Foundations and Applications of Granular Computing Witold Pedrycz

Department of Electrical & Computer Engineering University of Alberta, Edmonton, Canada & Systems Research Institute of Polish Academy of Sciences Warsaw, Poland

Outline

Introductory Comments and Motivation
Information granulation as a central pursuit of abstraction
Defining Granular Computing
Formal Models of Information Granules (sets, fuzzy sets, rough sets, shadowed sets)
Communication Issues: Encoding and Decoding mechanisms
Concluding note

Granular Computing as a vehicle of human-centric pursuits

Human semantics

abstraction and levels of abstraction

conflicting requirements

decision making

conflict resolution

classification

interpretation

Granular Computing as a vehicle of human-centric pursuits

Computing syntax

precision

numeric processing

hardware and software

system of equations

two-valued logic

Human-centric computing: communication framework

Communication layer and communication mechanisms

Granular Computing

Information granules: entities composed of elements drawn together on a basis of their similarity, functional closeness, spatial neighborhood, etc.

Information granulation: processes that support the Development of information granules

Granular Computing: Motivation

Information granules as basic mechanisms of abstraction

Customized, user-centric and business-centric approach to problem description and problem solving

Processing at the level of information granules optimized with respect to the specificity of the problem

Granular Computing: diversity of formal environments

Set theory, interval analysis

Probabilistic granules

Fuzzy sets

Rough sets

Shadowed sets

Granular Computing (GC)

Time and information granulation

Based on cultural, legal and business orientation of the users

Granularity: Years, months, days, Microseconds...

The granularity of information is user-oriented and problem-directed

Information granularity

19th century: grains of silver emulsion in photography

20th century: grains (pixels) of digital images

Functional granulation

Modules as meaningful functional entities

Criteria of granulation (cohesion, coupling, comprehension, maintainability...)

Sets

Notion of Membership

Characteristic function

$$x \in A \iff A(x) = 1$$

$$x \notin A \iff A(x) = 0$$

Concept of dichotomy

Description of a set

- Membership
 - -enumerate elements belonging to the set
- Characteristic function

Expressing specifications (1)

Granular Computing: Set Theory and Interval Analysis

- Support basic processes of abstraction by employing an idea of dichotomization
- Two-valued logic as a formal means of computing
- Basic mechanism of abstraction
- Information hiding
- Level of specificity of information granules reflected (quantified) by set cardinality

Sets - Fuzzy Sets

Challenge: three-valued logic

```
Lukasiewicz (~1920)
true (0)
false (1)
don't know (1/2)
```

Three valued logic and databases

Granular Computing: Non-Aristotelian View

..in analyzing the Aristotelian codification, I had to deal with the two-valued, "either-or" type of orientation. In living, many issues are not so sharp, and therefore a system that posits the general sharpness of "either-or" and so objectifies "kind", is unduly limited; it must be revised and more flexible in terms of "degree"...

A. Korzybski, 1933

"Impedence" Mismatch

Designer/User: linguistic terms, design
 objectives, conflicting requirements

Computer Systems: two-valued logic

Granular Computing: Fuzzy Sets

- departure from dichotomization (yes-no)
- •refinement of concepts by accepting continuous membership grades
- based on ideas of multivalued (fuzzy) logic
- mechanism of abstraction capturing qualitative as well as quantitative facet of concepts

Fuzzy Sets: Membership functions

Partial membership of element to the set – membership degree A(x)

The higher the value of A(x), the more typical the element "x" (as a representative of A)

Expressing specifications (2)

Probability and fuzzy sets

Prob(
$$high$$
 temperature) = α

Prob(high temperature) = /ow

Probability and fuzzy sets

Fuzzy sets

Granular Computing: Rough Sets

- defining information granules through their lower and upper bounds
- •identifying regions with a lack of knowledge about concept
- expressing aspects of uncertainty through "rough" boundaries

Granular Computing: Rough Sets

Granular Computing: Rough Sets

lower bound:
$$X_{-} = \{(A_i, B_j) | X \supseteq A_i \times B_j\}$$

upper bound:
$$X_{+} = \{(A_{i}, B_{j}) | X \cap (A_{i} \times B_{j}) \neq \emptyset\}$$

Communication mechanisms: Rough Sets

Description of X in the Language of $\{A_i\}$

Shadowed sets and fuzzy set constructs

Interval-valued fuzzy sets

Type -2 fuzzy sets

Conceptual developments

Shadowed sets

Induced by fuzzy sets, Result of some design process

Fuzzy Sets: open questions (design, analysis, and interpretation)

Fuzzy sets → processing → computing overhead

Fuzzy sets → interpretation (detailed numeric membership grades and their semantics)

Fuzzy Sets and some retrospective views

Fuzzy set and sets (α -cuts)

 $A(x) < \alpha$ reduce to 0 otherwise return 1

- * Choice of α
- * no reflection of "quality" of conversion of membership grades to zero or one

Shadowed sets

No numeric commitment (no single membership degree)

Shadowed sets

Shadows- "concentration" of intermediate membership grades in some regions of X

Operations on shadowed sets (1)

