Old-fashioned Computer Go vs Monte-Carlo Go

Bruno Bouzy
Paris Descartes University, France

CIG07 Tutorial
April 1st 2007
Honolulu, Hawaii
Outline

- Computer Go (CG) overview
 - Rules of the game
 - History and main obstacles
 - Best programs and competitions

- Classical approach: divide and conquer
 - Conceptual evaluation function
 - Global move generation
 - Combinatorial Game Theory

- New approach: Monte-Carlo Tree Search (MCTS)
 - Simple approach: depth-1 Monte-Carlo
 - MCTS
 - UCT

- Adaptations of UCT
 - 9x9 boards
 - Scaling up to 19x19 boards
 - Parallelization

- Future of Computer Go
Rules overview through a game (opening 1)

- Black and White move alternately by putting one stone on an intersection of the board.
Rules overview through a game (opening 2)

- Black and White aims at surrounding large "zones"
Rules overview through a game (atari 1)

- A white stone is put into « atari »: it has only one liberty (empty intersection) left.
White plays to connect the one-liberty stone yielding a four-stone white string with 5 liberties.
Rules overview through a game (atari 2)

- It is White’s turn. One black stone is atari.
White plays on the last liberty of the black stone which is removed.
Rules overview through a game
(human end of game)

- The game ends when the two players pass.
- In such position, only experienced players can pass.
Rules overview through a game (contestation 1)

- White contests the black « territory » by playing inside.
- Black answers, aiming at capturing the invading stone.
Rules overview through a game (contestation 2)

- White contests black territory, but the 3-stone white string has one liberty left
Rules overview through a game (follow up 1)

- Black has captured the 3-stone white string
Rules overview through a game (follow up 2)

- White is short on liberties…
Rules overview through a game (follow up 3)

- Black suppresses the last liberty of the 9-stone string
- Consequently, the white string is removed
Contestation is going on on both sides. White has captured four black stones.
Rules overview through a game (concrete end of game)

- The board is covered with either stones or « eyes »
- The two players pass

- Black: 44
- White: 37
- Komi: 7.5
- White wins…
- by 0.5 point!
History (1/2)

- First go program (Lefkovitz 1960)
- First machine learning work (Remus 1963)
- Zobrist hashing (Zobrist 1969)
- First two computer go PhD thesis
 - Potential function (Zobrist 1970)
 - Heuristic analysis of Go trees (Ryder 1970)
- First-program architectures: influence-function based
- Small boards (Thorpe & Walden 1964)
- Interim2 program (Wilcox 1979)
- G2 program (Fotland 1986)
- Life and death (Benson 1988)
- Pattern-based program: Goliath (Boon 1990)
History (2/2)

- Combinatorial Game Theory (CGT)
 - ONAG (Conway 1976),
 - Winning ways (Conway & al 1982)
 - Mathematical Go (Berlekamp 1991)
 - Go as a sum of local games (Muller 1995)

- Machine learning
 - Automatic acquisition of tactical rules (Cazenave 1996)
 - Neural network-based evaluation function (Enzenberger 1996)

- Cognitive modelling
 - (Bouzy 1995)
 - (Yoshikawa & al 1997)
Main obstacles (1/2)

- **CG witnesses AI improvements**
 - 1994: Chinook beat Marion Tinsley (Checkers)
 - 1997: Deep Blue beat Kasparov (Chess)
 - 1998: Logistello >> best human (Othello)
 - (Schaeffer, van den Herik 2002)

- **Combinatorial complexity**
 - B: branching factor,
 - L: game length,
 - B^L estimation:
 - Go (10^{400}) > Chess(10^{123}) > Othello(10^{58}) > Checkers(10^{32})
Main obstacles (2/2)

- 2 main obstacles:
 - Global tree search \textit{impossible}
 - Non terminal position evaluation \textit{hard} 😞

- Medium level (10th kyu) 😞

- Huge effort since 1990:
 - Evaluation function,
 - Break down the position into sub-positions (Conway, Berlekamp),
 - Local tree searches,
 - Pattern-matching, knowledge bases.
Competitions

