feedback loops.” 
This is the stablest method, and it allows integration of performance and stability 
together as goals.  



 

This is an example of why today’s ordinary best linear multi-input multi-output 
robust control is not so universally good enough as sometimes claimed. It is taken 
from a world-class paper on the robust control of a model hypersonic aircraft, from 
the AIAA conference in Norfolk on that topic.  
The graph speaks for itself. With two control parameters, there is a range of values 
which can stabilize the craft if the center of gravity is at 11.3 meters. A different 
value if it is at 12 meters.  
One might ask: “Is this an airplane or is this canoe? Walk two feet and it keels 
over…” The authors may recommend, reasonably, that there should be tight effort to 
control the center of gravity. But is that really the best we can do? Common sense 
would agree with the I Ching here. Somehow, it ought to be possible to achieve more 
stability by somehow sensing where the center of gravity is, and adapting to its 
changes. Why doesn’t it seem to work out that way in practice?  



 

The reason why adaptive control doesn’t beat out linear robust control here can be 
seen easily by looking at the mathematics (flow chart) of how we actually DO 
adaptive control today. The idea of being adaptive is not the problem; the problem 
lies in HOW the adaptation is done today.  
This slide really specifies exactly how the best form of adaptive control is 
implemented today with neural networks. Basically, the weights in the action 
network (“controller”) are trained by derivatives of tracking error backpropagated 
through the trained model of the plant. In other words, the controller is trained to 
minimize tracking error AT TIME t+1. It only looks one period of time ahead. It is 
myopic. It has been well-known since Wiener and before that myopic control can 
easily lead to instability – especially when the actions we need to get us back on 
course ten times ahead lead to no effect or temporary negative effects one time ahead. 
These problems have fancy names (deadtimes; nonminimum phase; sign reversals or 
indeterminism), but they are reasonably straightforward – and extremely common.  
The design here does sometimes work, especially in the hands of those who cultivate 
the art of tweaking it. But I have many times seen people try it out, uncover vast 
explosions or transient problems, and then say “neural nets don’t work” – when all 
they had to do was add one arrow in the flow chart to solve the problem and beat out 
everything else they have! They often feel compelled to use this design because of all 
the many stability profs proven for classical and neural adaptive control – but those 
proofs all assume conditions about the environment which are very strong and rarely 
met. There are two easy ways to get much better performance and stability both.  



 
This is the easiest of the two upgrades. It needs only the same kinds of nets as the 
previous design –but now there is an explicit N-period ahead lookahead, and a 
minimizatoin of error OVER TIME.In the Miller, Sutton and Werbos book, we noted 
four implementations of this kind of design by that time. One, a chapter in the book, 
was Widrow’s truck-backer upper, a truly remarkable system which was once very 
widely publicized – and deserves to be remembered more than it has been. The agility 
of that system in nonminimum phase maneuvers, with a fairly large physical truck, 
competing against a human truck driver… was very impressive. And it was all due to 
a use of BTT. 
Pseudocode for BTT as a control method can be found in chapter 8 of Roots. 
It should be noted, however, that use of TLRNs in this design is crucial to the kind of 
capabilities that Ford has been able to achieve here. A thorough understanding of 
BTT is essential. Portions of the Ford software are said to be posted soon at the web 
page of Prof. George Lendaris of Portland State (though I haven’t checked). 
Suykens et al (Springer) have a book Neurocontrol which proves that the stability 
guarantees for thiskind of design are far stronger and more universal than the 
guarantees for indirect adaptive control. 
In principle, this design gives the right answer only for deterministic plants. However, 
I have pointed out for many years (e.g. ICNN 88!) that the method is easily extended 
to incorporate those features of “Differential Dynamic Programming” which address 
the stochastic case. BTT control has turned out to be unusually robust in practice, and 
still hard to beat. In the long-term, however, theory tells us that ADP is the more 
powerful method for the more general case, and a few relevant examples have begun 
to clarify some of the issues. 



