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Bioinformatics - Definition
Bioinformatics 

The field of science in which biology, computer science, and 
information technology merge to form a single discipline. The 
ultimate goal of the field is to enable the discovery of new 
biological insights as well as to create a global perspective from 
which unifying principles in biology can be discerned. 
Classically: storage and information retrieval of biological data

Computational Biology
Use of computers to analyze and interpret biological data 
Typically nucleotide, RNA, protein sequences, structures

Largely interchangeable in the literature
New tools for data access and management
New algorithms and statistics for pattern identification 
and prediction
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Bioinformatics - History
Revolutionary methods in molecular biology

DNA sequencing
Protein structure determination
Drug design and development

Exponential growth of biological information
Computational requirement for

Database storage of information
Organization of information
Tools for analysis of data

The transition of biology from “wet-lab” to “dry-
lab/information science”
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Bioinformatics / 
Computational Biology

The use of techniques from applied mathematics, 
informatics, statistics, and computer science to solve 
(typically noisy) biological problems

Multiple sequence alignment
Identification of functional regions or motifs
Classification of data
Phylogenetic analysis
Molecular structure determination and folding
Genetics
Diagnostics and medical applications
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Why is bioinformatics important?

Modeling via bioinformatics may provide 
answers to questions related to human 
health and evolution
Development of small molecule drugs to 
combat infection and disease
Diagnosis and prognosis, leading to more 
effective medicine
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http://www.ncbi.nlm.nih.gov/Genbank/index.html
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Bioinformatics
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DNA RNA            Protein
Transcription Translation

←→ →
Reverse transcription

Information Function

Information Flow in the Cell
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A More Modern View…
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What is DNA?
Adenine (A)
Thymine (T)
Guanine (G) 
Cytosine (C)

A – T
G – C
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Exons (coding regions)

Introns (non-coding regions)Promoter

Enhancer

DNA

Enhancers and promoters affect the level of transcription 
and act as on-off switches (potentiometers)

Gene Organization
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Promoter Data
Reese' promoters dataset:
http://www.fruitfly.org/seq_tools/datasets/Human/promoter/ 
Results for NNPP on promoters taken from the Eukaryotic Promoter
Database, EPD and genes GenBank database. 
300 promoter sequences of 51 bp each. (40bp upstream and 11 bp 
downstream from the known transcription start site)
3,000 non-promoter regions, also each of 51 bp, some from coding 
regions  and some introns. TSS

40 bp 11 bp
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RNA

Adenine (A)
Uracil (U)
Guanine (G) 
Cytosine (C)

A – U
G – C
G – U
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>100 Gigabases of Information

Over 100 Gigabases of DNA and RNA sequence 
information in GenBank, EMBL, and DDBJ as of 
2005

(roughly the same order of magnitude as the number 
of nerve cells in a human brain)
individual genes 
partial and complete genomes 
over 165,000 organisms
Free access

http://www.nlm.nih.gov/news/press_releases/dna_rna_100_gig.html

http://www.nlm.nih.gov/news/press_releases/dna_rna_100_gig.html


16

Databases

GenBank
National Institutes of Health
65 gigabases of sequence information

EMBL
European Molecular Biology Laboratory

DDBJ
DNA DataBank of Japan
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Microarrays
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diauxic shift timecourse: 20.5 hrdiauxic shift timecourse: 0 hr

DeRisi JL, et al. (1997) Science 278(5338):680-6
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Microarray Databases
Stanford Microarray Database

Experiments : 66571 
Public Experiments : 12596 
Spots : 1983883115 
Users : 1633 
Labs : 319 
Organisms : 50 
Publications : 350 

http://genome-www5.stanford.edu/statistics.html



24



25

GGUGCGCGUUAU

GARY
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Amino acids

The backbone in proteins

Consists of a central carbon atom 
which is bonded to an amino group
and a carboxyl group and a side-
chain

αC
The backbone is the sequence of amino 
groups,       , and carboxyl groups

αC

Proteins differ only in the number of amino acids linked together, and 
the sequential order in which these amino acids occur
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Protein

20 amino acid 
types
Folding
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Protein Analysis

Broad area of bioinformatics includes:
Sequence
Structure
Function

Focus today on:
Finding Motifs
Classification
Prediction
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Primary Data Sources

Sequence – pdb, swissProt
Structure – cath, dssp
Function - cath, scop
Experimentally derived from a lab or group 
of labs (e.g. NMR data for membrane 
spanning proteins)
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Quantitative Structure-Activity 
Relationships