- Ing Cup (1987-2001)
- FOST Cup (1995-1999)
- Gifu Challenge (2001-)
- Computer Olympiads (1990;2000-)
- Monthly KGS tournaments (2005-)
- Computer Go ladder (Pettersen 1994-)
- Yearly continental tournaments
 - American
 - European
- CGOS (Computer Go Operating System 9x9)
Best 19x19 programs

- Go++
 - Ing, Gifu, FOST, Olympiads
- Handtalk (=Goemate)
 - Ing, FOST, Olympiads
- KCC Igo
 - FOST, Gifu
- Haruka
 - ?
- Many Faces of Go
 - Ing
- Go Intellect
 - Ing, Olympiads
- GNU Go
 - Olympiads
Indigo

- Indigo
 - www.math-info.univ-paris5.fr/~bouzy/INDIGO.html

- International competitions since 2003:
 - Computer Olympiads:
 - 2003: 9x9: 4/10, 19x19: 5/11
 - 2004: 9x9: 4/9, 19x19: 3/5 (bronze)
 - 2005: 9x9: 3/9 (bronze), 19x19: 4/7
 - 2006: 19x19: 3/6 (bronze)
 - Kiseido Go Server (KGS):
 - « open » and « formal » tournaments.
 - Gifu Challenge:
 - 2006: 19x19: 3/17
 - CGOS 9x9
End of the overview

- Computer Go (CG) overview
 - Rules of the game
 - History and main obstacles
 - Best programs and competitions

- Classical approach: divide and conquer
 - Conceptual evaluation function
 - Global move generation
 - Combinatorial Game Theory

- New approach: Monte-Carlo Tree Search (MCTS)
 - Simple approach: depth-1 Monte-Carlo
 - MCTS
 - UCT

- Adaptations of UCT
 - 9x9 boards
 - Scaling up to 19x19 boards
 - Parallelization

- Future of Computer Go
Divide-and-conquer approach (start)

- **Break-down**
 - Whole game (win/loss; score)
 - Goal-oriented sub-games: String capture (shicho)
 - Connections, Dividers, Eyes, Life and Death

- **Local searches**
 - Alfa-beta and enhancements
 - PN-search, Abstract Proof Search, lambda-search

- **Local results**
 - Combinatorial-Game-Theory-based
 - Main feature:
 - If Black plays first, if White plays first
 - (>, <, *, 0, {a|b}, ...)

- **Global Move choice**
 - Depth-0 global search:
 - Temperature-based: *, {a|b}
 - Shallow global search
A Go position
Basic concepts, local searches, and combinatorial games (1/2)

- Block capture
 - \(\parallel 0 \)
 - First player wins
Basic concepts, local searches, and combinatorial games (2/2)

- **Connections:**
 - >0
 - $||0$

- **Dividers:**
 - $||0$
Influence function

- Based on dilation (and erosion)
Group building

- **Initialisation:**
 - Group = string

- **Influence function:**
 - Group = connected compound

- **Process:**
 - Groups are merged with connector >

- **Result:**
Group status

- Unstable groups:

- Dead group:
Conceptual Evaluation Function pseudo-code

- While dead groups are being detected,
 - perform the inversion and aggregation processes

- Return the sum of
 - the “value” of each intersection of the board
 - (+1 for Black, and –1 for White)
A Go position conceptual evaluation
A Go position
Local move generation

- Depends on the abstraction level
- Pattern-based
« Quiet » global move generation
« Fight-oriented » global move generation
Divide and conquer approach (move choice)

- Two strategies using the divide and conquer approach
 - Depth-0 strategy, global move evaluation
 - Local tree searches result based
 - Domain-dependent knowledge
 - No conceptual evaluation
 - GNU Go, Explorer, Handtalk (?)
 - Shallow global tree search using a conceptual evaluation function
Divide and conquer approach (+ and -)

- **Upsides**
 - Feasible on current computers
 - Local search « precision »
 - Local result accuracy based on anticipation
 - Fast execution

- ** Downsides**
 - The breakdown-stage is not proved to be correct
 - Based on domain-dependent knowledge
 - The sub-games are not independent
 - Two-goal-oriented moves are hardly considered
 - Data structure updating complexity
End of “classical” part

- Computer Go (CG) overview
 - Rules of the game
 - History and main obstacles
 - Best programs and competitions

