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What Is Evolutionary Computation

1. It is the study of computational systems which use ideas and
get inspirations from natural evolution.

2. One of the principles borrowed is survival of the fittest.

3. Evolutionary computation (EC) techniques can be used in
optimisation, learning and design.

4. EC techniques do not require rich domain knowledge to use.
However, domain knowledge can be incorporated into EC
techniques.
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A Simple Evolutionary Algorithm

1. Generate the initial population P (0) at random, and set
i ← 0;

2. REPEAT

(a) Evaluate the fitness of each individual in P (i);

(b) Select parents from P (i) based on their fitness in P (i);

(c) Generate offspring from the parents using crossover and
mutation to form P (i + 1);

(d) i ← i + 1;

3. UNTIL halting criteria are satisfied
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EA as Population-Based Generate-and-Test

Generate: Mutate and/or recombine individuals in a population.

Test: Select the next generation from the parents and offsprings.
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How Does the Simple EA Work

Let’s use the simple EA to maximise the function f(x) = x2 with x

in the integer interval [0, 31], i.e., x = 0, 1, · · · , 30, 31.

The first step of EA applications is encoding (i.e., the
representation of chromosomes). We adopt binary representation
for integers. Five bits are used to represent integers up to 31.
Assume that the population size is 4.

1. Generate initial population at random, e.g., 01101, 11000,
01000, 10011. These are chromosomes or genotypes.

2. Calculate fitness value for each individual.

(a) Decode the individual into an integer (called phenotypes),

01101 → 13, 11000 → 24, 01000 → 8, 10011 → 19;
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(b) Evaluate the fitness according to f(x) = x2,

13 → 169, 24 → 576, 8 → 64, 19 → 361.

3. Select two individuals for crossover based on their fitness. If
roulette-wheel selection is used, then

pi =
fi∑
j fj

.

Two offspring are often produced and added to an intermediate
population. Repeat this step until the intermediate population
is filled. In our example,

p1(13) = 169/1170 = 0.14 p2(24) = 576/1170 = 0.49

p3(8) = 64/1170 = 0.06 p4(19) = 361.1170 = 0.31

Assume we have crossover(01101, 11000) and
crossover(10011, 11000). We may obtain offspring 0110 0 and
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1100 1 from crossover(01101, 11000) by choosing a random
crossover point at 4, and obtain 10 000 and 11 011 from
crossover(10011, 11000) by choosing a random crossover point
at 2. Now the intermediate population is

01100, 11001, 10000, 11011

4. Apply mutation to individuals in the intermediate population
with a small probability. A simple mutation is bit-flipping. For
example, we may have the following new population P (1) after
random mutation:

01101, 11001,00000, 11011

5. Goto Step 2 if not stop.
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Different Evolutionary Algorithms

There are several well-known EAs with different

• historical backgrounds,

• representations,

• variation operators, and

• selection schemes.

In fact, EAs refer to a whole family of algorithms, not a single
algorithm.
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Genetic Algorithms (GAs)

1. First formulated by Holland for adaptive search and by his
students for optimisation from mid 1960s to mid 1970s.

2. Binary strings have been used extensively as individuals
(chromosomes).

3. Simulate Darwinian evolution.

4. Search operators are only applied to the genotypic
representation (chromosome) of individuals.

5. Emphasise the role of recombination (crossover). Mutation is
only used as a background operator.

6. Often use roulette-wheel selection.
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Evolutionary Programming (EP)

1. First proposed by Fogel et al. in mid 1960s for simulating
intelligence.

2. Finite state machines (FSMs) were used to represent
individuals, although real-valued vectors have always been used
in numerical optimisation.

3. It is closer to Lamarckian evolution.

4. Search operators (mutations only) are applied to the
phenotypic representation of individuals.

5. It does not use any recombination.

6. Usually use tournament selection.
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Evolution Strategies (ES)

1. First proposed by Rechenberg and Schwefel in mid 1960s for
numerical optimisation.

2. Real-valued vectors are used to represent individuals.

3. They are closer to Larmackian evolution.

4. They do have recombination.

5. They use self-adaptive mutations.
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Genetic Programming (GP)

1. First used by de Garis to indicate the evolution of artificial
neural networks, but used by Koza to indicate the application
of GAs to the evolution of computer programs.

2. Trees (especially Lisp expression trees) are often used to
represent individuals.

3. Both crossover and mutation are used.
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Preferred Term: Evolutionary Algorithms

• EAs face the same fundamental issues as those classical AI
faces, i.e., representation, and search.

• Although GAs, EP, ES, and GP are different, they are all
different variants of population-based generate-and-test
algorithms. They share more similarities than differences!

• A better and more general term to use is evolutionary
algorithms (EAs).
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Variation Operators and Selection Schemes

Crossover/Recombination: k-point crossover, uniform
crossover, intermediate crossover, global discrete crossover, etc.

Mutation: bit-flipping, Gaussian mutation, Cauchy mutation, etc.

Selection: roulette wheel selection (fitness proportional selection),
rank-based selection (linear and nonlinear), tournament
selection, elitism, etc.

Replacement Strategy: generational, steady-state (continuous),
etc.

Specialised Operators: multi-parent recombination, inversion,
order-based crossover, etc.
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Major Areas in Evolutionary Computation

1. Optimisation

2. Learning

3. Design

4. Theory
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Evolutionary Optimisation

1. Numerical (global) optimisation.

2. Combinatorial optimisation (of NP-hard problems).

3. Mixed optimisation.

4. Constrained optimisation.

5. Multiobjective optimisation.

6. Optimisation in a dynamic environment (with a dynamic
fitness function).
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Evolutionary Learning

Evolutionary learning can be used in supervised, unsupervised and
reinforcement learning.