Molecule/activity set
10s-100s of features = (hydrophobicity, electronic 
effects, steric effects, etc.)
Training / testing / validation sets
Reduce the number of features
Predictive model for future compound discovery
Better understanding of true biological mechanism of 
action
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Phylogenetics

Determining the history of life on Earth using 
sequence information or other 
characteristics/features
Develop a tree-like representation 
Factorial increase in the number of possible 
trees as the number of sequences/features 
increases
Better search algorithms for the space of tree 
representations for resolution of a “true” tree
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Data Pitfalls

Bias due to homology
Dirty data due to unknowns
Not enough examples to train from
Outliers
Out of date
Garbage in, garbage out
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Predictors and Classifiers

Predictors – given an unknown data sample 
provide a measure of confidence that it belongs 
to the set the model was constructed to 
represent
Classifiers – given a set of heterogeneous data 
separate the data into classes.  

Supervised – trained on a set of known examples
Unsupervised – number of classes is not known in 
advance (also referred to as clustering)
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Clustering

Clustering is the classification of similar 
objects into different groups

More precisely - the partitioning of a data 
set into subsets (clusters), so that the data 
in each subset (ideally) share some 
common trait - often proximity according to 
some defined distance measure.
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Measuring Performance

TP(t), FP(t), TN(t), FN(t), where t = threshold

Specificity
TN/(TN+FP) 

Sensitivity
TP/(TP+FN)

False Positive Rate
1-specificity = FP / (FP + TN)
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Measuring Performance

Correlation coefficient 
(TP x TN – FP x FN)/ Sqrt( (TP+FN) x 

(TP+FP) x (TN+FP) x (TN+FN) )

Receiver operating 
characteristic

Sensitivity/specificity 
plot for an experiment
Measure the area 
under the curve

0

.2

.4

.6

.8

1

P(
D

)
0 .2 .4 .6 .8 1

P(FA)

Bivariate Scattergram
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When to Employ an Evolutionary 
Algorithm

Large search space with many local optima
Neither exact algorithms nor approximation algorithms 
feasible
Applications where current solutions rely on heuristics
Dynamic processes

Examples in bioinformatics:
multiple sequence alignment
structure prediction
clustering expression data
phylogeny (using parsimony)
parameter estimation in hidden Markov models
finding gene networks
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Problem Dependent Application

Each problem requires its own
Representation

Particularly important in bioinformatics
Variation operators
Rates of mutation/recombination
Performance index
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Gene Expression

Class prediction through evolved 
classifiers

which genes are most correlated with known 
cell types/disease phenotype

Class discovery through evolutionary 
computation

how many cell types are truly represented in 
the gene expression data?
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Optimizing Neural Networks Using 
Evolutionary Computation

Weights and 
biases

Connections

Topology

Processing 
elements

.

.

.

INPUT HIDDEN

OUTPUT

Modify Weight

Modify Connection

Modify Topology

Modify Processing
Element



42Gehlhaar et al. (1995) Current Biol. 2:317-324.
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Strategy for Broad-Spectrum 
Drug Discovery

Search nucleotide sequences for 
conserved RNA structures/drug targets 
with broad spectrum anti-bacterial or anti-
viral activity
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>105 hits

>105 hits

>105 hits

3-10

3-10

3-10

0-10 0-10

Exhaustive 
search for 
common 

RNA 
structures 
infeasible

Organism A

Organism B

Organism C

Fogel et al., Nucl. Acids. Res. 30, 5310-5317 (2002) 
Macke et al., Nuc. Acids Res. 29, 4724-4735 (2001) 
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>105 hits
Organism A

Structure A134
Structure B56
Structure C278

Bin #1

>105 hits
Organism B

>105 hits
Organism C

Structure A78
Structure B9
Structure C3567

Bin #2

Structure Ax
Structure By
Structure Cz

Bin #N

.

.

.