- Classical approach: divide and conquer
 - Conceptual evaluation function
 - Global move generation
 - Combinatorial Game Theory

- New approach: Monte-Carlo Tree Search (MCTS)
 - Simple approach: depth-1 Monte-Carlo
 - MCTS, UCT

- Adaptations of UCT
 - 9x9 boards
 - Scaling up to 19x19 boards
 - Parallelization

- Future of Computer Go
Monte Carlo and Computer games (start)

- Games containing elements of chance:
 - Backgammon (Tesauro 1989-),

- Games with hidden information:
 - Poker (Billings & al. 2002),
 - Scrabble (Sheppard 2002).
Monte Carlo and complete information games

- (Abramson 1990) model of terminal node evaluation based on simulations
 - Applied to 6x6 Othello

- (Brügmann 1993) simulated annealing
 - Two move sequences (one used by Black, one used by White)
 - « all-moves-as-first » heuristic
 - Gobble
Monte-Carlo and Go

- **Past and recent history**
 - (Brugmann 1993),
 - (Bouzy & Helmstetter 2003),
 - Min-max and MC Go (Bouzy 2004),
 - Knowledge and MC Go (Bouzy 2005),
 - UCT (Kocsis & Szepesvari 2006),
 - UCT-like (Coulom 2006),

- **Quantitative assessment:**
 - σ (9x9) \simeq 35
 - 1 point precision: $N \simeq 1,000$ (68%), $4,000$ (95%)
 - 5,000 up to 10,000 9x9 games / second (2 GHz)
 - few MC evaluations / second
Monte Carlo and Computer Games (basic)

- **Evaluation:**
 - Launch N random games
 - Evaluation = mean of terminal position evaluations

- **Depth-one greedy algorithm:**
 - For each move,
 - Launch N random games starting with this move
 - Evaluation = mean of terminal position evaluations
 - Play the move with the best mean

- **Complexity:**
 - Monte Carlo: $O(NBL)$
 - Tree search: $O(B^L)$
An explicit terminal position

- The board is covered with either stones or « eyes »
- The score is easy to compute
Monte-Carlo and Computer Games (strategies)

- Greedy algorithm improvement: confidence interval update
 - \[[m - R\sigma/N^{1/2}, m + R\sigma/N^{1/2}] \]
 - R: parameter.

- Progressive pruning strategy:
 - First move choice: randomly,
 - **Prune move inferior to the best move,**

- Upper bound strategy:
 - **First move choice**: \(\text{argmax} (m + R\sigma/N^{1/2}) \),
 - No pruning
 - IntEstim (Kaelbling 1993), UCB (Auer & al 2002)

- Lower bound strategy
Progressive Pruning strategy

- Are there unpromising moves?
 - Move 1
 - Move 2
 - Current best
 - Move 3
 - Move 4
 - Can be pruned

Move value
Monte-Carlo and Computer Games (pruning strategy)

- Example
- The root is expanded
- Random games are launched on child nodes
Monte-Carlo and Computer Games
(pruning strategy)

- Example

- After several games, some child nodes are pruned
Monte-Carlo and Computer Games (pruning strategy)

Example

- After other random games, one move is left…
- And the algorithm stops.
Upper bound strategy (1/5)

- Which move to select?
 - Move 1
 - Move 2
 - Current best mean
 - Move 3
 - Current best upper bound
 - Move 4

Move value
The « best » move has received a GOOD reward:

- Move 1
- Move 2
 - Current best mean
- Move 3
 - STILL Current best upper bound
- Move 4
Upper bound strategy (3/5)

- The « best » move receives GOOD REWARDS ON AVERAGE:
 - Move 1
 - NEW current best upper bound
 - Move 2
 - Current best mean
 - Move 3
 - Old best upper bound
 - Its upper bound slightly decreases
 - Move 4

Move value
The « best » move has received a BAD reward:

- Move 1
 - NEW current best upper bound

- Move 2
 - Current best mean

- Move 3
 - Old best upper bound
 - Its mean value has merely decreased

- Move 4

Move value
Upper bound strategy (5/5)

- Even if the « best » move receives good rewards…
 - It does not stay the best.
- If the « best » move receives bad rewards…
 - It does not stay the best.