1. Learning classifier systems (Rule-based systems).

2. Evolutionary artificial neural networks.

3. Evolutionary fuzzy logic systems.

4. Co-evolutionary learning.

5. Automatic modularisation of machine learning systems by
speciation and niching.
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Evolutionary Design

EC techniques are particularly good at exploring unconventional
designs which are very difficult to obtain by hand.

1. Evolutionary design of artificial neural networks.

2. Evolutionary design of electronic circuits.

3. Evolvable hardware.

4. Evolutionary design of (building) architectures.
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Summary

1. Evolutionary algorithms can be regarded as population-based
generate-and-test algorithms.

2. Evolutionary computation techniques can be used in
optimisation, learning and design.

3. Evolutionary computation techniques are flexible and robust.

4. Evolutionary computation techniques are definitely useful tools
in your toolbox, but there are problems for which other
techniques might be more suitable.
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Global Optimisation
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Figure 1: Function f8.
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Global Optimisation by Mutation-Based EAs

1. Generate the initial population of µ individuals, and set k = 1.
Each individual is a real-valued vector, (xi.

2. Evaluate the fitness of each individual.

3. Each individual creates a single offspring: for j = 1, · · · , n,

xi
′(j) = xi(j) + Nj(0, 1) (1)

(2)

where xi(j) denotes the j-th component of the vectors xi.
N(0, 1) denotes a normally distributed one-dimensional random
number with mean zero and standard deviation one. Nj(0, 1)
indicates that the random number is generated anew for each
value of j.
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4. Calculate the fitness of each offspring.

5. For each individual, q opponents are chosen randomly from all
the parents and offspring with an equal probability. For each
comparison, if the individual’s fitness is no greater than the
opponent’s, it receives a “win.”

6. Select the µ best individuals (from 2µ) that have the most wins
to be the next generation.

7. Stop if the stopping criterion is satisfied; otherwise, k = k + 1
and go to Step 3.
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Why N(0, 1)?

1. The standard deviation of the Normal distribution determines
the search step size of the mutation. It is a crucial parameter.

2. Unfortunately, the optimal search step size is
problem-dependent.

3. Even for a single problem, different search stages require
different search step sizes.

4. Self-adaptation can be used to get around this problem
partially.
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Function Optimisation by Classical EP (CEP)

EP = Evolutionary Programming

1. Generate the initial population of µ individuals, and set k = 1.
Each individual is taken as a pair of real-valued vectors,
(xi, ηi), ∀i ∈ {1, · · · , µ}.

2. Evaluate the fitness score for each individual (xi, ηi),
∀i ∈ {1, · · · , µ}, of the population based on the objective
function, f(xi).

3. Each parent (xi, ηi), i = 1, · · · , µ, creates a single offspring
(xi

′, ηi
′) by: for j = 1, · · · , n,

xi
′(j) = xi(j) + ηi(j)Nj(0, 1), (3)

ηi
′(j) = ηi(j) exp(τ ′N(0, 1) + τNj(0, 1)) (4)
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where xi(j), xi
′(j), ηi(j) and ηi

′(j) denote the j-th component
of the vectors xi, xi

′, ηi and ηi
′, respectively. N(0, 1) denotes a

normally distributed one-dimensional random number with
mean zero and standard deviation one. Nj(0, 1) indicates that
the random number is generated anew for each value of j. The

factors τ and τ ′ have commonly set to
(√

2
√

n
)−1

and
(√

2n
)−1

.

4. Calculate the fitness of each offspring (xi
′, ηi

′), ∀i ∈ {1, · · · , µ}.
5. Conduct pairwise comparison over the union of parents (xi, ηi)

and offspring (xi
′, ηi

′), ∀i ∈ {1, · · · , µ}. For each individual, q

opponents are chosen randomly from all the parents and
offspring with an equal probability. For each comparison, if the
individual’s fitness is no greater than the opponent’s, it receives
a “win.”
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6. Select the µ individuals out of (xi, ηi) and (xi
′, ηi

′),
∀i ∈ {1, · · · , µ}, that have the most wins to be parents of the
next generation.

7. Stop if the stopping criterion is satisfied; otherwise, k = k + 1
and go to Step 3.
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What Do Mutation and Self-Adaptation Do
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Fast EP

• The idea comes from fast simulated annealing.

• Use a Cauchy, instead of Gaussian, random number in Eq.(3)
to generate a new offspring. That is,

xi
′(j) = xi(j) + ηi(j)δj (5)

where δj is an Cauchy random number variable with the scale
parameter t = 1, and is generated anew for each value of j.

• Everything else, including Eq.(4), are kept unchanged in order
to evaluate the impact of Cauchy random numbers.
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Cauchy Distribution

Its density function is

ft(x) =
1
π

t

t2 + x2
, −∞ < x < ∞,

where t > 0 is a scale parameter. The corresponding distribution
function is

Ft(x) =
1
2

+
1
π

arctan
(x

t

)
.
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Gaussian and Cauchy Density Functions
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Test Functions

• 23 functions were used in our computational studies. They
have different characteristics.

• Some have a relatively high dimension.

• Some have many local optima.
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Figure 2: Function f9 at a closer look.
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Figure 3: Function f18 at a closer look.
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Experimental Setup

• Population size 100.

• Competition size 10 for selection.

• All experiments were run 50 times, i.e., 50 trials.