Scoring

Selection

Variation
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Signal Recognition Particle –
Domain IV

SRP targets signal peptide-
containing proteins to plasma 
membranes (prokaryotes) or 
endoplasmic reticulum 
(eukaryotes)

Domain IV is essential, known 
binding site for protein 
component of SRP

Highly conserved, found over a 
wide phylogenetic distance

A A
G       A

G-C
C-G
U-G

G       A
G            G
A            C

C       A
C-G
C-G
G-U

4-6

3-5 3-5

3

3
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Experiment 1 2 3 4 5 6

Organism

H. sapiens 20 136 418 903 903 903
A. fulgidus 15 69 200 724 724 724
B. subtilis 12 62 374 520 520 520
E. coli 14 45 258 523 523 523
M. voltae 11 30 121 315 315 315
S. pyogenes - - - - 57295 -
S. aureus - - - - - 13591

Total 72 342 1371 2985 60280 16576

4-6

3-5 3-5

3

3

 4-6

3-5 3-5

3-10

3-10

4-6

0-5 0-5

3-10

3-10

3-10

0-5 0-5

3-10

3-10

4-6

4-5

3

3

4-5
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Signal Recognition Particle – Domain IV

Exp. Possible Bins         P       O       G Time (min.)       Fraction Evaluated
1 5.5 × 105 80     40      3 2 1.7 × 10-2

2 7.9 × 108 80     40      7 4 2.8 × 10-5

3 9.8 × 1011 80     40     27 13 8.8 × 10-8

4 5.6 × 1013 80     40     27 12 5.9 × 10-11

5 3.2 × 1018 200   100    25 90 1.5 × 10-13

6 7.6 × 1017 200   100    13 41 3.4 × 10-13

gi|38795| |192 |24 |gcc cagg  ccc ggaa ggg agca  ggc
gi|216348||153 |24 |tgt cagg  tcc ggaa gga agca  gca
gi|42758| |204 |24 |ggt cagg  tcc ggaa gga agca  gcc
gi|177793||308 |24 |gcc cagg  tcg gaaa cgg agca  ggt
gi|150042||310 |26 |ccg ccagg ccc ggaa ggg agcaa cgg

Experiments 1-4 A A
G       A

G-C
C-G
U-G

G       A
G            G
A            C

C       A
C-G
C-G
G-U
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Signal Recognition Particle – Domain IV

gi|38795|  |192    |24 |gcc cagg  ccc ggaa ggg agca  ggc
gi|216348| |153    |24 |tgt cagg  tcc ggaa gga agca  gca
gi|42758|  |204    |24 |ggt cagg  tcc ggaa gga agca  gcc
gi|177793| |308    |24 |gcc cagg  tcg gaaa cgg agca  ggt
gi|150042| |310    |26 |ccg ccagg ccc ggaa ggg agcaa cgg
gb|AE004092| |190360 |24 |ggt cagg  gga ggaa tcc agca  gcc

gi|38795| |192    |24 |gcc cagg  ccc ggaa ggg agca  ggc
gi|216348| |153    |24 |tgt cagg  tcc ggaa gga agca  gca
gi|42758| |204    |24 |ggt cagg  tcc ggaa gga agca  gcc
gi|177793| |308    |24 |gcc cagg  tcg gaaa cgg agca  ggt
gi|150042| |310    |26 |ccg ccagg ccc ggaa ggg agcaa cgg
gi|15922990| |525890 |24  |tgt cagg  tcc tgac gga agca  gca

A A
G       A

G-C
C-G
U-G

G       A
G            G
A            C

C       A
C-G
C-G
G-U

Experiment 6

Experiment 5
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Transcription Factor Binding Site 
(TFBS) Discovery

Use evolutionary computation to search for 
TFBSs of co-expressed genes

Identify known TFBS motifs as well as putative, 
previously unknown motifs that serve as 
promoters or enhancers

Follow up with experimental validation
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Discovery of TFBSs using EC

Upstream
sequences

Evolve “window” placement

ATGCAAAT
ATGTAAAT
ATGTAAAT
ATGCAAAT
ATGCAAAG
ATGTAAAA
ATGCAAAT

Identify putative TFBS
Based on sequence similarity

and complexityFogel et al. (2004) Nucl. Acids Res. 32(13):3826-3835
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Overview
Computational Intelligence (CI) in 
Bioinformatics 
RNA Structure and Prediction
Designing Algorithms Inspired by Nature: 
Evolutionary Computation – Successes in the 
RNA Domain with RnaPredict
A comparison with known structures and 
mfold
jViz.Rna – A Dynamic RNA Visualization Tool 
Conclusions
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Computational and Design 
Methods Used in Bioinformatics

Algorithm Design including: 
Dynamic Programming
Heuristic Search
Computational Intelligence Methods: Evolutionary Computation, 
Simulated Annealing, Neural Networks, Fuzzy Systems

Graphics and Visualization
Designing models for sequence or structure information 
2D and 3D visualization of structures
Systems design for input, output and manipulation 
Design of interactive input and output technology
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Successful Applications of CI in 
Bioinformatics

Sequence Alignment
SAGA: An Evolutionary Algorithm (EA) for 
Sequence Alignment (Notredame et al.)