- Conclusion
 - Upper bound strategy **favours exploration**.
 - « Optimistic under uncertainty ».
 - Can be used when losing
 - Used in UCT
Lower bound strategy (1/5)

- Which move to select?
- Move 1
- Move 2
 - Current best lower bound
- Move 3
- Move 4

Move value
The « best » move has received a GOOD reward:

- Move 1
- Move 2
 - STILL Current best lower bound
 - Its mean value has merely increased
- Move 3
- Move 4
Lower bound strategy (3/5)

- The « best » move receives GOOD REWARDS:
 - Move 1
 - Move 2
 - STILL Current best lower bound
 - Its upper bound slightly increases
 - Move 3
 - Move 4

Move value
Lower bound strategy (4/5)

- The « best » move has received sufficiently BAD rewards:
 - Move 1
 - NEW current best lower bound
 - Move 2
 - Old best lower bound
 - Its mean value has decreased
 - Move 3
 - Move 4

Move value
Lower bound strategy (5/5)

- The « best » move does not stay the best…
 - … only if it receives bad rewards

- Conclusion
 - Lower bound strategy **favours exploitation**.
 - « Pessimistic under uncertainty ».
 - Can be used when winning.
 - Not used in UCT.
Depth-one Monte-Carlo Go
(pros and cons)

- Results:
 - Move quality increases with computer power 😊
 - Robust evaluation 😊
 - Global (statistical) search 😊

- Way of playing:
 - Good global sense 😊,
 - Local tactical weakness –

- Easy to program 😊
 - Rules of the games only,
 - No break down of the position into sub-positions,
 - No conceptual evaluation function.
Multi-Armed Bandit Problem (1/2)

- A player plays the Multi-armed bandit problem
 - He selects an arm to push
 - Stochastic reward depending on the selected arm
 - For each arm, the reward distribution is unknown
 - Goal: maximize the cumulated reward over time
 - Exploitation vs exploration dilemma

- Main algorithms
 - ε-greedy, Softmax,
 - IntEstim (Kaelbling 1993)
 - UCB (Auer & al 2002)
 - POKER (Vermorel 2005)
Multi-Armed Bandit Problem (2/2)

- MCTS & MAB similarities
 - Action choice
 - Stochastic reward (0 1 or numerical)
 - Goal: choose the best action

- MCTS & MAB: two main differences
 - Online or offline reward?
 - MAB: cumulated online reward
 - MCG: offline
 - Online rewards counts nothing
 - Reward provided later by the game outcome
 - MCG: Superposition of MAB problems
 - 1 MAB problem = 1 tree node
Monte-Carlo Tree Search (MCTS) (start)

- **Goal:** appropriate integration of MC and TS
 - TS: alfa-beta like algorithms, best-first algorithms
 - MC: uncertainty management

- **UCT: UCB for Trees** (Kocsis & Szepesvari 2006)
 - Spirit: superpositions of UCB (Auer & al 2002)
 - Downside: Tree growing left unspecified

- **MCTS framework**
 - Move selection (Chaslot & al) (Coulom 2006)
 - Backpropagation (Chaslot & al) (Coulom 2006)
 - Expansion (Chaslot & al) (Coulom 2006)
 - Simulation (Bouzy 2005) (Wang & Gelly 2007)
Move Selection in UCT

- **UCB (Auer & al 2002)**
 - Move eval = mean + C * sqrt(log(t)/s)
 = Upper Confidence interval Bound
 - t: number of simulations of the parent node
 - s: number of simulations of the child node
Backpropagation

- **Node evaluation:**
 - “Average” back-up = average over simulations going through this node
 - “Min-Max” back-up = Max (resp Min) evaluations over child nodes
 - “Robust max” = Max number of simulations going through this node

- **Good properties of MCTS:**
 - With “average” back-up and UCT move selection,
 - the root evaluation converges to the “min-max” evaluation when the number of simulations goes to infinity
 - “Average” back-up is used at every node
 - “Robust max” can be used at the end of the process to complete properly
Node expansion and management

- **Strategy**
 - Every nodes in the simulation --
 - One node per simulation
 - Few nodes per simulation according to domain dependent probabilities