• Initial populations were the same for CEP and FEP.
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Experiments on Unimodal Functions

F No. of FEP CEP FEP−CEP

Gen’s Mean Best Std Dev Mean Best Std Dev t-test

f1 1500 5.7× 10−4 1.3× 10−4 2.2× 10−4 5.9× 10−4 4.06†

f2 2000 8.1× 10−3 7.7× 10−4 2.6× 10−3 1.7× 10−4 49.83†

f3 5000 1.6× 10−2 1.4× 10−2 5.0× 10−2 6.6× 10−2 −3.79†

f4 5000 0.3 0.5 2.0 1.2 −8.25†

f5 20000 5.06 5.87 6.17 13.61 −0.52

f6 1500 0 0 577.76 1125.76 −3.67†

f7 3000 7.6× 10−3 2.6× 10−3 1.8× 10−2 6.4× 10−3 −10.72†

†The value of t with 49 degrees of freedom is significant at α = 0.05 by a

two-tailed test.
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Discussions on Unimodal Functions

• FEP performed better than CEP on f3–f7.

• CEP was better for f1 and f2.

• FEP converged faster, even for f1 and f2 (for a long period).
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Experiments on Multimodal Functions f8–f13

F No. of FEP CEP FEP−CEP

Gen’s Mean Best Std Dev Mean Best Std Dev t-test

f8 9000 −12554.5 52.6 −7917.1 634.5 −51.39†

f9 5000 4.6× 10−2 1.2× 10−2 89.0 23.1 −27.25†

f10 1500 1.8× 10−2 2.1× 10−3 9.2 2.8 −23.33†

f11 2000 1.6× 10−2 2.2× 10−2 8.6× 10−2 0.12 −4.28†

f12 1500 9.2× 10−6 3.6× 10−6 1.76 2.4 −5.29†

f13 1500 1.6× 10−4 7.3× 10−5 1.4 3.7 −2.76†

†The value of t with 49 degrees of freedom is significant at α = 0.05 by a

two-tailed test.
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Discussions on Multimodal Functions f8–f13

• FEP converged faster to a better solution.

• FEP seemed to deal with many local minima well.
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Experiments on Multimodal Functions f14–f23

F No. of FEP CEP FEP−CEP

Gen’s Mean Best Std Dev Mean Best Std Dev t-test

f14 100 1.22 0.56 1.66 1.19 −2.21†

f15 4000 5.0× 10−4 3.2× 10−4 4.7× 10−4 3.0× 10−4 0.49

f16 100 −1.03 4.9× 10−7 −1.03 4.9× 10−7 0.0

f17 100 0.398 1.5× 10−7 0.398 1.5× 10−7 0.0

f18 100 3.02 0.11 3.0 0 1.0

f19 100 −3.86 1.4× 10−5 −3.86 1.4× 10−2 −1.0

f20 200 −3.27 5.9× 10−2 −3.28 5.8× 10−2 0.45

f21 100 −5.52 1.59 −6.86 2.67 3.56†

f22 100 −5.52 2.12 −8.27 2.95 5.44†

f23 100 −6.57 3.14 −9.10 2.92 4.24†

†The value of t with 49 degrees of freedom is significant at α = 0.05 by a

two-tailed test.
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Discussions on Multimodal Functions f14–f23

• The results are mixed!

• FEP and CEP performed equally well on f16 and f17. They are
comparable on f15 and f18–f20.

• CEP performed better on f21–f23 (Shekel functions).

• Is it because the dimension was low so that CEP appeared to
be better?
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Experiments on Low-Dimensional f8–f13

F No. of FEP CEP FEP−CEP

Gen’s Mean Best Std Dev Mean Best Std Dev t-test

f8 500 -2061.74 58.79 -1762.45 176.21 −11.17†

f9 400 0.14 0.40 4.08 3.08 −8.89†

f10 400 8.6× 10−4 1.8× 10−4 8.1× 10−2 0.34 −1.67

f11 1500 5.3× 10−2 4.2× 10−2 0.14 0.12 −4.64†

f12 200 1.5× 10−7 1.2× 10−7 2.5× 10−2 0.12 −1.43

f13 200 3.5× 10−7 1.8× 10−7 3.8× 10−3 1.4× 10−2 −1.89

†The value of t with 49 degrees of freedom is significant at α = 0.05 by a

two-tailed test.
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Discussions on Low-Dimensional f8–f13

• FEP still converged faster to better solutions.

• Dimensionality does not play a major role in causing the
difference between FEP and CEP.

• There must be something inherent in those functions which
caused such difference.
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The Impact of Parameter t on FEP — Part I

Table 1: The mean best solutions found by FEP using different scale parameter
t in the Cauchy mutation for functions f1(1500), f2(2000), f10(1500), f11(2000),
f21(100), f22(100) and f23(100). The values in “()” indicate the number of
generations used in FEP. All results have been averaged over 50 runs.

Function t = 0.0156 t = 0.0313 t = 0.0625 t = 0.1250 t = 0.2500

f1 1.0435 0.0599 0.0038 1.5× 10−4 6.5× 10−5

f2 3.8× 10−4 3.1× 10−4 5.9× 10−4 0.0011 0.0021

f10 1.5627 0.2858 0.0061 0.0030 0.0050

f11 1.0121 0.2237 0.1093 0.0740 0.0368

f21 −6.9236 −7.7261 −8.0487 −8.6473 −8.0932

f22 −7.9211 −8.3719 −9.1735 −9.8401 −9.1587

f23 −7.8588 −8.6935 −9.4663 −9.2627 −9.8107
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The Impact of Parameter t on FEP — Part II

Table 2: The mean best solutions found by FEP using different scale param-
eter t in the Cauchy mutation for functions f1(1500), f2(2000), f10(1500),
f11(2000), f21(100), f22(100) and f23(100). The values in “()” indicate the
number of generations used in FEP. All results have been averaged over 50
runs.