 

This is an alternative way to try to “add stability” to indirect adaptive control. Here 
we use the SAME design as IAC, except that we replace the previous ad hoc arbitrary 
measure of tracking error with a trained critic network. Control theory tells us that 
SOME choice of the Critic (a “Liapunov function”) should be able to stabilize the 
plant, for ANY controllable plant, not just the limited kinds that  
standard adaptive control can handle. This can even be viewed as an extension of 
adaptive control Back in 1994, I proposed that we could constructively find a 
Liapunov function, by using ADP methods. In the ensuing years, control Liapunov 
functions have become kind of growth industry, but most of the papers today do not 
address the general case.  
In 1998, I showed how proper ways of training the critic will ALWAYS converge to 
the right “J” function, which happens to be a Liapunov function, for any controllable 
linear multi-input multi-output plant. This strongly suggests that these new training 
methods, combined with the design in this flow chart, yield the “holy grail” of 
classical adaptive control – universal stability in a truly adaptive design. See 
arXiv.org, adap-org 9810001 for details.  
This also strongly suggests that the nonlinear versions of these new training  
methods could be useful in applications where rock-hard stability is desired. But for 
today’s applications, offline training using simpler methods may be the best choice; 
once these methods converge, we get a stability guarantee after the fact.  



 
I have said enough for now about tracking problems and brute-force look-ahead. 
Now I will move ahead to the ADP class of control designs, which some people call 
“simple reinforcement learning.” In fact, it is not quite so simple as many imagine, 
especially when you try to get the full performance capability out of them.  
People in AI and neural networks have tried to build “reinforcement learning 
systems” for decades. The term has become very fuzzy over the years. But this slide 
shows the basic idea in the modern version. Supervised learning systems are told 
exactly what their output is supposed to be. They are given a “desired output” for use 
in training. But RLS are not told what to output. They are given a measure of “how 
good their output is,” and they try to learn how to make their output better. At least, 
that’s the older way of thinking about it. At each time t, they receive a signal, U (t), 
which tells them how good their output u(t) was (for the current situation of the plant). 
But in the modern view, we think of this as a “dynamic problem.” The goal is to pick 
an output u(t), at each time, in a way that increase the TOTAL utility, the sum of 
U(t)+U(t+1)+U(t+2)+… A true RLS should be a kind of universal system. At each 
time t, it is given sensor information, a vector X(t). It outputs actions u(t). Starting 
from no knowledge at all about the external environment or plant, it is supposed to 
LEARN how to generate action decisions which maximize U(T)+U(t+1)+…, the 
sum across all future time. As a practical matter, RLS designers usually imitate 
economists by saying that utility in more distant times should be “discounted” 
according to some kind of interest rate, r; this says that we want to maximize utility 
over all future time – but that time t is more important” or “worth more” that time t+1. 
We want to maximize a WEIGHTED sum of future utility. See HLADP (or HIC) for 
more details. Researchers from psychology often write r(t) instead of U(t), in order to 
show respect to B.F. Skinner’s idea of reinforcement” or “reward” in training 
animals.  



 

Back in the 1960’s, many in AI had given up on ever developing a truly general purpose RLS 
system. Efforts to guess or hack or intuit a good design never got anywhere.  

But in 1967, in “Elements of Intelligence,” (Cybernetica, Namur, No. 3, 1968), I proposed 
that we try to use more fundamental mathematical principles to address this design problem. 
I proposed that we design RLS by trying to APPROXIMATE dynamic programming.  

After all, when we try to maximize the sum of U(t) over future time, we are trying to solve an 
optimization problem. Dynamic programming is the ONLY exact and efficient method for 
solving this type of problem in the general case. The “general case” means that your 
environment or plant could be any nonlinear stochastic system.  

This slide illustrates how dynamic programming (DP) works. The user specifies a utility 
function U(x); this function is simply a statement by the user of what he/she wants the control 
system to maximize. (It could be profit or throughput or a complex function like output 
minus cost minus energy use minus pollution minus wear and tear, minus tracking error. The 
user gets to decide what he/she wants the ultimate performance to be. The user also gets to 
decide whether he/she cares less about future times than the immediate present and, if so, 
what interest rate r fits his/her goals.) In classic DP, the user also specifies a stochastic model 
of how the plant works over time. These two pieces of information are then fed into the 
Bellman equation, illustrated in the middle box. The mathematician or engineer then tries to 
SOLVE the Bellman equation in this case; in other words he tries to find a function J(x) such 
that the Bellman equation is satisfied. The key theorem in dynamic programming is that such 
a J function exists almost all the time; also, the strategy of action which maximizes the 
expected value of future U over al future times is the same as the strategy which maximizes 
J(t+1). DP converts a hard problem in optimization over future times into a much easier 
problem in optimization one time period ahead.  