- **Use of a Transposition Table (TT)**
 - Merge sets of samples to obtain a better precision
 - When hash collision: link the nodes in a list
Monte-Carlo Tree Search (pseudo-code)

- **MCTS():**
 - While time,
 - PlayOutTreeBasedGame (list)
 - outcome = PlayOutRandomGame()
 - Update nodes (list, outcome)
 - Play the move with the best mean

- **PlayOutTreeBasedGame (list)**
 - node = getNode(position)
 - While node do
 - Add node to list.
 - M = Select move (node)
 - Play move (M)
 - node = getNode(position)
 - node = new Node()
 - Add node to list.
A first random game is launched, and its outcome is kept carefully.
A first child node is created.
The outcome of the random game is backed up.
At the root, unexplored moves still exist.

A second game is launched, starting with an unexplored move.
A second node is created and the outcome is backed-up to compute means.
All legal moves are explored, the corresponding nodes are created, and their means computed.
For the next iteration, a node is greedily selected with the UCT move selection rule:

\[
\text{Move eval} = \text{mean} + C \cdot \sqrt{\frac{\log(t)}{s}}
\]

(In the continuation of this example, for a simplicity reason, let us consider $C=0$).
A random game starts from this node.
A node is created.
The process repeats…
Upper Confidence for Trees (UCT) (11)

... several times ...
Upper Confidence for Trees (UCT) (12)

- ... several times ...
Upper Confidence for Trees (UCT) (13)

... in a best first manner ...

CIG07 Hawaii Honolulu
Upper Confidence for Trees (UCT) (14)

... until timeout.
Half of “part two”

- Computer Go (CG) overview
 - Rules of the game
 - History and main obstacles
 - Best programs and competitions
- Classical approach: divide and conquer
 - Conceptual evaluation function
 - Global move generation
 - Combinatorial Game Theory
- New approach: Monte-Carlo Tree Search (MCTS)
 - Simple approach: depth-1 Monte-Carlo
 - MCTS
 - UCT
- Adaptations of UCT
 - 9x9 boards
 - Scaling up to 19x19 boards
 - Parallelization
- Future of Computer Go
Adaptations of UCT

- The “adaptations” are various...
 - UCT formula tuning (C tuning, “UCB-tuned”)
 - Exploration-exploitation balance
 - Outcome = Territory score or win-loss information?
 - Doubling the random game number
 - Transposition Table
 - Have or not have, Keep or not keep
 - Update nodes of transposed sequences
 - Use grand-parent information
 - Simulated games
 - Capture, 3x3 patterns, Last-move heuristic,
 - Move number, «Mercy» rule
 - Speeding up
 - Optimizing the random games
 - Pondering
 - Multi-processor computers
 - Distribution over a (local) network
Assessing an adaptation

- **Self-play**
 - First and easy test
 - Few hundred games per night
 - % of wins
 - Risk of evolving into a wrong direction

- **Against one differently designed program**
 - GNU Go 3.6
 - Open source with GTP (Go Text Protocol)
 - Few hundred games per night
 - % of wins
 - Risk of over-fitting

- **Against several differently designed programs**
 - CGOS (Computer Go Operating System)
 - Real test
 - ELO rating improvement
 - 9x9
 - Slow process
CGOS rankings on 9x9

- ELO ratings on 6 March 2007

- MoGo 3.2 2320
- MoGo 3.4 10k 2150
- Lazarus 2090
- Zen 2050
- AntiGo 2030
- Valkyria 2020
- MoGo 3.4 3k 2000
- Irene (=Indigo) 1970
- MonteGnu 1950
- firstGo 1920
- NeuroGo 1860
- GnuGo 1850
- Aya 1820
- ... Raw UCT 1600?
- ... AnchorMan 1500
- ... Raw MC 1200?
- ... ReadyToGo 1000?
- ...
Move selection formula tuning

- **Using UCB**
 - Move eval = mean + $C \times \sqrt{\log(t)/s}$
 - What is the best value of C?
 - Result: 60-40%

- **Using “UCB-tuned” (Auer & al 2002)**
 - The formula uses the variance V:
 - Move eval = mean + $\sqrt{\log(t) \times \min(1/4, V)/s}$
 - Result: “substantially better” (Wang & Gelly 2007)
 - No need to tune C
Exploration vs exploitation

- General idea
 - Explore
 - at the beginning of the process,
 - or when losing
 - Exploit
 - near the end,
 - or when winning

- Argmax over the child nodes with their...
 - Mean value
 - Number of random games performed (i.e. « robust-max »)
 - Result: Mean value vs robust-max = +5%

- Diminishing C linearly in the remaining time
 - Inspired by (Vermorel & al 2005)
 - Result: +5%
Which kind of outcome?