Function t = 0.5000 t = 0.7500 t = 1.0000 t = 1.2500 t = 1.5000

f1 1.8× 10−4 3.5× 10−4 5.7× 10−4 8.2× 10−4 0.0012

f2 0.0041 0.0060 0.0081 0.0101 0.0120

f10 0.0091 0.0136 0.0183 0.0227 9.1987

f11 0.0274 0.0233 0.0161 0.0202 0.0121

f21 −6.6272 −5.2845 −5.5189 −5.0095 −5.0578

f22 −7.6829 −6.9698 −5.5194 −6.1831 −5.6476

f23 −8.5037 −7.8622 −6.5713 −6.1300 −6.5364
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Why Cauchy Mutation Performed Better

Given G(0, 1) and C(1), the expected length of Gaussian and
Cauchy jumps are:

EGaussian(x) =
∫ +∞

0

x
1√
2π

e−
x2
2 dx =

1√
2π

= 0.399

ECauchy(x) =
∫ +∞

0

x
1

π(1 + x2)
dx = +∞

It is obvious that Gaussian mutation is much localised than Cauchy
mutation.
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Why and When Large Jumps Are Beneficial

(Only 1-d case is considered here for convenience’s sake.)

Take the Gaussian mutation with G(0, σ2) distribution as an
example, i.e.,

fG(0,σ2)(x) =
1

σ
√

2π
e−

x2

2σ2 , −∞ < x < +∞,

the probability of generating a point in the neighbourhood of the
global optimum x∗ is given by

PG(0,σ2)(|x− x∗| ≤ ε) =
∫ x∗+ε

x∗−ε

fG(0,σ2)(x)dx (6)

where ε > 0 is the neighbourhood size and σ is often regarded as
the step size of the Gaussian mutation. Figure 4 illustrates the
situation.
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Figure 4: Evolutionary search as neighbourhood search, where x∗ is
the global optimum and ε > 0 is the neighbourhood size.
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An Analytical Result

It can be shown that

∂

∂σ
PG(0,σ2)(|x− x∗| ≤ ε) > 0

when |x∗ − ε + δ| > σ. That is, the larger σ is, the larger
PG(0,σ2)(|x− x∗| ≤ ε) if |x∗ − ε + δ| > σ.

On the other hand, if |x∗ − ε + δ| < σ, then

∂

∂σ
PG(0,σ2)(|x− x∗| ≤ ε) < 0,

which indicates that PG(0,σ2)(|x− x∗| ≤ ε) decreases, exponentially,
as σ increases.
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Empirical Evidence I

Table 3: Comparison of CEP’s and FEP’s final results on f21 when the initial
population is generated uniformly at random in the range of 0 ≤ xi ≤ 10
and 2.5 ≤ xi ≤ 5.5. The results were averaged over 50 runs. The number of
generations for each run was 100.

Initial Range FEP CEP FEP−CEP

Mean Best Std Dev Mean Best Std Dev t-test

2.5 ≤ xi ≤ 5.5 −5.62 1.71 −7.90 2.85 4.58†

0 ≤ xi ≤ 10 −5.57 1.54 −6.86 2.94 2.94†

t-test‡ −0.16 −1.80†

†The value of t with 49 degrees of freedom is significant at α = 0.05 by a

two-tailed test. ‡FEP(CEP)small−FEP(CEP)normal.
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Empirical Evidence II

Table 4: Comparison of CEP’s and FEP’s final results on f21 when the initial
population is generated uniformly at random in the range of 0 ≤ xi ≤ 10
and 0 ≤ xi ≤ 100 and ai’s were multiplied by 10. The results were averaged
over 50 runs. The number of generations for each run was 100.

Initial Range FEP CEP FEP−CEP

Mean Best Std Dev Mean Best Std Dev t-test

0 ≤ xi ≤ 100 −5.80 3.21 −5.59 2.97 −0.40

0 ≤ xi ≤ 10 −5.57 1.54 −6.86 2.94 2.94†

t-test‡ −0.48 2.10†

†The value of t with 49 degrees of freedom is significant at α = 0.05 by a

two-tailed test. ‡FEP(CEP)small−FEP(CEP)normal.
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Summary

1. Cauchy mutation performs well when the global optimum is far
away from the current search location. Its behaviour can be
explained theoretically and empirically.

2. An optimal search step size can be derived if we know where
the global optimum is. Unfortunately, such information is
unavailable for real-world problems.

3. The performance of FEP can be improve by more suitable
parameters, instead of copying CEP’s parameter setting.

Reference

1. X. Yao, Y. Liu and G. Lin, “Evolutionary programming made
faster,” IEEE Transactions on Evolutionary Computation,
3(2):82-102, July 1999.
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Search Step Size and Search Bias

1. The search step size of mutation is crucial in deciding the
search performance.

2. In general, different search operators have different search step
sizes, and thus appropriate for different problems as well as
different evolutionary search stages for a single problem.

3. Search bias of an evolutionary search operator includes its step
size and search directions. Search bias of a search operator
determines how likely an offspring will be generated from a
parent(s).
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Mixing Search Biases by Self-adaptation

1. Since the global optimum is unknown in real-world applications, it is
impossible to know a priori what search biases we should use in EAs.
One way to get around this problem is to use a variety of different
biases and allow evolution to find out which one(s) are more promising
than others.