RNA Structure Prediction
Evolutionary Algorithms (RnaPredict and 
PRnaPredict (Wiese et al., Shapiro et al., 
vanBatenburg et al.) 
Simulated Annealing
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Successful Applications of CI in 
Bioinformatics, cont.

Protein Structure Prediction (Searching the 
Protein Conformational Space)

Evolutionary Algorithms
Simulated Annealing
Knowledge Based Methods

Protein-Protein Interaction
Do two proteins interact? Where? How?
Searching Conformational Space for Docking (EAs)
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Successful Applications of CI in 
Bioinformatics, cont.

Identify Coding Regions in DNA
Evolved Artificial Neural Network for Gene 
Identification (Fogel et al.)

Excellent Overview of EA approaches in 
Bioinformatics

Evolutionary Computation in Bioinformatics, Gary B. 
Fogel and David W. Corne, Morgan Kaufmann 
Publishers (2003)
Computational Intelligence in Bioinformatics, Fogel et 
al., IEEE Press (due Dec, 2007)
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RNA Folding – A case study

RNA is involved in transcription and 
translation: making proteins
Other roles include regulatory, catalytic 
and structural roles, also in combination 
with proteins
RNA sequences are determined using 
high throughput sequencing machines
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RNA Folding: Why should we care?

Why study/predict RNA structure?
The structure of RNA molecules largely determines 
their function in the cell. 
Preservation of structure can be used to understand 
evolutionary processes. 
Knowing the structure or shape can be used to 
understand genetic diseases and to design new 
drugs.
RNA secondary structure is formed by a natural 
folding process in which chemical bonds between 
certain so called canonical base pairs are formed.
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RNA Folding

The canonical base pairs are GC, AU, GU, 
and mirrors CG, UA, UG

e.g.

Finding all canonical base pairs is simple, 
but which ones will actually form bonds ?

A U

5’ 3’
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RNA Folding

While the sequence “folds” back onto itself 
it forms the secondary structure 

A G C U G CU G U ACG U AA A

A G C
U

GC
U

GU

A

C
G

U
A

A

A
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RNA Secondary Structure 
Elements

Hairpin Loop

Multi-loop

Internal Loop

Bulge

External Base

Note: the same sequence may produce many different, overlapping helices
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RNA Double Helix Model

A helix consists of at least three 
consecutive canonical base pairs.
The helix can only form if the sequence or 
loop connecting the two strands is at least 
3 nucleotides long. 

GGG CCC GGG CCC
5’ 3’
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Which helices are possible?

G
G
G

C
C
C

GGG CCC
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Which helices are possible?

G
G
G

C
C
C

GGG CCC

?

G
G
G

G
G
G

C
C
C

C
C
C

GGG CCC GGG CCC
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RNA Folding by Energy 
Minimization 

RNA molecules are stabilized by the formation of 
these helices (through base pair bonds).
How do we know which helices will form?
RNA molecules will fold into a minimum energy
state. This minimum can be a local one.
The free energy of a structure is determined by 
evaluating the thermodynamic model that is 
associated with the current structure. 
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RNA Thermodynamics 

Energies for various RNA substructures can be 
determined experimentally and are associated 
with thermodynamic parameters. 
Thermodynamic models can consider bonding 
energies, stacking energies, and looping 
energies.
Our work employs two stacking energy models

Individual Nearest Neighbor (INN) (Borer, Freier, 
Sugimoto, He)
Individual Nearest Neighbor Hydrogen Bond (INN-
HB) (Xia et al. 1998)
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Free Energy Minimization 
Stacking Energies

Free energy (ΔG) is reduced as base pairs 
are formed
Two helices with same base pairs can have 
different ΔG
ΔG contribution of a base pair depends on

Position in helix
Proximity to other base pairs

Both INN and INN-HB model nearest-
neighbors, terminal mismatches, dangling 
ends, helix initiation, and helix symmetry
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Stacking Energies (INN and INN-HB)

A C

C G

G

U A

U

C

C G

A

( ) =Δ duplexG ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΔG

A

U A

U
+

C

GA

U

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΔG

+initiationGΔ

+ symmetryGΔ

Suppose duplex:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΔG

A

C

G

U
+
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Energy Minimization

The free energy ΔG(S) of the entire structure is given by: 

where ΔG(h) is the free energy of an individual helix 
according to the thermodynamic model in use. 