We cannot use DP proper on large problems in the real world, because we encounter a “curse 
of mensionality” in solving the equation. ADP, the learning-based approximation of DP, is 
the answer. 



 

Modern approximate or adaptive dynamic programming (ADP) approximates DP by training 
or tuning a “Critic” – network or function approximator which tries to approximate the 
function J or something very similar to J. Sometimes we call this field “adaptive critics,” to 
make it very clear that we are not talking about older psychologists’ notion of reinforcement 
learning to train animals, or about optimization without a time aspect, or even about older 
approaches to approximating dynamic programming. The term “adaptive critic” is really the 
most precise term for specifying this new field of research. For now, however, I will call it 
“ADP.”  

There are many many ADP designs available. In a way, this sounds strange. After all, if two 
designs are trying to solve the same universal task, in a universal way, how could there be 
different methods? However, it is the same situation here as in supervised learning. There are 
very simple designs here based on lookup tables (like the original Barto-Sutton-Anderson 
design or like “Q learning”) which are easy to use, widely proliferated – and mited in their 
power. Many AI people, familiar with only those methods, have gone on to assert even 
recently that “reinforcement learning can never solve problems large enough to be realistic.” 
Likewise, some assert “no one has found a way to deal with continuous variables.”  
But in fact, there is a whole ladder of designs, of ever-increasing capability and complexity, 
which have in fact worked better than all previous control methods on a number of important 
real-world physical control challenges. Level 2 is mainly a model-free design which I 
proposed in 1989 (IEEE Proc. CDC) called action-dependent HDP, which has been 
reinvented under many other names (e.g. “policy-Q). It was very successful in 1990 in 
various applications at McDonnell-Douglas, described in detail in HIC. (Most notably 
low-cost continuous manufacturing of high quality carbon-carbon parts, and relearning of the 
control of simulated F-15s so as to prevent crashes after damage. The latter success was the 
starting point for a huge program in reconfigurable flight control, centered at NASA Ames, 
which is now a kind of complex empire with many variations and deployments.)  

Levels 3 through 5 are all model-based designs. HIC and HLADP give much more detail. 
Some psychologists object to model-based design – but Grossberg has countered that learned 
expectations systems are a core part of animal learning which needs to be a major part of any 
realistic design.  



 

This slide summarizes some new unmet opportunities which we discussed at great length in a 
workshop in 2002, which led up to the new book HLADP. 
This workshop addressed the general-purpose mathematical tools for optimization with 
foresight in the general case (where noise, nonlinearity and complexity appear). 
Thousands of learned commentators have talked about management of complex systems in 
recent years. Hundreds of technologists have begun to talk about it, and even try to make it 
real. But in the end, these thousands of angels are dancing on the head of a single pin – the 
Bellman equation. In mathematics, there is only one exact way to solve problems in 
optimization over time in the general case, and that is to solve the Bellman equation.  

Perhaps a decade ago, true general optimization – dynamic programming – really worked 
only on very special systems or systems with one or two state variables. But little-known 
subgroups of SEVERAL disciplines have developed new general ways to use learning and 
approximation to provide useful general-purpose optimizers. Our workshop was intended to 
bring these groups together, to learn from each other, and to chart the way to the two key 
opportunities: (1) greater understanding and dissemination of how to get up to 50 variables, 
in effect; (2) how to follow up on new ideas for how to scale up – all the way to systems as 
complex as small mammalian brains.  

ECS has funded some work, but we believe that even an interagency initiative calling for 
more integration across disciplines, etc., could go further and faster, IF well-grounded in the 
kind of mathematical principles and issues which we have focused on. Actually, about half 
the effort should go into the “ADP” designs, half into critical subsystems like relevant pattern 
recognition, etc. Aliases for ADP: adaptive or approximate dynamic programming; 
reinforcement learning; adaptive critics; neurodynamic programming; HJB solvers.  