2. Rather than using either Gaussian or Cauchy mutations, we can use
both. That is, two candidate offspring will be generated from every
parent, one by Gaussian mutation and one by Cauchy mutation. The
fitter one will survive as the single child.

3. The experimental results show that the improved fast EP (IFEP) is
capable of performing as well as or better than the better one of FEP
and CEP for most of the chosen test functions. This is achieved
through a minimal change to the existing FEP and CEP.
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Figure 5: Number of successful Cauchy mutations in a population
when IFEP is applied to function f10. The vertical axis indicates
the number of successful Cauchy mutations in a population and the
horizontal axis indicates the number of generations. The results have
been averaged over 50 runs.
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Figure 6: Number of successful Cauchy mutations in a population
when IFEP is applied to function f21. The vertical axis indicates
the number of successful Cauchy mutations in a population and the
horizontal axis indicates the number of generations. The results have
been averaged over 50 runs.
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Other Mixing Methods

Mean mutation operator: Takes the average of the two
mutations.

x′i(j) = xi(j) + ηi(j) (0.5(Nj(0, 1) + Cj(1)))

where Nj(0, 1) is a normally distributed number while Cj(1)
follows Cauchy distribution with parameter 1.

Adaptive mutation operator: It’s actually a self-adaptive
method.

x′i(j) = xi(j) + η1i(j)Nj(0, 1) + η2i(j)Cj(1)

where both η1i(j) and η2i(j) are self-adaptive parameters.
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A More General Self-Adaptive Method

1. The idea of mixing can be generalised to Lévy mutation.

2. Lévy probability distribution can be tuned to generate any
distribution between the Gaussian and Cauchy probability
distributions.

3. Hence we can use Lévy mutation with different parameters in
EAs and let evolution to decide which one to use.
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An Anomaly of Self-adaptation in EP

1

10

100

1000

10000

100000

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

generation

fu
nc

tio
n 

va
lu

e

Figure 7: The 30-d sphere model stagnates early from mean of 50
runs.
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Why EP Stagnates Early

Table 5: The 19-th component and the fitness of the best individual
in a typical run.

Generation (x1(19), η1(19)) f(x1)
1
µ

∑
f(xi)

:

300 (-14.50, 4.52E−3) 812.85 846.52

:

600 (-14.50, 8.22E−6) 547.05 552.84

:

1000 (-14.50, 1.33E−8) 504.58 504.59

:

1500 (-14.50, 1.86E−12) 244.93 244.93
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Getting Around the Anomaly

Setting a lower bound! For example, set a fixed lower bound, e.g.,
10−3.
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Use Success Rate to Adjust Lower Bounds

ηt+1
− = ηt

−

(
St

A

)
, (7)

where St is the success rate at generation t and A is a reference
parameter, which has been set between 0.25 and 0.45 in our
experiments. The success rate St is obtained by first computing the
number of offspring selected for the next generation and then
taking the ratio of successes to all offspring.
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Use Mutation Step Size to Adjust Lower Bounds

Use the median of the mutation step size from all accepted
(successful) offspring as the new lower bound for the next
generation. Let δi(j) = η′i(j)Nj(0, 1). We first calculate the average
mutation step size from all accepted (successful) offspring:

δ(j) =
1
m

m∑
v=1

δv(j), j = 1, · · · , n,

where m is the number of the accepted offspring. Then, the lower
bound of η for the next generation is

ηt+1
− = median{δ(j), j = 1, 2, . . . , n}. (8)
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Getting Around the Anomaly — Recombination

Intermediate recombination helps because it averages out extremely
small step sizes.
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Representation Is Important

Search and representation are fundamental to evolutionary search.
They go hand-in-hand.

1. Binary strings have often been used to represent individuals,
e.g., integers and real numbers. However, they may not be
good representations, because binary encoding of an integer or
real number can introduce so-called Hamming cliffs.

2. Gray coding can help, but does not solve the problem entirely.
A better representation is to use integers or real numbers
themselves.
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Gray Code

integer binary code Gray code

0 000 000

1 001 001

2 010 011

3 011 010

4 100 110

5 101 111

6 110 101

7 111 100
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Adaptive Representation

1. Although we have been using the Cartesian coordinates in all
our examples so far, there are cases where a different
representation would be more appropriate, e.g., polar
coordinates.

2. The idea of self-adaptation can also be used in representations,
where the most suitable representation will be evolved rather
than fixed in advance.

3. For example, Cartesian and polar representations can be mixed
adaptively in an EAs so that evolution can choose which
representation is the best in the current stage of evolutionary
search.
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Summary

1. Search step size is a crucial factor in determining EA’s
performance.

2. Different operators, and EAs in general, have different search
biases.

3. Mixing different operators and representations adaptively can
lead to better performance for many (but not all) problems.

4. However, cares must be taken as self-adaptation does not
always work as claimed.
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Two Approaches to Evolutionary Learning

Michigan Approach: Holland-style learning classifier systems
(LCS), where each individual is a rule. The whole population is
a complete (learning) system.

Pitt Approach: Each individual is a complete system.

This talk deals only with the Pitt-style evolutionary learning since
it is more widely used.
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Current Practice in Evolutionary Learning

fitness evaluation
          and
      selection

"genetic" operators
corssover
mutation

. . . . . .

a population of individuals
(learning systems, e.g., ANNs or
rule-based systems)

best individual

Pitt Style Evolutionary Learning

Figure 8: A general framework for Pitt style evolutionary learning.
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Fitness Evaluation

1. Based on the training error.

2. Based on the training error and complexity (regularisation),
i.e.,

1
fitness

∝ error + α ∗ complexity
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Evolutionary Learning and Optimisation

• Learning has often been formulated as an optimisation
problem.

