## Foundations and Applications of Granular Computing Wind Pedrycz

Department of Electrical & Computer Engineering University of Alberta, Edmonton, Canada & Systems Research Institute of Polish Academy of Sciences Warsaw, Poland

## Outline

Introductory Comments and Motivation Information granulation as a central pursuit of abstraction Defining Granular Computing Formal Models of Information Granules (sets, fuzzy sets, rough sets, shadowed sets) Communication Issues: Encoding and Decoding mechanisms Concluding note

# Granular Computing as a vehicle of human-centric pursuits

| Human | semantics                             |
|-------|---------------------------------------|
|       | abstraction and levels of abstraction |
|       | conflicting requirements              |
|       | decision making                       |
|       | conflict resolution                   |
|       | classification                        |
|       | interpretation                        |

# **Granular Computing as a vehicle of human-centric pursuits**

#### Computing syntax precision numeric processing hardware and software system of equations two-valued logic

## Human-centric computing: communication framework



## **Granular Computing**

Information granules: entities composed of elements drawn together on a basis of their similarity, functional closeness, spatial neighborhood, etc.

Information granulation: processes that support the Development of information granules

## Granular Computing: Motivation

Information granules as basic mechanisms of abstraction

Customized, user-centric and business-centric approach to problem description and problem solving

Processing at the level of information granules optimized with respect to the specificity of the problem

## **Granular Computing: diversity of formal environments**

Set theory, interval analysis

**Probabilistic granules** 

**Fuzzy sets** 

Rough sets

**Shadowed sets** 

## **Granular Computing (GC)**



### **Time and information granulation**

Based on cultural, legal and business orientation of the users

Granularity: Years, months, days, .... Microseconds...

The granularity of information is user-oriented and problem-directed

## **Information granularity**

19<sup>th</sup> century: grains of silver emulsion in photography

20<sup>th</sup> century: grains (pixels) of digital images

#### **Functional granulation**





#### Modules as meaningful functional entities

Criteria of granulation (cohesion, coupling, comprehension, maintainability...)

## Sets

## Notion of Membership





## **Characteristic function**

 $x \in A \iff A(x) = 1$ 

 $x \notin A \iff A(x) = 0$ 

Concept of dichotomy

## **Description of a set**

## Membership

-enumerate elements belonging to the set

### Characteristic function



## **Expressing specifications (1)**



## **Granular Computing: Set Theory and Interval Analysis**

Support basic processes of abstraction by employing an idea of dichotomization
Two-valued logic as a formal means of computing

- Basic mechanism of abstraction
- Information hiding
- •Level of specificity of information granules reflected (quantified) by set cardinality

## Sets - Fuzzy Sets



M.C.Escher

## Challenge: three-valued logic

Lukasiewicz (~1920) true (0) false (1) don't know (1/2)

Three valued logic and databases

## **Granular Computing: Non-Aristotelian View**

..in analyzing the Aristotelian codification, I had to deal with the two-valued, "either-or" type of orientation. In living, many issues are not so sharp, and therefore a system that posits the general sharpness of "either-or" and so objectifies "kind", is unduly limited; it must be revised and more flexible in terms of "degree"...

A. Korzybski, 1933

#### "Impedence" Mismatch

Designer/User: linguistic terms, design
objectives, conflicting requirements



## **Granular Computing: Fuzzy Sets**

departure from dichotomization (*yes-no*)
refinement of concepts by accepting *continuous* membership grades
based on ideas of multivalued (fuzzy) logic
mechanism of abstraction capturing *qualitative* as well as *quantitative* facet of concepts

## **Fuzzy Sets: Membership functions**

Partial membership of element to the set – <u>membership degree</u> A(x)

The higher the value of A(x), the more typical the element "x" (as a representative of A)

## **Expressing specifications (2)**

system's response time



## **Probability and fuzzy sets**

#### Prob(*high* temperature) = $\alpha$

#### Prob(high temperature) = /ow

## **Probability and fuzzy sets**

Prob(*high* temperature) =  $\alpha$ 



Fuzzy sets

## Granular Computing: Rough Sets

defining information granules through their lower and upper bounds
identifying regions with a lack of knowledge about concept
expressing aspects of uncertainty through "rough" boundaries

## Granular Computing: Rough Sets



## Granular Computing: Rough Sets



## **Communication mechanisms: Rough Sets**



Description of X in the language of  $\{A_i\,\}$ 

# Shadowed sets and fuzzy set constructs

Interval-valued fuzzy sets

Type -2 fuzzy sets

**Conceptual developments** 

**Shadowed sets** 

Induced by fuzzy sets, Result of some design process

## Fuzzy Sets: open questions (design, analysis, and interpretation)

Fuzzy sets  $\rightarrow$  processing  $\rightarrow$  computing overhead

Fuzzy sets  $\rightarrow$  interpretation (detailed numeric membership grades and their semantics)

# Fuzzy Sets and some retrospective views





 $A(x) < \alpha$  reduce to 0 otherwise return 1

- \* Choice of  $\alpha$
- no reflection of "quality" of conversion of membership grades to zero or one

#### **Shadowed sets**





## **Operations on shadowed sets (1)**

 $\begin{array}{c|ccccc} 0 & 0 & 1 & [0,1] \\ 1 & 1 & 1 & 1 \\ [0,1] & [0,1] & 1 & [0,1] \end{array}$ uni on 0 1 [0,1]  $\begin{array}{c|cccc} 0 & 0 & 0 \\ 1 & 0 & 1 & [0,1] \\ [0,1] & 0 & [0,1] & [0,1] \end{array}$ intersection 1 [0,1] 0