 

This slide was discussed at very great length in Mexico, because it provides an early 
introduction to these 5 streams of work. It was intended to help orient people in each of the 5 
disciplines to appreciate how the work in related disciplines complements their own, and fits 
together. There was even some time to mention the important other work depicted by “...” on 
the slide. Speakers in each area were more complete, of course, in reviewing their area.  

Later slides in this talk (which I did not reach) reviewed the neural net area and parts of 
control. In control theory --Mike Athans of MIT, a leader of hard-core nonlinear robust 
control, has sometimes said “what we need most of all are better general-purpose numerical 
solvers of the HJB equation” --and that is another way of stating the goals of ADP. Adaptive 
control has long been interested in learning and neural networks; there is reason to believe 
ADP could solve important unsolved problems in that area --including tot system stability 
without the usual restrictive assumptions. Optimal control might even claim ADP as one of 
its children. Cao at this conference discussed discrete event aspects of ADP, in work which 
has parallels in computer science and in operations research (e.g. Melamed); it will be 
important to bring together these strands, to better cope with discrete variables, which are 
part of what the brain can deal with. Hybrid systems control al Sastry provides another 
window into the discrete/continuous issues, and also provides effective multiple-time-scale 
methods for solving and factoring the Bellman equation, important to handling complexity in 
the time dimension.  

Computer science has done a magnificent job of educating large numbers of people about 
basic ADP designs, and making software available. It has also developed demonstrations of 
ADP on strategic games which make it clear that the word “intelligent” is not being misused 
when it is applied to this class of methods. It has addressed many core long-term issues. Yet 
many people who only know the AI part of the story believe that ADP only works on small, 
discrete problems, and that there are no complex real-world applications; collaboration with 
engineering would be crucial to dispelling such widespread misconceptions, which are part 
of what has hurt funding for AI in recent years.  



 

This slide is discussed in far more detail in HLADP and HIC, which give 
implementation details and equations. Control theorists who find the style of 
mathematics unfamiliar should recall that this is essentially the same design as IAC, 
except for the presence of the Critic at the top. A more complete control theory view is 
given at arXiv.org, at adap-org 9810001.  
Note that I show “R,” not X, going out to the Critic and Action net. This is an extremely 
important detail which many have missed. It is essential that the model network be a 
TLRN, when we are asking our controller to demonstrate “adaptive” behavior, as I 
discussed in previous slides. Alternatively, if you have a very complex, nasty 
simulation model of the plant you are trying to control, you could train a TLRN to be a 
“neural observer” (Frank Lewis) or state estimator (Feldkamp, Prokhorov); this means 
that you train the TLRN to predict the variables you won’t be able to see in the real 
plant, based on inputs of what you can actually sense. You can then use that augmented 
state vector as an input to the Critic and action net.  
Training a controller offline, using a nasty simulation model, is a very important tool in 
today’s engineering. A nasty simulation model is actually easier to develop than the 
complete deterministic models that most control theorists ask for. A nasty model 
should use random numbers at each time t, and also at the start of each string of 
simulation; it should use them to represent not only random disturbances but possible 
variations in parameters, couplings, and all kind of problems that might occur in the 
real world. Only with a TLRN feedback structure can a controller hope to work well 
acdross all the data produced by such a nasty simulator. When you train the action net, 
you could backpropagate through a trained neural network model, trained over the 
nasty data – or, in theory, you could backpropagate through the model itself, if you 
understand generalized backpropagation and DDP well enough.  
See my chapter in HLADP, the discussion of partially observed systems, for more 
detail.  