- 2 kinds of outcomes
 - Win-Loss Information (WLI): 0 or 1
 - Territory Score: integer between -81 and +81
 - Combination of Both TS + Bonus*WLI

- Resulting statistical information
 - WLI: probability of winning ++
 - TS: territory expectation

- Results
 - Against GNU Go
 - TS: 0%
 - WLI: +15%
 - TS+WLI: +17% (with bonus = 45)
The diminishing return experiment

- Doubling the number of simulations
 - \(N = 100,000 \)

- Results:
 - \(2N \) vs \(N \): 60-40%
 - \(4N \) vs \(2N \): 58-42%
Transposition table (1)

- Have or not have?
 - Zobrist number
 - TT access time \ll random simulation time
 - HashTable collision solved with a linked list or records
 - Interest: merging two node information for the same position
 - Union of samples
 - Mean value refined
 - Result: 60-40%

- Keep or not keep TT info from one move to the next?
 - Result: 70-30%
Transposition table (2a)

- Update nodes of transposed sequences
 - If no capture occurs in a sequence of moves, then
 - Black moves could have been played in a twist order
 - White moves as well
 - There are « many » sequences that are transposed from the sequence actually played out
 - Up: one simulation updates much more nodes that the nodes the actual sequence gets through
 - Down: most of these « transposed » nodes do not exist
 - If you create them: memory explosion occurs
 - If you don't: the effect is lowered.
 - Result: 65-35%
Transposition table (2b)

- Which nodes to update?
 - Actual
 - Sequence: ACBD
 - Nodes:
 - Virtual
 - Sequences: BCAD, ADBC, BDAC
 - Nodes:

CIG07 Hawaii Honolulu
Grand-parent information (1/2)

- Mentioned by (Wang & Gelly 2007)
- A move is associated to an intersection
 - Use statistical information available in nodes associated to the same intersection
 - For...
 - Initializing mean values
 - Ordering the node expansion
 - Result: 52-48%
Given its ancestors, estimate the value of a new node?

Idea:
- move B’ is similar to move B because of their same location
- new.value = this.value + uncle.value – grandFather.value
Improvement of simulated games (1/3)

- **Pseudo-random games:**
 - Instead of being generated with a uniform probability,
 - Moves are generated with a probability *depending on specific domain-dependent knowledge*
 - Liberties of string in « atari »: Patterns 3x3:
 - Pseudo-random games look like go,
 - Computed means are more significant than before 😊
Improvement of simulated games (2/3)

- **Features of a Pseudo-Random (PR) player**
 - 3x3 pattern urgency table
 - 3^8 patterns (empty intersection at the center)
 - 25 dispositions with the edge
 - \#patterns = 250,000
 - Urgency « atari »

- **“Automatic” player**
 - Reinforcement Learning experiments
 - (Bouzy & Chaslot 2006)
Improvement of simulated games (3/3)

- Insert knowledge within random games:
 - high urgency for...
 - Capturing-escaping Result: 55-45%
 - Moves advised by 3x3 patterns Result: 60-40%
 - Moves located near the last move
 - (in the 3x3 neighbourhood)
 - (Wang & Gelly 2007)
 - Result: 60-40%
The « mercy » rule

- (Hillis 2006)
 - Interrupt the game when the difference of captured stones is greater than a threshold
 - Up: random games are shortened with some confidence
 - Result: 51-49%
Speeding up the random games (1)

- Full random on current desktop computer
 - 50,000 rgps (Lew 2006) an exception!
 - 20,000 rgps (commonly eared)
 - 10,000 rgps (my program!)
- Pseudo-random (with patterns and few knowledge)
 - 5,000 rgps (my program)
- Optimizing performance with profiling
 - Rough optimization is worthwhile
Speeding up the random games (2)

