Evolutionary Computation:
A Unified Approach

Kenneth De Jong
Computer Science Department
George Mason University
kdejong@gmu.edu
www.cs.gmu.edu/~eclab

Historical roots:

• Evolution Strategies (ESs):
 – developed by Rechenberg, Schwefel, etc. in 1960s.
 – focus: real-valued parameter optimization
 – individual: vector of real-valued parameters
 – reproduction: Gaussian “mutation” of parameters
 – M parents, K>>M offspring

• Evolutionary Programming (EP):
 – Developed by Fogel in 1960s
 – Goal: evolve intelligent behavior
 – Individuals: finite state machines
 – Offspring via mutation of FSMs
 – M parents, M offspring

• Genetic Algorithms (GAs):
 – developed by Holland in 1960s
 – goal: robust, adaptive systems
 – used an internal “genetic” encoding of points
 – reproduction via mutation and recombination of the genetic code.
 – M parents, M offspring
Present Status:
- wide variety of evolutionary algorithms (EAs)
- wide variety of applications
 - optimization
 - search
 - learning, adaptation
- well-developed analysis
 - theoretical
 - experimental

Interesting dilemma:
- A bewildering variety of algorithms and approaches:
 - GAs, ESs, EP, GP, Genitor, CHC, messy GAs, …
- Hard to see relationships, assess strengths & weaknesses, make choices, …

A Personal Interest:
- Develop a general framework that:
 - Helps one compare and contrast approaches.
 - Encourages crossbreeding.
 - Facilitates intelligent design choices.

Viewpoint:
Starting point:

- Common features
- Basic definitions and terminology

Common Features:

- Use of Darwinian-like evolutionary processes to solve difficult computational problems.
- Hence, the name:
 Evolutionary Computation

Key Element: An Evolutionary Algorithm

- Based on a Darwinian notion of an evolutionary system.
- Basic elements:
 - a population of “individuals”
 - a notion of “fitness”
 - a birth/death cycle biased by fitness
 - a notion of “inheritance”

An EA template:

1. Randomly generate an initial population.
2. Do until some stopping criteria is met:
 - Select individuals to be parents (biased by fitness).
 - Produce offspring.
 - Select individuals to die (biased by fitness).
 - End Do.
3. Return a result.
Instantiate by specifying:

- Population dynamics:
 - Population size
 - Parent selection
 - Reproduction and inheritance
 - Survival competition
- Representation:
 - Internal to external mapping
- Fitness

EA Population Dynamics:

Population sizing:

- Parent population size M:
 - degree of parallelism
- Offspring population size K:
 - amount of activity w/o feedback

Population sizing:

- Examples:
 - $M=1$, K small: early ESs
 - M small, K large: typical ESs
 - M moderate, $K=M$: traditional GAs and EP
 - M large, K small: steady state GAs
 - $M = K$ large: traditional GP
Selection pressure:

- Overlapping generations:
 - more pressure than non-overlapping

- Selection strategies (decreasing pressure):
 - truncation
 - tournament and ranking
 - fitness proportional
 - uniform

- Stochastic vs. deterministic

Reproduction:

- Preserve useful features
- Introduce variety and novelty

- Strategies:
 - single parent: cloning + mutation
 - multi-parent: recombination + mutation
 - ...

- Price’s theorem:
 - fitness covariance

Exploitation/Exploration Balance:

- Selection pressure: exploitation
 - reduce scope of search

- Reproduction: exploration
 - expand scope of search

- Key issue: appropriate balance
 - e.g., strong selection + high mutation rates
 - e.g., weak selection + low mutation rates

Representation:

- How to represent the space to be searched?