 

This is “level four” of ordinary adaptive critic designs.  
On the previous slide, you may have noticed that we never really use J directly there. 
So why calculate J, when we only need to calculate the derivatives of J with respect to 
components of the vector R? In fact, this slide illustrates a way of doing that.  
Again, see HIC and HLADP for more details. Here I will just touch on a few key 
points.  
Here, unlike HDP, the critic has many outputs. This means that the critic receives a 
lot of feedback in every time period, for its training. This means that it should have 
more and more advantage in learning faster than HDP, as the number of state 
variables grows. I developed DHP long ago as a way to overcome the obvious scaling 
problem with HDP. A benchmark comparison by Wunsch and Prokhorov, published 
in Neural Networks a few years back, shows that DHP generally performs better than 
HDP – and just as well as GDHP, more complicated (“level 5”) method I also 
developed.  
Most of the best successes in real-world control problems using adaptive critics have 
been based on DHP, in recent years. HLADP gives many examples.  
The outputs of a DHP critic actually have very deep connections to other intellectual 
fields. Some economists may wonder: “Are these lambdas related to Lagrange 
multipliers or price signals?” Indeed, they are – exactly. They are the generalization 
to the stochastic case of those older ideas.  
The core equations of DHP are a stochastic generalization of the Pontryagin equation 
– discussed, again, in HLADP and HIC.  
This leads to an interesting design possibility. A global critic, based on DHP, can be 
used to output the value signals or price signals used to manage lower-level 
controllers or agents in a truly optimal distributed multi-agent system. This is far 
superior to some of the totally ad hoc multiagent designs one finds in current 
literature. But to construct such a global critic requires the use of designs very high 
up on our tree; a simple MLP would not be powerful enough, let alone linear basis 
function nets!!!  



 

This is one of applications of DHP discussed in HLADP, and also in 
IJCNN03(Portland). It has continued to work on larger physical test systems, 
involving multiple generators and digital power switching devices (“FACTS”).  
Because it reduces “down times” on real generators by a substantial fraction, the team 
which has developed this technology is discussing possible commercial testbeds, 
while extending their research to address ever larger systems. The implications for 
the electric power system are discussed in HLADP.  
This work, centered on Missouri-Rolla (but also Georgia Tech and South Africa), is 
one of the important nuclei from which we could develop “dynamic stochastic 
optimal power flow,” something badly needed in the electric power sector.  



 

This slide was discussed at very great length in Mexico, because it provides an early 
introduction to these 5 streams of work. It was intended to help orient people in each of the 5 
disciplines to appreciate how the work in related disciplines complements their own, and fits 
together. There was even some time to mention the important other work depicted by “...” on 
the slide. Speakers in each area were more complete, of course, in reviewing their area.  

Later slides in this talk (which I did not reach) reviewed the neural net area and parts of 
control. In control theory --Mike Athans of MIT, a leader of hard-core nonlinear robust 
control, has sometimes said “what we need most of all are better general-purpose numerical 
solvers of the HJB equation” --and that is another way of stating the goals of ADP. Adaptive 
control has long been interested in learning and neural networks; there is reason to believe 
ADP could solve important unsolved problems in that area --including tot system stability 
without the usual restrictive assumptions. Optimal control might even claim ADP as one of 
its children. Cao at this conference discussed discrete event aspects of ADP, in work which 
has parallels in computer science and in operations research (e.g. Melamed); it will be 
important to bring together these strands, to better cope with discrete variables, which are 
part of what the brain can deal with. Hybrid systems control al Sastry provides another 
window into the discrete/continuous issues, and also provides effective multiple-time-scale 
methods for solving and factoring the Bellman equation, important to handling complexity in 
the time dimension.  

Computer science has done a magnificent job of educating large numbers of people about 
basic ADP designs, and making software available. It has also developed demonstrations of 
ADP on strategic games which make it clear that the word “intelligent” is not being misused 
when it is applied to this class of methods. It has addressed many core long-term issues. Yet 
many people who only know the AI part of the story believe that ADP only works on small, 
discrete problems, and that there are no complex real-world applications; collaboration with 
engineering would be crucial to dispelling such widespread misconceptions, which are part 
of what has hurt funding for AI in recent years.  