- Pondering
 - Think on the opponent time
 - Result: 55-45%

- Parallelization on a multi-processor computer
 - Shared memory: UCT tree = TT
 - TT locked with a semaphore
 - Result: 2 proc vs 1 proc: 58-42%

- Parallelization over a network of computers
 - Like the Chessbrain project (Frayn & Justiniano)
 - One “server” manages the UCT tree
 - N “clients” perform random games
 - Communication with messages
 - Result: not yet available!
Parallelizing MCTS

Light processes using TT

- While time do,
 - PlayOutTreeBasedGame (list)
 - outcome = PlayOutRandomGame()
 - Update nodes (list, outcome)
- Play the move with the best mean

Heavy and stand-alone process using board information and not the TT
Scaling up to 19x19 boards

- Knowledge-based move generation
 - At every nodes in the tree

- Local MC-searches
 - Restrict the random game to a « zone »
 - How to define zones?
 - Statically with domain-dependent knowledge
 - Result: 30-70%
 - Statistically: proper approach, but how?
 - Warning: avoid the difficulties of the breaking-down approach

- Parallelization
 - The promising approach
Summing up the enhancements

Details
- UCT formula tuning: 60-40
- Exploration-exploitation balance: 55-45
- Proba of winning vs territory expect.: 65-45
- Transposition Table
 - Have or not have: 60-40
 - Keep or not keep: 70-30
 - Update nodes of transposed sequences: 65-35
- Use grand-parent information: 52-48
- Simulated games
 - Capture, 3x3 patterns: 60-40
 - Last-move: 60-40
 - « Mercy » rule: 51-49
- Speeding up
 - Optimizing the random games: 60-40
 - Pondering: 51-49
 - Multi-processor computers: 58-42
 - Distribution over a network: ?

Total: 99-1 ?
Almost already the end

- Computer Go (CG) overview
 - Rules of the game
 - History and main obstacles
 - Best programs and competitions
- Classical approach: divide and conquer
 - Conceptual evaluation function
 - Global move generation
 - Combinatorial Game Theory
- New approach: Monte-Carlo Tree Search (MCTS)
 - Simple approach: depth-1 Monte-Carlo
 - MCTS
 - UCT
- Adaptations of UCT
 - 9x9 boards
 - Scaling up to 19x19 boards
 - Parallelization
- Future of Computer Go
Current results

- **9x9 Go**: the best programs on CGOS and KGS are MCTS based
 - MoGo (Wang & Gelly), CrazyStone (Coulom),
 - Valkyria (Persson), AntGo (Hillis), Indigo (Bouzy)
 - NeuroGo (Enzenberger) is the exception

- **13x13 Go**: ? medium interest
 - MoGo, GNU Go
 - Old-fashioned programs does not play

- **19x19 Go**: the best programs are still old-fashioned
 - Old-fashioned go programs, GNU Go
 - MoGo is catching up (regular successes on KGS)
To what extent MCTS programs may surpass old-fashioned program?

- Are old-fashioned go programs all old-fashioned?
 - Go++ is one of the best program
 - Is Go++ Old-fashioned or MCTS based?

- Can old-fashioned programs improve in the near future?

- Is MoGo strength mainly due to MCTS approach or to the skill of their authors?
 - 9x9 CGOS: MoGo is far ahead the other MCTS programs
Perspectives on 19x19 (2/2)

☐ To what extent MCTS programs may surpass old-fashioned program?

- Is the break-down approach mandatory for scaling up MCTS up to 19x19?
 -> rather NO

- The parallelization question: may we easily distribute MCTS over a network?
 -> rather YES
Thank you for your attention...

- My page http://www.math-info.univ-paris5.fr/~bouzy/
- Go4++ http://www.reiss.demon.co.uk/webgo/compgog.htm
- Crazy Stone http://remi.coulom.free.fr/CrazyStone/
- Mogo http://www.lri.fr/~gelly/MoGo.htm
- Gifu Challenge http://computer-go.softopia.or.jp/gifu2006/
- Computer Olympiads http://www.cs.unimaas.nl/Olympiad2006/
- On line computer go bibliography http://www.cs.ualberta.ca/~emarkus/compgog_biblio/
- CGOS http://cgos.boardspace.net/