## **Operations on shadowed sets (2)**

complement

 $\begin{array}{c|c}
0 & 1 \\
1 & 0 \\
[0,1] & [0,1]
\end{array}$ 

## Development of shadowed sets induced by fuzzy sets

Reallocation of membership degrees and maintaining their balance

### **REDUCTION OF MEMBERSHIP (to 0) +**

+ELEVATION OF MEMBERSHIP (to 1) =

#### = SHADOW

## Development of shadowed sets induced by fuzzy sets

**REDUCTION OF MEMBERSHIP (to 0) +** 

+ELEVATION OF MEMBERSHIP (to 1) =



## **Development of shadowed sets induced by fuzzy sets**

**Reduction of membership** 

 $\int_{x:A(x)\leq\beta} A(x)dx$ 

elevation of membership

$$\int_{x:A(x)\geq 1-\beta} (1-A(x))dx$$

**Shadow-localization of membership** 

dx  $x:\beta < A(x) < 1-\beta$ 

## **Development of shadowed sets as an optimization problem**

REDUCTION OF MEMBERSHIP (to 0) + ELEVATION  $QF_{\alpha}MEMBERSHIP$  (to 1) =

= SHADOW

$$V(\beta) = \left| \int_{x:A(x) \le \beta} A(x) dx + \int_{x:A(x) \ge 1-\beta} (1 - A(x)) dx - \int_{x:\beta < A(x) < 1-\beta} dx \right|$$

#### Min V( $\beta$ ) wrt. to $\beta$

## From fuzzy sets to shadowed sets

#### **Design criterion:** reflect the amount of intermediate membership grades transformed into 0 or 1



 $\beta \in (0,1/2)$ 

#### **Development of shadowed sets**



## **Triangular fuzzy sets**



$$\beta = \frac{2^{3/2} - 2}{2} = 0.4142$$

#### **Discrete shadowed sets**

Fuzzy set with  $U_k$  , k=1, 2, ..., N

$$\Omega_{1} = \sum_{k:u_{k} \leq \beta} u_{k}$$

$$\Omega_{2} = \operatorname{card} \{ u_{k} \mid \beta < u_{k} < 1 - \beta \}$$

$$-V(\beta) = |\Omega_{1} + \Omega_{3} - \Omega_{2}|$$

$$\Omega_{3} = \sum_{k:u_{k} \geq 1 - \beta} (1 - u_{k})$$

# **Environments of fuzzy sets and shadowed sets**



processing

### **Interfaces of Granular Computing**

User-centric and user-friendly environment of paramount importance to Granular Computing

•User→ system

•System  $\rightarrow$  user

## **Two categories of interfaces**

**Reflecting the preferences of users** 

- •Static approach (fixed characteristics)
- •Dynamic approach (personalization; e.g.relevance feedback)

## Interfaces: Architectural considerations





## **Input Interfaces**



**Granularity of input information** 

Variable level of granularity (modeling level of confidence)
Formal models of granular information

- •Linguistic data
- Computing overhead
- •Specificity of the processing module

## **Output Interfaces**



- •Preferences of users (level of specificity; summarization)
- •Visualization of results
- •Numeric condensation of results



Input datum X

Vocabulary  $A = \{A1, A2, ..., Ac\}$ 

Problem: expressing X in terms of A

## **Possibility and Necessity Measures**



#### Possibility: Poss(X, Ai)

Necessity: Nec(X, Ai)

Aggregates of possibility and necessity



#### Poss(X, Ai) -- degree of overlap of X and Ai



#### Nec(X, Ai) -- degree of inclusion of X in Ai

## **Output interfaces**

## communicating results in a meaningful and "readable" manner



Linguistic (granular)

Linguistic approximation

Shadowed set (quantification of uncertainty)

Numeric representation

## Linguistic (granular)

Expressing result in terms of the vocabulary of generic linguistic terms

{ A1 (λ1), A2(λ2),..., Ac(λc)}

## Linguistic approximation

Approximate the result by a single element from the vocabulary

Ai

using eventually linguistic modifiers (τ; *very*, *more or less*, etc.)

Shadowed set (quantification of uncertainty)

Fuzzy set transformed into a shadowed set which allows for a three-valued quantification

(a)Full membership(b)"localized" uncertainty(c)Membership excluded

## Shadowed sets: interpretation of data structure and hierarchy of concepts



Numeric representation

Fuzzy set approximated by a single numeric representative

(a) Very concise but lacks uncertainty quantification
(b) Usually highly nonlinear
(c) Numerous transformations possible (nonunique)

## **Communication: Numeric data and Intervals** [quantization effect]



decodi ng D/A

## **Communication: Numeric data and fuzzy sets** [granulation effect]



decodi ng [defuzzi fi cati on]

## Decoding : one-dimensional case

codebook-triangular fuzzy sets with ½ overlap



Codebook produces a zero decoding error  $\hat{\mathbf{x}} = \mathbf{x}$ 

# Numeric representation and associated error

Given the interface formed by clusters (prototypes),

and

current membership values,

determine a numeric representative generated by the interface

# Numeric representation and associated error



# Numeric representation and associated error

**Numeric representation** 

$$\hat{\mathbf{x}}_{k} = \frac{\sum_{i=1}^{c} u_{ik}^{m} \mathbf{v}_{i}}{\sum_{i=1}^{c} u_{ik}^{m}}$$

 $u_{ik}$  – membership in i - th cluster for  $\mathbf{x}_k$ 

Error

$$\sum_{k=1}^{N} \|\mathbf{x}_{k} - \hat{\mathbf{x}}_{k}\|^{2}$$

#### **Concluding note**