 

ADP02 was coordinated with DSOPF02, a conference joint-sponsored by NSF and 
the Electric Power Research  
Institute (EPRI), held by EPRI’s request. EPRI asked, in brief: “How can we get past 
the old paradigm of designing and controlling little pieces of the grid separately? 
How can we get to a new paradigm, where we optimize EVERYTHING in a unified 
way, as one big optimization problem, from operation to planning, so as to maximize 
global performance, measured by something like value added?” (I can still remember 
one conference where one engineer said “we don’t care about value-added,” and a 
major industry guy responded,”If you don’t, we won’t care about your work.”)  
Perhaps the closest thing to this vision NOW AVAILABLE is the Optimal Power 
Flow (OPF) package developed by Jim Momoh at Howard, which does integrate 
many functions together, and is very popular in rea industry. Perhaps the most 
practical way to implement the new vision proposed by EPRI is to try to UPGRADE 
OPF systems to fully incorporate foresight and handle stochastic effects. This leads 
us back to the same general mathematical challenge described in the last slide. We do 
have algorithmic tools now in operation which can handle a small number of 
generators or FACTS devices on an ADP basis (see top picture); the recent special 
issue of Neural Networks from IJCNN03 included two papers showing how 
robustness to disturbance can be tripled in such systems by moving to new 
technology. But to handle entire grids, we face the research challenge mentioned in 
the previous slide. But we do have ideas, at least on paper, for how to rise to this 
challenge. There do exist the kernels of new teams willing and able to explore these 
radical new directions, of importance BOTH to general-purpose cyberinfrastructure 
science AND to the electric power infrastructure itself. It is a long-term high-risk area, 
and it will not easy to build up these new islands of creative thinking, surrounded by 
a more conservative narrowly-disciplinary environment. But it certainly is an 
excellent opportunity for NSF.  



 

In order to apply methods like DHP to the entire global electric power grid, we would 
need to develop neural networks able to input and output something new – not vectors, 
as in ordinary neural nets – but complete relational networks.  
This slide illustrates the problem.  
To solve the problem, I have developed a concept called “Object Nets,” for which I 
recently received a patent. The core idea is illustrated in the next two slides. ObjectNets 
are basically a concrete piece pulled out of the more complex design concept outlined 
in my chapter in Karny et al eds, Dealing With Complexity: A Neural Network 
Approach, Springer, 1997.  



 



 



 

ADP has already made significant progress. As a rough rule of thumb, we can now 
handle highly nonlinear problems involving 10-50 continuous variables --a vast 
improvement over the early days of ADP. For some types of challenging real-world 
nonlinear problems, Powell has shown that ADP can even handle many thousands of 
variables. So, again, we face two major challenges: (1) how to consolidate, upgrade, 
teach and apply what we have already accomplished; (2) how to bridge the remaining 
gap to the basic mammal level of capability here.  
This slide depicts one view of what we need to do to bridge the gap. In essence, we 
need to build systems which handle greater complexity across SPACE (the first point) 
and across TIME (the second point). As we do so, we will need address a third need, 
the need for “imagination” subsystems. In today’s ADP systems, people choose 
actions u(t) at any time mainly by exhaustively searching every possible action, or 
else by using the output of a trained “Action net” or “Controller.” As life becomes 
more complex, we will need to replace “Action nets” with “Option nets,” and learn to 
search through a varied but finite set of possible options. We will also need to 
develop and use subsystems and testbeds which live up more completely to the 
stochastic capabilities of DP.  
I will soon discuss the first three issues, more or less in order. The list here comes 
from my early (regrettably complicated) paper in M. Karny et al, Dealing With 
Complexity, Springer, 1997, which I will cite further. Of course, we have all learned 
a lot since 1997, and have a lot more to learn, but there may be useful ideas buried in 
that paper.  



 

The next six slides summarize some ideas I have explored myself for coping with 
temporal structure, initially published in enormous detail in Karny et al (1997), and 
later summarized in a paper in Narendra’s Proceedings on Learning and Adaptation 
(Narendra, Yale, 2000). The key to this design was a new set of factored Bellman’s 
equations, which are similar in gross appearance to Sutton’s earlier “Bellman option 
equation” but radically different in properties and context. (They actually originated 
from the 1978 final report to DARPA of a grant I then had from them in conflict 
prediction and management. The main stimulus to my revisiting them was discussion 
about the mammal brain in workshops organized by Karl Pribram, reported in his 
edited books from Erlbaum. It is clear that the “loop” structure between the cerebral 
cortex and the basal ganglia and the thalamus really do implement something similar 
in character to all of this.)  
In order to demonstrate the value of such approaches in engineering, I have suggested 
the use of partitioned state spaces (as discussed in more detail in Narendra’s 
workshop) as a starting point for better performance in control. This could be applied 
for example to fuzzy or gain-scheduled kinds of control structures.Of course, it 
would be interesting to see what synergies exist between this approach to temporal 
structure and the approaches discussed by Dietterich and Sastry at this workshop.  