Operations on shadowed sets (2)

complement

$$\begin{array}{c|c}
0 & 1 \\
1 & 0 \\
[0,1] & [0,1]
\end{array}$$

Development of shadowed sets induced by fuzzy sets

Reallocation of membership degrees and maintaining their balance

REDUCTION OF MEMBERSHIP (to 0) +

+ELEVATION OF MEMBERSHIP (to 1) =

= SHADOW

Development of shadowed sets induced by fuzzy sets

REDUCTION OF MEMBERSHIP (to 0) +

+ELEVATION OF MEMBERSHIP (to 1) =

Development of shadowed sets induced by fuzzy sets

Reduction of membership

$$\int_{x:A(x)\leq\beta}A(x)dx$$

elevation of membership

$$\int_{\mathbf{x}: \mathbf{A}(\mathbf{x}) \ge 1 - \beta} (1 - \mathbf{A}(\mathbf{x})) d\mathbf{x}$$

Shadow-localization of membership

$$\int_{\mathbf{x}:\boldsymbol{\beta}<\mathbf{A}(\mathbf{x})<\mathbf{1}-\boldsymbol{\beta}} d\mathbf{x}$$

Development of shadowed sets as an optimization problem

REDUCTION OF MEMBERSHIP (to 0) + ELEVATION QFα)MEMBERSHIP (to 1) =

= SHADOW

$$V(\beta) = \left| \int_{x:A(x) \le \beta} A(x) dx + \int_{x:A(x) \ge 1-\beta} (1 - A(x)) dx - \int_{x:\beta < A(x) < 1-\beta} dx \right|$$

Min $V(\beta)$ wrt. to β

From fuzzy sets to shadowed sets

Design criterion:

reflect the amount of intermediate membership grades transformed into 0 or 1

$$\beta \in (0,1/2)$$

Development of shadowed sets

$$\Omega_1 + \Omega_2 = \Omega_3$$

$$\int_{a}^{a_{1}} A(x)dx + \int_{a_{2}}^{b} (1 - A(x))dx = \int_{a_{1}}^{a_{2}} dx$$

Triangular fuzzy sets

$$\beta = \frac{2^{3/2} - 2}{2} = 0.4142$$

Discrete shadowed sets

Fuzzy set with U_k , $k=1,\ 2,...,\ N$

$$\Omega_1 = \sum_{k: u_k \le \beta} \!\!\! u_k$$

$$\Omega_2 = \text{card} \{ u_k \mid \beta < u_k < 1 - \beta \}$$

$$\Omega_3 = \sum_{k: u_k \ge 1-\beta} (1 - u_k)$$

processing

Interfaces of Granular Computing

User-centric and user-friendly environment of paramount importance to Granular Computing

- •User→ system
- •System → user

Two categories of interfaces

Reflecting the preferences of users

- Static approach (fixed characteristics)
- Dynamic approach (personalization;e.g.relevance feedback)

Interfaces: Architectural considerations

Interfaces-personalization

Input Interfaces

Granularity of input information

- Variable level of granularity (modeling level of confidence)
- Formal models of granular information
- Linguistic data
- Computing overhead
- Specificity of the processing module

Output Interfaces

- Preferences of users (level of specificity; summarization)
- Visualization of results
- Numeric condensation of results

Input Interfaces- Design Paradigm

Input datum X

Vocabulary $\mathbf{A} = \{A1, A2, ..., Ac\}$

Problem: expressing X in terms of A

Possibility and Necessity Measures

Possibility: Poss(X, Ai)

Necessity: Nec(X, Ai)

Aggregates of possibility and necessity

Possibility Measure

Poss(X, Ai) -- degree of overlap of X and Ai

Necessity Measure

Nec(X, Ai) -- degree of inclusion of X in Ai

Output interfaces

communicating results in a meaningful and "readable" manner

Linguistic (granular)

Linguistic approximation

Shadowed set (quantification of uncertainty)

Numeric representation

Linguistic (granular)

Expressing result in terms of the vocabulary of generic linguistic terms

{ A1
$$(\lambda 1)$$
, A2 $(\lambda 2)$,..., Ac (λc) }

Linguistic approximation

Approximate the result by a single element from the vocabulary

Ai

using eventually linguistic modifiers (τ ; *very*, *more or less*, etc.)

 $\tau(Ai)$

Shadowed set (quantification of uncertainty)

Fuzzy set transformed into a shadowed set which allows for a three-valued quantification

- (a) Full membership
- (b) "localized" uncertainty
- (c) Membership excluded

Shadowed sets: interpretation of data structure and hierarchy of concepts

Numeric representation

Fuzzy set approximated by a single numeric representative

- (a) Very concise but lacks uncertainty quantification
- (b) Usually highly nonlinear
- (c) Numerous transformations possible (non-unique)

Communication: Numeric data and Intervals [quantization effect]

decodi ng D/A

Communication: Numeric data and fuzzy sets [granulation effect]

decodi ng
[defuzzi fi cati on]

Decoding: one-dimensional case

codebook-triangular fuzzy sets with ½ overlap

Codebook produces a zero decoding error $\hat{x} = x$

Numeric representation and associated error

Given the interface formed by clusters (prototypes), and

current membership values,

determine a numeric representative generated by the interface

Numeric representation and associated error

Numeric representation and associated error

Numeric representation

$$\hat{\mathbf{x}}_{k} = \frac{\sum_{i=1}^{c} u_{ik}^{m} \mathbf{v}_{i}}{\sum_{i=1}^{c} u_{ik}^{m}}$$

 u_{ik} - membership in i - th cluster for \mathbf{x}_k

$$\sum_{k=1}^{N} \|\mathbf{x}_k - \hat{\mathbf{x}}_k\|^2$$

Concluding note