)()( ∑
∈

Δ=Δ
Sh

hGSG
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Approach - Find All Pairs

1. Find all canonical base pairs
2. Attempt to grow each pair(i,j) into a helix by 

“stacking” pairs
3. Add helix to set H of all potential helices

ACUAG U UC A UG G C
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Build All Helices

1. Find all canonical base pairs
2. Attempt to grow each pair(i,j) into a helix by 

“stacking” pairs
3. Add helix to set H of all potential helices

i j
ACUAG U UC A UG G C
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Build All Helices

1. Find all canonical base pairs
2. Attempt to grow each pair(i,j) into a helix by 

“stacking” pairs
3. Add helix to set H of all potential helices.

AC

U
G

C

U G
U

C
A

G
U

i j

A

ACUAG U UC A UG G C
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Build All Helices

1. Find all canonical base pairs
2. Attempt to grow each pair(i,j) into a helix by 

“stacking” pairs
3. Add helix to set H of all potential helices

AC

U
G

A
C

U G
U

C
A

G
U

i+1 j-1
ACUAG U UC A UG G C
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Build All Helices

1. Find all canonical base pairs
2. Attempt to grow each pair(i,j) into a helix by 

“stacking” pairs
3. Add helix to set H of all potential helices.

A

C
U

G

A
C

U
G

UC

A

G
U

i+2 j-2
ACUAG U UC A UG G C
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Build All Helices

1. Find all canonical base pairs
2. Attempt to grow each pair(i,j) into a helix by 

“stacking” pairs
3. Add helix to set H of all potential helices

AC

U
G

A
C

U G

U

C
A

G
U

i+3 j-3
ACUAG U UC A UG G C
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Add New Helix

1. Find all canonical base pairs
2. Attempt to grow each pair(i,j) into a helix by 

“stacking” pairs
3. Add helix to set H of all potential helices

i+4 j-4
ACUAG U UC A UG G C

AC
U G

U

U
G

A
C

C
A

G
U



80

RNA Helices

Must have at least 3 “stacked” base pairs
Sequence or loop connecting the two strands 
must be at least 3 nucleotides long
Store this new helix in a set H

i+4 j-4
ACUAG U UC A UG G C

AC
U G

U

U
G

A
C

C
A

G
U
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Assembling a Structure S
From the set H of all helices, select a subset 
S such that:

Sum of free energies of all h in S is minimized
No helices h in S share bases 

S={ }
{ }H=

1 2 3 4 5 6 7 8 9 10 11 12 13

111 4 7 8
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Approach, cont.

The energy function E is determined by the 
current thermodynamic model and minimized  

Challenge: There are 2|H| sub-sets of H
Solution: Probabilistic Approaches, such as  
Evolutionary Algorithms, Monte Carlo, Simulated 
Annealing

∑
∈

=Δ
Sh

hG min)(
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Objectives 

To design a novel Evolutionary Algorithm to 
predict secondary RNA structure (RnaPredict)
To evaluate the algorithm including convergence 
behavior and population dynamics
To suggest several improvements to the 
algorithm
To study the effect of different selection and 
reproduction techniques on the EA
To compare the outcome (predicted structures) 
with known structures and other approaches 
such as Nussinov and mfold
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High Level Evolutionary Algorithm
Initialize a population of chromosomes;
Evaluate the chromosomes in the population;

while (stopping criteria not reached) do
for i=1 to size_of(population)/2 do

select 2 parent chromosomes;
apply crossover operator to them;
apply mutation operator to them;
evaluate the new chromosomes;
insert them into gnext;
i = i + 1;

endfor
update stopping criteria;

endwhile
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Representing Structure S in the 
Algorithm

A permutation P of set H is used to 
represent the structure in the EA

{ }
69 78 5 101113 123

Px=
4

{ }
69 78510 1113 1 23

Py=
4

12

12
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Decoding the Permutation
When an individual is decoded, each helix in 
the permutation is iterated through

4

{ }
6 781013 13

Sy=
4

Only helices which do not conflict are 
scored and placed in the final structure

{ }
68 1

Sx=
12
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Experiments and Results

Tested several sequences with both known and 
unknown structures
4 selection/replacement strategies
2 representations and 9 X-over operators
over 100 combinations of Pc and Pm
Population size = 700
30 independent runs with different random 
seeds
785 nt human mRNA ...
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Results – Roulette Wheel 
Selection 
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785 nt human mRNA, 10480 Possible Helices, Pm=5%, Pc=70%, 
pop_size = 700, CX, STDS, no elitism
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Results: Keep-Best Reproduction

Faster convergence
Better solution quality
Works well with smaller population sizes
Very robust over a wide range of operator 
probabilities
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Results – KBR, cont. 