 



 



 

In theory, the ordinary type of adaptive critic can eventually converge to the best 
control strategy. What more do we need? Wouldn’t that be enough for complex 
concepts like multiple time scales to be LEARNED by the system, without any need 
to hard wire that kind of structure? If naïve versions of GDHP learn slowly, couldn’t 
we solve by using better learning procedures instead of apriori structure? These are 
very important questions; I now think the answer is “no,” but certainly it would be 
reasonable for someone to try to revisit the questions, and see if hey could come up 
with something new.  

 
For now, I think we can do better on learning speed, by exploiting a neural net  
cleaned-up version of an old AI trick which was called “temporal chunking” This 
slide gives an example, going back to the underlying mathematics of how we can do 
better, in a clean mathematical way – for the case of a plant with a finite number of 
possible states.  

(By the way, many researchers get confused about the difference between a “state” 
and a “state variable.” A system with just one continuous state variable, x1, actually 
has an infinite number of possible states that it could be in.)  



 

In building a neural net system to learn faster over time, we cannot just use the trick 
on the previous slide. This, in Karny et al, I developed a new pair of equations, which 
I might like to call the Werbos-Bellman equations. There are actually several 
versions, depending on the specification of the task structure. (The same is true of the 
Bellman equation!)  

The Werbos-Bellman equations are similar in flavor to an earlier attempted extension 
by Sutton, in his first paper on “options;” however, the extended version includes a 
few extra dimensions, which are essential to making the idea viable for 
general-purpose neural network design.  

Many AI researchers, inspired by Barto and by Sutton, have begun to ask about 
multiple time intervals – but there is clearly a need for more continuous-variable 
engineering and neural network thinking to complement those efforts, in order to 
develop working systems that exploit the principles here.  
For now, this is an area of research, not a set of existing implementations.  

Since the paper in Karny et al was very complex, I did try to summarize and extract 
and summarize some ideas for how to use the Werbos-Bellman equations in some 
engineering applications (e.g. when we need to partition the state space for optimal 
learning), in my paper on multiple models and ADP for the Yale Workshop on 
Learning and Adaptive Systems, Proceedings available from Narendra at Yale.  



 

This came from Karny et al. It is part of my view of the path up to ANN designs 
which would capture the full power of high-level intelligence in the mammal brain. I 
do not recommend it for near-term engineering applications.. but it is nice to have a 
glimpse of the top of the ladder, even through the clouds.  

Some would say that this is analogous to Sutton’s idea of “options” (discussed in 
HLADP) – but it is PARAMETRIZED, and is much closer to the theory or vision of 
Miller, Gallanter and Pribram in their classic book on plans and the structure of 
behavior. I would claim it is the core of the “deep structure” of language – that a 
“decision block” is a verb, the goal an object (to some extent), and modifiers adverbs. 
To explain the subjects of sentences… one must go above the mouse level, and 
beyond the scope of this tutorial.  



 

This kind of encoder-decoder design, or “bottleneck design” or “autoassociator” is 
very familiar in the ANN literature. Cottrell, for example, wrote some seminal papers 
on this. In ICNN88, I proposed some extensions of this old idea – but I later found out 
that the design has some severe problems.  
The design on the next slide is one way to fix them.  

 



 

This design, in chapter 13 of HIC, provides a kind of nonlinear generation of 
maximum likelihood factor design. Published in 1992, and also patented years ago, it 
provides a general way to use “mutual information” concepts for the nonlinear case. 
If the encoder, decoder and predictor are all chosen to be “universal deterministic 
predictors,” this provides a kind of universal way of representing (and learning) 
partially observed STOCHASTIC dynamical systems. In stripped down form 
(nulling out the predictor), it provides a kind of nonlinear principal components 
capability, more principled than some of the others suggested in recent years in fields 
like chemical engineering and statistics.  
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