New Formulations for Predictive Learning

Vladimir Cherkassky University of Minnesota cherk001@umn.edu Tutorial at IJCNN-05 July 31, 2005

Outline

- Motivation and Background
- Standard Inductive Learning Formulation
- Alternative Formulations
 - non-inductive types of inference
 - non-standard inductive formulations
- Predictive models for interpretation
- Conclusions

Motivation: Importance of Problem Formulation

Traditional (Simplistic) View

- 'Useful' = 'Predictive'
- May lead to misconceptions:
 - Inductive models are completely data-driven
 - The goal is to design better algorithms

Motivation: philosophical

- Karl Popper: Science starts from problems, and not from observations
- Confucius: Learning without thought is useless, thought without learning is dangerous
- What to do vs how to do

- Importance of problem formulation (vs algorithm)
- Just a few known formulations
- Thousands of algorithms

Background: historical

The problem of predictive learning
 Given past data + reasonable assumptions
 Estimate unknown dependency for future predictions

Driven by applications (not theory)

Historical Development

- Statistics (mathematical science)
 Goal: model identification, density estimation
- Neural Networks (empirical science)

Goal of learning: generalization, risk minimization

 Statistical Learning (VC theory) (natural science)

Goal of learning: generalization for distinct learning problem formulations

Standard Inductive Learning

- The learning machine observes samples (\mathbf{x}, \mathbf{y}) , and returns an estimated response $\hat{y} = f(\mathbf{x}, w)$
- Two modes of inference: identification vs imitation
- Risk $\int Loss(y, f(\mathbf{x}, w)) dP(\mathbf{x}, y) \rightarrow min$

Two Learning Problems

- Learning ~ estimating mapping $\mathbf{x} \rightarrow y$ (in the sense of risk minimization)
- Binary Classification: estimating an indicator function (with 0/1 loss)
- Regression: estimating a real-valued function (with squared loss)
- Assumptions: iid, training/test, loss fct

Contributions of VC-theory

- The Goal of Learning system imitation vs system identification
- Two factors responsible for generalization
- Keep-It-Direct Principle (Vapnik, 1995)
 - Do not solve a problem of interest by solving a more general (harder) problem as an intermediate step
- Clear Distinction between
 - problem setting
 - solution approach (inductive principle)
 - learning algorithm

Alternative Formulations

- Re-examine assumptions behind standard inductive learning
- 1 Finite training + large unknown test set → non-inductive inference (transduction, ...)
- 2 Particular loss functions

 \rightarrow new inductive formulations (application-driven)

- 3 Single model
 - \rightarrow multiple model estimation

1.Transduction

- How to incorporate unlabeled test data into the learning process
- Estimating function at given points

Given: training data (**X**i, yi), i = 1,...nand unlabeled test points Xn+j, j = 1,...k*Estimate:* class labels at these test points *Note:* need to predict only at given test points Xn+j, not for every possible input **X**

Transduction based on size of margin

The problem: Find class label of test input X

Many potential applications

- Prediction of molecular bioactivity for drug discovery
- Training data~1,909; test~634 samples
- Input space ~ 139,351-dimensional
- Prediction accuracy:

SVM induction ~ 74.5%; transduction ~ 82.3%

Ref: J. Weston et al, KDD cup 2001 data analysis: prediction of molecular bioactivity for drug design – binding to thrombin, *Bioinformatics 2003*

Beyond Transduction: Selection

Selection Problem

Given: training data (Xi, yi), i = 1,...nand unlabeled test points Xn+j, j = 1,...k*Select:* a subset of *m* test points with the highest probability of belonging to one class *Note:* selective inference needs only to select a subset of *m* test points, rather than assign class labels to all test points.