785 nt human mRNA, 10480 Possible Helices, Pm=80%, Pc=70% 
pop_size = 700, CX, KBR, 1-elitism
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What about the structures?

So far we have focused on understanding 
the factors that control:

the convergence speed of the algorithm 
the effectiveness of the algorithm to find low 
energy structures

What about the actual structures? 
Need to know how close our predicted 
structures match real structures in nature 
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Predicted Structures vs. Real 
Structures

Haloarcula marismortui – 122nt

Correctly predicted 
base pairs

Bonding 
Model

Stacking Model 
(INN-HB)

Best <30%  71.1%

Best canonical base 
pairs only

41.3% 93.1%
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What about the quality of the 
structures?

How much does the previous quantitative 
measure (base pair overlap) tell us? 
What do the structures look like? 
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Visualization of RNA secondary 
structure – jViz.Rna

We have developed a tool (jViz.Rna) to visualize 
RNA that could:

Be separate from the prediction tool 
Handle and display pseudo-knots
Have dynamic output for further manipulation by the 
user
Allow for easy comparison of two structures  
Allow for quantitative comparison of two structures
Allow for saving the output as high quality graphics in 
a standard format (.gif) 
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jViz.Rna – Feynman diagram
Known Structure

Known
Predicted
Overlap

Saccharomyces cerevisiae (Baker's Yeast) 118 nt



96

jViz.Rna – Predicted Structure

Known
Predicted
Overlap

Saccharomyces cerevisiae (Baker's Yeast) 118 nt
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jViz.Rna – Comparison of 
Predicted vs. Known Structure

Known
Predicted
Overlap

Saccharomyces cerevisiae (Baker's Yeast) 118 nt
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jViz.Rna – Dot Plot

Known
Predicted
Overlap

Saccharomyces cerevisiae (Baker's Yeast) 118 nt
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jViz.Rna – Classical 
Structure (known)

Known
Predicted
Overlap

Saccharomyces cerevisiae
(Baker's Yeast) 118 nt
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jViz.Rna – Classical 
Structure (predicted)

Known
Predicted
Overlap

Saccharomyces cerevisiae
(Baker's Yeast) 118 nt
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jViz.Rna – Overlaying 
predicted and known 
structure

Known
Predicted
Overlap

Saccharomyces cerevisiae
(Baker's Yeast) 118 nt
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RNA Base Pairing

Canonical

G-C 
A-U
G-U

Non-canonical

G-A
A-A
C-U
U-U
and others…
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Quantitative Overlap (known vs. 
predicted structure)

Known structure of Baker’s Yeast has a total of 37 bps
Our method RnaPredict predicts 33 of those (89.2%)
Known structure contains 2 C-U pairs which cannot be 
predicted with the current model: 33/35 were found 
(94.3%)
Without the C-U pairs the existing helix of size 3 would 
only be size 2 and could thus not be predicted
Of the bps and helices that our model can predict, it 
found 100%, hence the search engine has a very high 
accuracy 
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A comparison with Nussinov DPA

Nussinov is a simplistic DPA for RNA 
secondary structure prediction that works 
on the principle of base pair maximization
Modifications made to emulate bp weights 
at G-C = 3, A-U = 2, and G-U = 1
Used as a base line for our comparisons
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S. cerevisiae via Nussinov

Predicted

Overlap
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Best Nussinov vs. best Correct BP EA run

Sequence Sequence 
Total BP 

DPA over-
pred. 

EA over-
pred. 