• However, learning is different from optimisation.

1. In optimisation, the fitness function reflects what is needed.
The optimal value is always better than the second optimal one.

2. In learning, there is no way to quantify generalisation exactly.
A system with minimum training error may not be the one
with the best generalisation ability. Why select the “best”
individual in a population as the final output?
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Exploit Useful Information in a Population

• Since an individual with the minimum training error may not
be the one with best generalisation, it makes sense to exploit
useful information in a population rather than any single
individual.

• All in all, it is a population that is evolving, not a single
individual.

• Two types of experiments have been carried out to show that
population does contain more information than any individuals
and such information can be utilised effectively in evolutionary
learning.

Experiment 1: Each individual is an ANN.

Experiment 2: Each individual is a rule-based system.
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Evolutionary Artificial Neural Networks

A simple idea to show the usefulness of population:

1. Use the “usual” evolutionary learning process to evolve NNs.

2. Instead of using the best individual as the final learned system,
an integrated system which combines all the individuals in the
final population is used as the final learned system.

3. This approach actually treats individuals as “modules” of an
integrated system.

4. The final output from the integrated system is a linear
combination of individuals’ outputs.
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The EANN System — EPNet

Hybrid training
Random initialisation

of ANNs

Initial partial training

Rank-based selection

Obtain the new
generation

yes

yes

yes

no

no

no

no

 Mutations

Further training

yes

Stop?

addition

deletion
Hidden node

Connetion deletion

Connection/node

Successful?

Successful?

Successful?
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Experimental Studies on Modular EANNs

Three data sets were used in the experiments.

Australian Credit Card Data Set This two class problem has
690 examples in total. There are 14 attributes include 6
numeric values and 8 discrete ones.

Diabetes Data Set There are 500 examples of class 1 and 268 of
class 2 for the two class problem. There are 8 attributes.

Heart Disease Data Set This database contains 13 attributes
and 270 examples. There are two classes.
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Experimental Results

Data set Method Testing Error Rate
Card EPNet 0.100

Ensemble 0.093
Diabetes EPNet 0.232

Ensemble 0.226
Heart EPNet 0.154

Ensemble 0.151
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Automatic Modularisation

• The previous encouraging results were achieved without modifying

the evolutionary learning process. It is hoped that more

improvements could be obtained if some techniques were employed

to take the modular approach into account. For example, different

modules should deal with different aspects of a complex problem.

• Speciation by fitness sharing is one of such techniques which

encourage automatic formation of species (i.e., modules).

• The following experiments demonstrate the effectiveness of

automatic modularisation by speciation. In order to show the

generality of the approach, a rule-based system was represented as

an individual in the following experiments.

• The experiment was designed to learn strategies for playing the

2-player iterated prisoner’s dilemma game.
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The 2-Player Iterated Prisoner’s Dilemma

player A

D

C

D C

player B

P

S

T

R

Figure 9: Two conditions must be satisfied: (1) T > R > P > S;
and (2) R > (S + T )/2.
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Speciation by Implicit Fitness Sharing

For each strategy i in the GA population, do the following C times:

1. From the GA population, select a sample of σ strategies.

2. Find the strategy in that sample which achieves the highest
score (or the largest winning margin, if you prefer) against the
single test strategy i.

3. The best in the sample receives payoff. In the case of a tie,
payoff is shared equally among the tie-breakers.

Figure 10: Payoff function for implicit fitness sharing.
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A Combination Method — the Gating Algorithm

quality strategy
the opponent uses, 
and uses the best

Finds which high-

counter-strategy.

Gate
Strategy 3

Strategy 3

Module 1

Module 2

Module 3

counter-
strategies

Find best

Strategy 1

Strategy 2

speciated GA
species from
Expert-level

Opponent uses

strategy. 
an expert-level

Figure 11: A gating algorithm for combining different expertise in a
population together.
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Experimental Results

l = 4

Strategy Wins Ties Average Score

% % Own Other’s

best.ns 0.343 0.057 1.235 1.595

best.sr 0.360 0.059 1.322 1.513

gate.sr 0.643 0.059 1.520 1.234

Table 6: Results against the best 25 strategies from the partial enu-
merative search, for 2IPD with remembered history l = 4. The
results were averaged over 30 runs.
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NN Ensembles — Negatively Correlated Learning

The idea of designing different cooperative specialists is not limited
to EAs. It can be used by gradient descent algorithms too.

1. Making individuals different:

Ei =
1
N

N∑
n=1

(
1
2
(Fi(n)− d(n))2 + λpi(n)

)

where
pi(n) = (Fi(n)− F (n))

∑

j 6=i

(Fj(n)− F (n))

F (n) is the ensemble output.

2. All individuals are learned simultaneously.
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Ensemble Learning

We consider estimating g(x) = E[d|x] by forming a simple average
of a set of outputs of individual networks which are trained using
the same training data set D

F (x, D) =
1
M

ΣM
i=1Fi(x, D) (9)

where Fi(x, D) is the actual response of network i and M is the
number of neural network estimators.
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Bias-Variance-Covariance Trade-off

Taking expectations with respect to the training set D, the
expected mean-squared error of the combined system can be
written in terms of individual network output

ED

[
(E[d|x]− F (x, D))2

]
= (ED[F (x, D)]− E[d|x])2

+ ED

[
1

M2
ΣM

i=1 (Fi(x, D)− ED[Fi(x, D)])2
]

+ ED

[
1

M2
ΣM

i=1Σj 6=i (Fi(x, D)− ED[Fi(x, D)])

(Fj(x, D)− ED[Fj(x, D)])
]

(10)

The expectation operator ED represents the average over all the
patterns in the training set D.
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How to Choose the Correlation Penalty

The purpose of minimising pi is to negatively correlate each
individual’s error with errors for the rest of the ensemble.