Hierarchy of Types of Inference

Identification

- Imitation
- Transduction
- Selection
- • • •

Implications: philosophical, human learning

2. Application-driven formulations

Inductive Learning System (revised)

The learning machine observes samples (**x**, y), and returns an estimated response \hat{y} to minimize application-specific *Loss* [f(**x**,w), y]

Application: financial engineering

Asset management via daily trading: non-standard learning formulation

Example: timing of mutual funds

- Background: buy-and-hold vs trading
- Recent scandals in mutual fund industry
- Daily trading scenario

Example of Actual Trading

Improved return + Reduced risk/ volatility:

Learning formulation for fund trading

Given

- Daily % price changes of a fund $q_i = (p_i p_{i-1})/p_i$
- Time series of daily values of input variables X_{i}
- Indicator decision function (1/0 ~ Buy/Sell) $y_i = f(x_i, w)$

Objective: maximize total return over n-day period

$$Q(w) = \sum_{i=1}^{n} f(x_i, w) q_i$$

Non-standard inductive formulation

- Maximize total account value $Q(w) = \sum_{i=1}^{n} f(x_i, w)q_i$
- Neither classification, nor regression¹

(b)

Example data sets: Regression

Two regression models
Single complex model

Multiple Model Formulation

 Available (training) data are generated by several (unknown) regression models,

$$y = t_m(\mathbf{x}) + \xi_m \qquad \mathbf{x} \in X_m$$

- Goals of learning:
 - Partition available data (clustering, segmentation)
 - Estimate a model for each subset of data (supervised learning)
- Assumption:
 - Majority of the data samples can be explained (described) by a single model.

Experimental Results: Linear

28

Experimental Results: Non-Linear

Multiple Model Classification

- Single-model approach
 Multiple-model approach
 - →complex model

• \rightarrow two simple models

Procedure for MMC

- Initialization: Available data = all training samples.
- Step 1: Estimate major model, i.e. apply robust classification to available data
 - Here, 'Robustness' wrt variations of data generated by minor model (s)
- Step 2: Partition available data (from one class) into two subsets
- Step 3: Remove subset of data (from one class) classified by the major model from available data.
- Iterate

Example of MMC: XOR data set

Training phase

Comparison continued

SVM polynomial kernel
 Prediction Accuracy

Error (%SV)

- 0.058 (25.5%) RBF
- Poly 0.067 (26.4%)
- MMC 0.055 (14.5%)

Summary for Multiple Model Estimation

- Improvements due to novel problem formulation, not sophisticated algorithms
- Practical learning algorithm using based on (linear) SVM
- Resulting model has hierarchical structure
- Advantages:
 - Interpretation
 - No Kernel Selection

Prediction and interpretation

- Many, many applications intrinsically difficult to formalize
 - Two practical goals of learning:
 - prediction (objective loss function)
 - interpretation, understanding (subjective)
 - Most algorithms developed for *predictive* settings, but used for *interpretation* and human *decision making*
 - Rationale: good predictive model ~ true

Example:functional neuroimaging

Understanding fMRI image data:

- estimate 'good' Brain Activation Maps showing brain activity (colored patches) in response to specific tasks
- Measure of goodness: predictability, reproducibility

Predictive models for understanding

- Always assume inductive formulation
- What if transduction yields much better prediction?
- Fundamental problem (classical view):
 - human reasoning ~ *logic + induction*
 - transduction does not fit this paradigm
- Goal of science: understanding
- Goal of science: perform/act well

Conclusions

Methodological shift:

think first about the problem formulation, rather than learning algorithms

Importance of problem formulation

- for empirical comparisons
- the limits of predictive models
- Philosophical impact of Vapnik's new types of (non-inductive) inference

References

- VC-Theory: V. Vapnik, Statistical Learning Theory, Wiley, NY
- Transduction: V. Vapnik (1998), Statistical Learning Theory, Wiley, + many recent papers
- Timing of Mutual Funds: E. Zitzewitz (2002), Who cares about shareholders: arbitrage-proofing mutual funds. Journal of Law, Economics and Organization, 19, 2, pp. 245-280
- Multiple Model Estimation:

Y. Ma and V. Cherkassky (2003), Multiple model classification using SVM-based approach, in Proc. IJCNN
V. Cherkassky and Y. Ma (2005), Multiple model regression estimation, IEEE TNN, 14, 4, pp. 785-798