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Motivation:
i Importance of Problem Formulation

= Traditional (Simplistic) View

, (Learning . _ Useful
Method Model

= ‘Useful’ ='Predictive’

=« May lead to misconceptions:
= Inductive models are completely data-driven
= The goal is to design better algorithms



‘_L Motivation: philosophical

= Karl Popper: Science starts from
problems, and not from observations

= Confuclus: Learning without thought is
useless, thought without learning Is
dangerous

s What to do vs how to do



i Motivation

= Another view of Predictive Learning

Nature,
Environment

= Importance of problem formulation (vs algorithm)
= Just a few known formulations
= Thousands of algorithms



i Background: historical

= The problem of predictive learning
G/vern past data + reasonable assumptions

Estimate unknown dependency for future
predictions

= Driven by applications (not theory)



i Historical Development

= Statistics ( )
Goal: model identification, density estimation
= Neural Networks ( )

Goal of learning: generalization, risk minimization

= Statistical Learning (VC theory)
( )

Goal of learning: generalization for distinct learning
problem formulations



i Standard Inductive Learning

= The learning machine observes samples (X ,)), and
returns an estimated response y = f (X, w)

= Two modes of inference: identification vs imitation
= Risk [Loss(y, f(x,w)) dP(x,y)—>min
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i Two Learning Problems

= Learning — estimating mapping X — y
(in the sense of risk minimization)

= Binary Classification: estimating an
Indicator function (with 0/1 loss)

= Regression: estimating a real-valued
function (with squared loss)

= Assumptions: iid, training/test, loss fct
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i Contributions of VC-theory

The Goal of Learning

system imitation vs system identification

Two factors responsible for generalization
Keep-It-Direct Principle (Vapnik, 1995)

Do not solve a problem of interest by solving a more
general (harder) problem as an intermediate step

Clear Distinction between

- problem setting
- solution approach (inductive principle)
- learning algorithm
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i Alternative Formulations

= Re-examine assumptions behind
standard inductive learning

1 Finite training + large unknown test set
- non-inductive inference (transduction, ...)
2 Particular loss functions

- new inductive formulations (application-
driven)

3 Single model
- multiple model estimation
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i 1.Transduction

= How to Incorporate unlabeled test data
Into the learning process

= Estimating function at given points
Given: training data (Xi, yi) , 1 =1,...n
and unlabeled test points Xn+j, j=1,..k

Estimate: class labels at these test points

Note: need to predict only at given test points
Xn+], not for every possible input X
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i Transduction vs Induction

a priori knowledge
assumptions

l

estlmated
functlon

mducth Wctlon
predicted
data transductlon QuUIpUL
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Transduction based on size of margin

The problem: Find class label of test input X
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# Many potential applications

rediction of molecular bioactivity for drug
discovery

= Training data—1,909; test—634 samples

= Input space — 139,351-dimensional

= Prediction accuracy:

SVM induction~74.5%; transduction ~ 82.3%

Ref.: J. Weston et al, KDD cup 2001 data analysis: prediction
of molecular bioactivity for drug design — binding to
thrombin, Bioinformatics 2003
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i Beyond Transduction: Selection

m Selection Problem

Given: training data (Xi, yi) , 1 = 1,...n
and unlabeled test points Xn+j , | = 1,...k

Select: a subset of m test points with the
highest probability of belonging to one class

Note: selective inference needs only to select
a subset of /m test points, rather than assign
class labels to all test points.
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i Hierarchy of Types of Inference

z ldentification

= Imitation

s [ransduction
s Selection

Implications. philosophical, human learning
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2. Application-driven formulations

APPLICATION NEEDS

| S|

Loss Input, output, Training/
Function |V_V' other variables "_Vl test data

&
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Models
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FORMAL PROBLEM STATEMENT

LEARNING THEORY
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i Inductive Learning System (revised)

= [he learning machine observes samples

(X ,)), and returns an estimated response y
to minimize application-specific Loss [f(x,w), Y]

Generator
of samples

X
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i Application: financial engineering

= Asset management via daily trading:
non-standard learning formulation

input x PREDICTIVE dicti TRADING /sell/hold
MODEI predictign Buy/sell/ho
indicatorsy —f y DECISION
y=t(x)

GAIN/

20



Example: timing of mutual funds

+

= Background: buy-and-hold vs trading
= Recent scandals in mutual fund industry
= Dalily trading scenario

<
Index or Fund Money Market
>
= BAW
or or
buy sell

Proprietary Exchange Strategy
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i Example of Actual Trading

= Improved return + Reduced risk/ volatility:

Value of exchange vs. buy and hold
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i Learning formulation for fund trading

Glven

- Daily % price changes of a fund 4. = (pi — pi_l)/ P.