• The function pi for regression problems can be chosen as

pi(n) = (Fi(n)− d(n)) Σj 6=i (Fj(n)− d(n)) (11)

for noise free data, or

pi(n) = (Fi(n)− F (n)) Σj 6=i (Fj(n)− F (n)) (12)

for noisy data.

• The function pi for classification problem can be chosen as

pi(n) = (Fi(n)− 0.5)Σj 6=i (Fj(n)− 0.5) (13)
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Experimental Studies

• The Australian credit card assessment problem was used.

• The whole data set is randomly partitioned into a training (518
cases) and a testing set (172 cases).

• The ensemble used in our experiment consisted of four
strictly-layered feedforward neural networks. All individual
networks had the same architecture. They had three layers and
5 hidden nodes in the hidden layer. The learning-rate η in BP
is 0.1, and λ is 0.375. These parameters were chosen after
limited preliminary experiments. They are not meant to be
optimal.
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Experiment Results: Error Rates

Training set Test set

# epochs 500 1000 500 1000

Mean 0.1093 0.0846 0.1177 0.1163

SD 0.0092 0.0088 0.0182 0.0159

Min 0.0927 0.0676 0.0698 0.0756

Max 0.1255 0.1004 0.1628 0.1454

Table 7: Error rates for the Australian credit card assessment prob-
lem. The results were averaged over 25 runs.
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Experiment Results: Evolutionary Process
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Figure 12: The average result over 25 runs of our ensemble learn-
ing algorithm. The horizontal axis indicates the number of training
epochs. The vertical axis indicates the error rate.
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Experiment Results: Being Different

Ω1 = 146 Ω2 = 148 Ω3 = 149 Ω4 = 151

Ω12 = 137 Ω13 = 137 Ω14 = 141 Ω23 = 140

Ω24 = 141 Ω34 = 139 Ω123 = 132 Ω124 = 133

Ω134 = 133 Ω234 = 134 Ω1234 = 128

Table 8: The sizes of the correct response sets of individual networks
on the testing set and their intersections for the Australian credit
card assessment problem.
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Comparison with Other Work

Algorithm TER Algorithm TER

NCNN 0.116 Logdisc 0.141

EPNet 0.115 CART 0.145

Evo-En-RLS 0.131 RBF 0.145

Cal5 0.137 CASTLE 0.148

ITrule 0.141 NaiveBay 0.151

DIPOL92 0.141 IndCART 0.152

Table 9: Comparison among the negative correlation NN (NCNN),
EPNet, an evolutionary ensemble learning algorithm (Evo-En-RLS),
and others in terms of the average testing error rate. TER stands
for Testing Error Rate in the table.
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Mackey-Glass Time Series Prediction Problem

Method Testing RMS

∆t = 6 ∆t = 84

NCNN 0.01 0.03

EPNet 0.02 0.06

BP 0.02 0.05

CC Learning 0.06 0.32

Table 10: The “Testing RMS” in the table refers to the normalised
root-mean-square error on the testing set.
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Comparision between NCNN and ME

Adding noises.

Method Emse

σ2 = 0.1 σ2 = 0.2

NCNN 0.012 0.023

ME 0.018 0.038

Table 11: Comparison between NCNN and the mixtures-of-experts
(ME) architectures in terms of the integrated mean-squared error on
the testing set for the moderate noise case and the large noise case.
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Three Approaches of Ensemble Learning

• Independent Training

• Sequential Training

• Simultaneous Training



Yao: Intro to Evolutionary Computation

'

&

$

%

Two Classes of Gaussian-Distributed Patterns
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Figure 13: (a) Scatter plot of Class 1. (b) Scatter plot of Class 2.
(c) Combined scatter plot of both classes. The circle represents the
optimum Bayes solution.
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Approach of Independent Training

No advantage to combine a set of identical neural networks. In
order to create different neural networks, independent training
approach trains a set of neural networks independently by

• varying initial random weights

• varying the architectures

• varying the learning algorithm used

• varying the data, such as using cross-validation

• ... ...
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Approach of Sequential Training

In order to decorrelate the individual neural networks, sequential
training approach trains a set of networks in a particular order,
such as the boosting algorithm:

• Train the first neural network with randomly chosen N1

patterns

• Select N2 patterns on which the first neural network would
have 50% error rate. Train the second neural network with the
selected patterns.

• Select N3 patterns on which the first two trained neural
networks disagree. Train the third neural network with the
selected patterns.
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Approach of Simultaneous Training

• The mixtures-of-experts (ME) architectures: consists of two
types of networks, i.e., a gating network and a number of expert
networks . Each expert network makes individual decision on
its covered region. The gating network weights the outputs of
the expert networks to provide an overall best decision.