DPA 
Corr. BPs 

EA Corr. 
BPs 

DPA Corr. 
BP % 

 EA Corr. 
BP % 

S. cerevisiae 37 17 6 28 33 75.7% 89.2%
H. marismortui 38 37 17 8 16 21.1% 71.1%

H. rubra 138 174 88 31 71 22.5% 51.4%
D. virilis 233 291 168 29 66 12.4% 28.3%
X. laevis 251 286 158 47 100 18.7% 39.8%
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Best Nussinov vs. best Correct BP EA run

Sequence
Sequence 
Total BP 

DPA over-
pred. 

EA over-
pred. 

DPA 
Corr. BPs 

EA Corr. 
BPs 

DPA Corr. 
BP % 

 EA Corr. 
BP % 

A. lagunensis 113 142 59 30 73 26.5% 64.6%
A. griffini 131 166 78 48 79 36.6% 60.3%

C. elegans 189 281 146 26 56 13.8% 29.6%
H. sapiens 266 309 135 33 92 12.4% 34.6%

S. acidocaldarius 468 395 288 187 159 40.0% 34.0%
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A comparison with mfold
mfold is the most cited and widely used 
RNA secondary structure prediction 
algorithm (based on DP)
Developed by Zuker et al. 
Basic algorithm first introduced in 1981
Since then refined continually until today 
(newest version published in 2003)
Considered the gold standard of RNA 
secondary structure prediction
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Overall Best Correct BP mfold vs. EA result

Sequence
Sequence 
Total BP 

DPA over-
pred. 

EA over-
pred. 

DPA 
Corr. BPs 

EA Corr. 
BPs 

DPA Corr. 
BP % 

EA Corr. 
BP % 

S.cerevisiae 37 8 6 33 33 89.2% 89.2%
H.marismortui 38 5 17 29 27 76.3% 71.1%

H.rubra 138 127 88 49 71 35.5% 51.4%
D.virilis 233 199 168 37 66 15.9% 28.3%
X.laevis 251 157 158 92 100 36.7% 39.8%
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Overall Best Correct BP mfold vs. EA result

Sequence
Sequence 
Total BP 

DPA over-
pred. 

EA over-
pred. 

DPA 
Corr. BPs 

EA Corr. 
BPs 

DPA Corr. 
BP % 

 EA Corr. 
BP % 

A. lagunensis 113 68 59 60 73 53.1% 64.6%
A. griffini 131 105 78 67 79 51.1% 60.3%

C. elegans 189 177 146 40 56 21.2% 29.6%
H. sapiens 266 163 135 95 92 35.7% 34.6%

S. acidocaldarius 468 233 288 261 159 55.8% 34.0%
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RnaPredict vs. mfold, cont.

2 extra base 
pairs predicted 
by mfold

Known
Predicted
Overlap

Saccharomyces cerevisiae
(Baker's Yeast) 118 nt
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Pseudo-knots

2 base pairs (i, j) and (i’, j’) are pseudoknotted if i < i’ < j 
< j’… a 3D interaction. 
Occurrence of pseudo-knots is rather rare, but 
structurally significant
Typically, longer sequences have a higher probability of 
having pseudo-knots
How can we display them? 

Arc and circular diagrams can display pseudo-knots but do not 
work well for longer sequences
Classical structure? Existing tools such as RnaViz do a poor job, 
example...
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RnaViz
H. rubra
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jViz.Rna – Classical 
Structure and Pseudo-
knots

Known H. rubra
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Conclusions – RNA Folding

Excellent convergence behavior of EA
Best results achieved with Keep-Best 
Reproduction (both efficiency and quality 
of structures increase substantially)
Very high accuracy of prediction for 
shorter sequences
EA is able to work with the “fuzziness” of 
the noisy thermodynamic model
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Conclusion – RNA Folding cont.

Outperforms Nussinov DP in all but one 
case by a wide margin 
Outperforms mfold on several sequences,
despite mfold’s use of a very sophisticated 
thermodynamic model
mfold also cannot predict non-canonical 
base pairs
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Conclusion – jViz.Rna
jViz.Rna is a platform independent 
visualization tool for RNA structure
jViz.Rna applications include:

study RNA structure 
evaluation of RNA folding algorithms
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Venues of Interest

IEEE Symposium on Computational Intelligence 
in Bioinformatics and Comp. Biology (CIBCB) –
www.cibcb.org
Special Session on EC in Bioinformatics and 
Comp. Biology at IEEE Congress on 
Evolutionary Computation.
IEEE/ACM Transactions on Comp. Biology and 
Bioinformatics
IEEE Transactions on NanoBioscience
IEEE Transactions on Evolutionary Computation

http://www.cibcb.org/
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