- Time series of daily values of input variables Xi
Indicator decision function (1/0 ~ Buy/Sell) y. = f (X, w)

Objective: maximize total return over n-day period

QW) =3 (%, w)q
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i Non-standard inductive formulation

= Maximize total account value Q(w) = Z f(x,w)q,
= Neither classification, nor regressmn

input X PREDCTIVE dictign] TRADING /sell/hold
MODEL |pre |ct|9n Buy/sell/ho
indicatorsn y_f(X) y DECISION

GAIN/
»| MARKET L 0SS
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i 3. Multiple Model Estimation

= Single-model formulation

= Estimate unknown
dependency

X—=>)

= Multiple-model approach:
= Available data can be
‘explained’ using
several models

Training
Data

| Predictive

Model

(a)

Model 1
Subset 1

Training
Data

/
I

Model M
Subset M

(b)




Example data sets: Regression

= Two regression models = Single complex model
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i Multiple Model Formulation

= Avallable (training) data are generated by several
(unknown) regression models,

y=t,(X) +&, XXy

= Goals of learning:
= Partition available data (clustering, segmentation)

= Estimate a model for each subset of data
(supervised learning)

= Assumption:

= Majority of the data samples can be explained
(described) by a single model.
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Experimental Results: Linear
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i Experimental Results: Non-Linear
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i Multiple Model Classification

= Single-model approach = Multiple-model approach
= 2>complex model = = two simple models
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Procedure for MMC

w /rutialization. Available data = all training samples.

= Step 1: Estimate major model, i.e. apply robust
classification to available data

= Here, ‘Robustness’ wrt variations of data generated by minor
model (s)

= Step 2: Partition available data (from one class)
Into two subsets

= Step 3: Remove subset of data (from one class)
classified by the major model from available data.

m [lerate
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i Example of MMC: XOR data set

= Training phase
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i Comparison for toy data set

= MMC hyperplanes = RBF-SVM

-1 -0.5 0 0.5 -1 -0.5 0 0.5
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i Comparison continued

= SVM polynomial kernel = Prediction Accuracy

Error (%SV)
= RBF 0.058 (25.5%)
= Poly 0.067 (26.4%)
= MMC 0.055 (14.5%)

-0.2f
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i Summary for Multiple Model Estimation

= Improvements due to novel problem
formulation, not sophisticated algorithms

= Practical learning algorithm using based on
(linear) SVM

= Resulting model has hierarchical structure

= Advantages:
= Interpretation
= No Kernel Selection
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Prediction and interpretation

= Many, many applications intrinsically
difficult to formalize

= Two practical goals of learning:
- prediction (objective loss function)
- Interpretation, understanding (subjective)

= Most algorithms developed for predictive
settings, but used for /nterpretation and
human adecision making

m Rationale.: good predictive model ~ true
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Example:functional neuroimaging

= Understanding fMRI image data:

- estimate ‘good’ Brain Activation Maps showing brain activity
(colored patches) in response to specific tasks

= Measure of goodness: predictability, reproducibility
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Predictive models for understanding

= Always assume inductive formulation

= What if transduction yields much better
prediction?

= Fundamental problem (classical view):
- human reasoning ~ /ogic + induction
- transduction does not fit this paradigm
= Goal of science: understanding
= Goal of science: perform/act well
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i Conclusions

= Methodological shift:

think first about the problem formulation,
rather than learning algorithms

= Importance of problem formulation
- for empirical comparisons
- the limits of predictive models

= Philosophical impact of Vapnik’s new
types of (non-inductive) inference
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