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Motivation:
Importance of Problem Formulation

Traditional (Simplistic) View

‘Useful’ =‘Predictive’
May lead to misconceptions:

Inductive models are completely data-driven
The goal is to design better algorithms
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Motivation: philosophical
Karl Popper: Science starts from 
problems, and not from observations

Confucius: Learning without thought is 
useless, thought without learning is 
dangerous

What to do vs how to do
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Motivation
Another view of Predictive Learning

Importance of problem formulation (vs algorithm)
Just a few known formulations
Thousands of algorithms
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Background: historical

The problem of predictive learning
Given past data + reasonable assumptions

Estimate unknown dependency for future 
predictions

Driven by applications (not theory)
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Historical Development
Statistics (mathematical science)
Goal: model identification, density estimation

Neural Networks (empirical science)
Goal of learning: generalization, risk minimization

Statistical Learning (VC theory)  
(natural science)
Goal of learning: generalization for distinct learning 
problem formulations
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Standard Inductive Learning 

The learning machine observes samples (x ,y), and 
returns an estimated response
Two modes of inference: identification vs imitation
Risk 
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Two Learning Problems

Learning ~ estimating mapping x → y
(in the sense of risk minimization)
Binary Classification: estimating an 
indicator function (with 0/1 loss)
Regression: estimating a real-valued 
function (with squared loss) 
Assumptions: iid, training/test, loss fct
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Contributions of VC-theory
The Goal of Learning
system imitation vs system identification
Two factors responsible for generalization
Keep-It-Direct Principle (Vapnik, 1995)
Do not solve a problem of interest by solving a more 
general (harder) problem as an intermediate step
Clear Distinction between
- problem setting
- solution approach (inductive principle)
- learning algorithm
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Alternative Formulations
Re-examine assumptions behind 
standard inductive learning

1 Finite training + large unknown test set
non-inductive inference (transduction, …)

2 Particular loss functions
new inductive formulations (application-

driven)
3 Single model

multiple model estimation
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1.Transduction
How to incorporate unlabeled test data 
into the learning process
Estimating function at given points
Given: training data (Xi, yi) , i = 1,…n
and unlabeled test points Xn+j ,  j = 1,…k
Estimate: class labels at these test points 
Note: need to predict only at given test points 
Xn+j, not for every possible input X
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Transduction vs Induction

a priori knowledge 
assumptions

estimated 
function

training  
data

predicted 
output

induction deduction

transduction
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Transduction based on size of margin
The problem: Find class label of test input X
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Many potential applications
Prediction of molecular bioactivity for drug 
discovery
Training data~1,909; test~634 samples
Input space ~ 139,351-dimensional
Prediction accuracy:

SVM induction~74.5%; transduction ~ 82.3%
Ref: J. Weston et al, KDD cup 2001 data analysis: prediction 

of molecular bioactivity for drug design – binding to 
thrombin, Bioinformatics 2003
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Beyond Transduction: Selection

Selection Problem
Given: training data (Xi, yi) , i = 1,…n
and unlabeled test points Xn+j ,  j = 1,…k
Select: a subset of m test points with the 
highest probability of belonging to one class
Note: selective inference needs only to select 
a subset of m test points, rather than assign 
class labels to all test points.
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Hierarchy of Types of Inference

Identification
Imitation
Transduction
Selection
.....

Implications: philosophical, human learning
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2. Application-driven formulations

APPLICATION    NEEDS

Loss
Function

Input, output,
other variables

Training/
test data

Admissible
Models

FORMAL PROBLEM STATEMENT

LEARNING THEORY
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Inductive Learning System (revised)
The learning machine observes samples 
(x ,y), and returns an estimated response   
to minimize application-specific Loss [f(x,w), y]
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Application: financial engineering

Asset management via daily trading:
non-standard learning formulation

Buy/sell/hold
y

prediction
PREDICTIVE

MODEL
y=f(x)

TRADING
DECISION

MARKET

input  x
indicators

GAIN/
  LOSS
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Example: timing of mutual funds

Background: buy-and-hold vs trading
Recent scandals in mutual fund industry
Daily trading scenario

Buy
or
sell

Money MarketIndex or Fund

Sell
or
buy

Proprietary Exchange Strategy
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Example of Actual Trading
Improved return + Reduced risk/ volatility:
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Learning formulation for fund trading

Given 
- Daily % price changes of a fund 
- Time series of daily values of input variables
- Indicator decision function (1/0 ~ Buy/Sell)

Objective: maximize total return over n-day period
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Non-standard inductive formulation

Buy/sell/hold
y

prediction
PREDICTIVE

MODEL
y=f(x)

TRADING
DECISION

MARKET

input  x
indicators

GAIN/
  LOSS

Maximize total account value
Neither classification, nor regression
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3. Multiple Model Estimation
Single-model formulation

Estimate unknown 
dependency  

x → y

Multiple-model approach:
Available data can be 
‘explained’ using 
several models
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Example data sets: Regression

Two regression models Single complex model
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Multiple Model Formulation
Available (training) data  are generated by several 
(unknown) regression models, 

Goals of learning:
Partition available data (clustering, segmentation)
Estimate a model for each subset of data 
(supervised learning)

Assumption:
Majority of the data samples can be explained 
(described) by a single model.

mmty ξ+= )(x mX∈x
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Experimental Results: Linear 
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Experimental Results: Non-Linear
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Multiple Model Classification

Single-model approach
complex model

Multiple-model approach
two simple models
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Procedure for MMC 

Initialization: Available data = all training samples.
Step 1: Estimate major model, i.e. apply robust 
classification to available data

Here, ‘Robustness’ wrt variations of data generated by minor 
model (s)

Step 2: Partition available data (from one class) 
into two subsets

Step 3: Remove subset of data (from one class) 
classified by the major model from available data.
Iterate 



32

Example of MMC: XOR data set

Training phase
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Comparison for toy data set 

MMC hyperplanes
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Comparison continued
SVM polynomial kernel Prediction Accuracy

Error (%SV)
RBF    0.058 (25.5%)
Poly    0.067 (26.4%)
MMC   0.055 (14.5%)
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Summary for Multiple Model Estimation

Improvements due to novel problem 
formulation, not sophisticated algorithms
Practical learning algorithm using based on 
(linear) SVM
Resulting model has hierarchical structure
Advantages:

Interpretation
No Kernel Selection
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Prediction and interpretation
Many, many applications intrinsically 
difficult to formalize
Two practical goals of learning:
- prediction (objective loss function)
- interpretation, understanding (subjective)
Most algorithms developed for predictive
settings, but used for interpretation and 
human decision making
Rationale: good predictive model ~ true
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Example:functional neuroimaging
Understanding fMRI image data:
- estimate ‘good’ Brain Activation Maps showing brain activity 
(colored patches) in response to specific tasks
Measure of goodness: predictability, reproducibility
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Predictive models for understanding

Always assume inductive formulation
What if transduction yields much better 
prediction?
Fundamental problem (classical view):
- human reasoning ~ logic + induction
- transduction does not fit this paradigm
Goal of science: understanding
Goal of science: perform/act well
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Conclusions
Methodological shift:
think first about the problem formulation, 
rather than learning algorithms
Importance of problem formulation
- for empirical comparisons  
- the limits of predictive models                    
Philosophical impact of Vapnik’s new 
types of (non-inductive) inference
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