• Negative correlation learning (NCL): no gating network is
needed in NCL. The idea of NCL is to introduce a correlation
penalty term into the error function of each individual network
so that the individual network can be trained simultaneously
and interactively.
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Decision Boundaries by the Independent Training
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Figure 14: (a) Network 1. (b) Network 2. (c) Network 3. (d)
Ensemble. The circle represents the optimum Bayes solution.
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Decision Boundaries by the Boosting Algorithm
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Figure 15: (a) Network 1. (b) Network 2. (c) Network 3. (d)
Ensemble. The circle represents the optimum Bayes solution.
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Decision Boundaries by NCL
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Figure 16: (a) Network 1. (b) Network 2. (c) Network 3. (d)
Ensemble. The circle represents the optimum Bayes solution.
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Comparisons

Boosting Training

Network 1 Network 2 Network 3 Ensemble

81.11 75.26 73.09 81.03

Negative Correlation Learning (NCL)

Network 1 Network 2 Network 3 Ensemble

80.71 80.55 80.97 81.41

Independent Training (λ = 0 in NCL)

Network 1 Network 2 Network 3 Ensemble

81.13 80.48 81.13 80.99
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Discussions

• The independently trained neural networks tended to generate
similar decision boundaries because of lack of interactions
among the individual networks during learning.

• The boosting algorithm performed well, but was hindered by
its data filtering process which generated highly unbalance
training data points. For example, the ensemble performance
actually got worse than network 1.

• No process of filtering data is needed in NCL. The performance
of NCL (81.41) is very close to the theoretical optimum (81.51).
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Evolving ANN Ensembles

No need to predefine the number of ANNs in an ensemble.

1. Generate an initial population of M NNs, and set k = 1.

2. Train each NN in the population on the training set for a certain number

of epochs using the negative correlation learning.

3. Randomly choose nb NNs as parents to create nb offspring NNs by

Gaussian mutation.

4. Add the nb offspring NNs to the population and train the offspring NNs

using the negative correlation learning while the rest NNs’ weights are

frozen.

5. Calculate the fitness of each NN in the population and prune the

population to the M fittest NNs.

6. Stop if certain criteria are satisfied and go to Step 7. Otherwise,

k = k + 1 and go to Step 3.

7. Cluster the NNs in the population. These clusters are then used to

construct NN ensembles.
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Fitness Sharing and Fitness Evaluation

• An implicit fitness sharing is used based on the idea of
“covering” the same training case by shared individuals. The
procedure of calculating shared fitness is carried out
case-by-case over the training set.

• For each training case, if there are p > 0 individuals that
correctly classify it, then each of these p individuals receives
1/p fitness reward, and the rest individuals in the population
receive zero fitness reward. The fitness reward is summed over
all training cases. This method is expected to generate a
smoother shared fitness landscape.
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Accuracy on the Australian Credit Card Problem

Accuracy Simple Averaging Majority Voting Winner-Takes-All

Rate Training Testing Training Testing Training Testing

Mean 0.910 0.855 0.917 0.857 0.887 0.865

SD 0.010 0.039 0.010 0.039 0.007 0.028

Min 0.897 0.797 0.900 0.812 0.874 0.812

Max 0.924 0.913 0.928 0.913 0.895 0.913

Table 12: The results are averaged on 10-fold cross-validation.
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Accuracy on the Diabetes Data Set

Accuracy Simple Averaging Majority Voting Winner-Takes-All

Rate Training Testing Training Testing Training Testing

Mean 0.795 0.766 0.802 0.764 0.783 0.779

SD 0.007 0.039 0.007 0.042 0.007 0.045

Min 0.783 0.703 0.786 0.688 0.774 0.703

Max 0.805 0.828 0.810 0.828 0.794 0.844

Table 13: The results are averaged on 12-fold cross-validation.
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Comparisons on the Australian Data Set (Error Rate)

Algorithm Error Rate Algorithm Error Rate Algorithm Error Rate

EENCL 0.135, 0.132 CART 0.145 ITrule 0.137

Discrim 0.141 IndCART 0.152 Cal5 0.131

Quadisc 0.207 NewID 0.181 Kohonen FD

Logdisc 0.141 AC2 0.181 DIPOL92 0.141

SMART 0.158 Baytree 0.171 Backprop 0.154

ALLOC80 0.201 NaiveBay 0.151 RBF 0.145

k-NN 0.181 CN2 0.204 LVQ 0.197

CASTLE 0.148 C4.5 0.155 Default 0.440

Table 14: The results are averaged on 10-fold cross-validation. Two error
rates are listed for EENCL, which are the results for the ensembles using the
whole population and the ensembles using the representatives from species.
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Comparisons on the Diabetes Data Set (Error Rate)

Algorithm Error Rate Algorithm Error Rate Algorithm Error Rate

EENCL 0.221, 0.223 CART 0.255 ITrule 0.245

Discrim 0.225 IndCART 0.271 Cal5 0.250

Quadisc 0.262 NewID 0.289 Kohonen 0.273

Logdisc 0.223 AC2 0.276 DIPOL92 0.224

SMART 0.232 Baytree 0.271 Backprop 0.248

ALLOC80 0.301 NaiveBay 0.262 RBF 0.243

k-NN 0.324 CN2 0.289 LVQ 0.272

CASTLE 0.258 C4.5 0.270

Table 15: The results are averaged on 12-fold cross-validation.
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Constructive Neural Network Ensemble (CNNE)

• CNNE is non-evolutionary.

• CNNE uses incremental training, in association with negative
correlation learning, in determining ensemble architectures.

• Individual NNs and hidden nodes are added to the ensemble
architecture one by one in a constructive fashion during
training.

Md. Monirul Islam, X. Yao and K. Murase, “A constructive algorithm

for training cooperative neural network ensembles,” Submitted to IEEE

Transactions on Neural Networks, 2002.
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Conclusion

1. Learning is different from optimisation, especially in
evolutionary computation.

2. Population contains more information than any single
individual. Exploiting useful population information can be
achieved for different kinds of population-based learning, either
evolutionary or non-evolutionary.

3. Progresses have been made in the last few years towards
automatic divide-and-conquer using both evolutionary and
non-evolutionary approaches, although more needs to be done.
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