 - Genotypic representations:
 - universal encodings
 - portability
 - minimal domain knowledge
Representation:
- How to represent the space to be searched?
 - Phenotypic representations:
 - problem-specific encodings
 - leverage domain knowledge
 - lack of portability

Fitness landscapes:
- Continuous/discrete
- Number of local/global peaks
- Ruggedness
- Constraints
- Static/dynamic

The Art of EC:
- Choosing problems that make sense.
- Choosing an appropriate EA:
 - reuse an existing one
 - hand-craft a new one

EC: Using EAs to Solve Problems
- What kinds of problems?
- What kinds of EAs?
Intuitive view:

- parallel, adaptive search procedure.
- useful global search heuristic.
- a paradigm that can be instantiated in a variety of ways.
- can be very general or problem specific.
- strong sense of fitness “optimization”.

Evolutionary Optimization:

- fitness: function to be optimized
- individuals: points in the space
- reproduction: generating new sample points from existing ones.

Useful Optimization Properties:

- applicable to continuous, discrete, mixed optimization problems.
- no a priori assumptions about convexity, continuity, differentiability, etc.
- relatively insensitive to noise
- easy to parallelize

Real-valued Param. Optimization:

- high dimensional problems
- highly multi-modal problems
- problems with non-linear constraints
Discrete Optimization:

• TSP problems
• Boolean satisfiability problems
• Frequency assignment problems
• Job shop scheduling problems

Multi-objective Optimization:

• Pareto optimality problems
• a variety of industrial problems

Properties of standard EAs:

• GAs:
 – universality encourages new applications
 – well-balanced for global search
 – requires mapping to internal representation

Properties of standard EAs:

• ESs:
 – well-suited for real-valued optimization.
 – built-in self-adaptation.
 – requires significant redesign for other application areas.
Properties of standard EAs:

- **EP:**
 - well-suited for phenotypic representations.
 - encourages domain-specific representation and operators.
 - requires significant design for each application area.

Other EAs:

- **GENITOR:** (Whitley)
 - “steady state” population dynamics
 - K=1 offspring
 - overlapping generations
 - parent selection: ranking
 - survival selection: ranking
 - large population sizes
 - high mutation rates

- **GP:** (Koza)
 - standard GA population dynamics
 - individuals: parse trees of Lisp code
 - large population sizes
 - specialized crossover
 - minimal mutation

- **Messy GAs:** (Goldberg)
 - Standard GA population dynamics
 - Adaptive binary representation
 - genes are position-independent
Other EAs:

- GENOCOP: (Michalewicz)
 - Standard GA population dynamics
 - Specialized representation & operators for real valued constrained optimization problems.

Designing an EA:

- Choose an appropriate representation
 - effective building blocks
 - semantically meaningful subassemblies

- Choose effective reproductive operators
 - fitness covariance

Designing an EA:

- Choose appropriate selection pressure
 - local vs. global search

- Choosing a useful fitness function
 - exploitable information

Industrial Example: Evolving NLP Tagging Rules

- Existing tagging engine
- Existing rule syntax
- Existing rule semantics
- Goal: improve
 - development time for new domains
 - tagging accuracy
Evolving NLP Tagging Rules

• Representation: (first thoughts)
 – variable length list of GP-like trees

 ![Variable length list of GP-like trees](image)

• Difficulty: effective operators

Evolving NLP Tagging Rules

• Representation: (second thoughts)
 – variable length list of pointers to rules

 ![Variable length list of pointers to rules](image)

• Operators:
 – mutation: permute, delete rules
 – recombination: exchange rule subsets
 – Lamarckian: add a new rule

Evolving NLP Tagging Rules

• Population dynamics:
 – multi-modal: $M > \text{small}$
 • typical: 30-50
 – high operator variance: $K/M > 1$
 • typical: 3-5 : 1
 – parent selection: uniform
 – survival selection: binary tournament

Evolving NLP Tagging Rules

• So, what is this thing?
 – A GA, ES, EP, …

• My answer:
 – a thoughtfully designed EA
Analysis tools:
- Schema analysis
- Convergence analysis
- Markov models
- Statistical Mechanics
- Visualization

New developments and directions:
- Exploiting parallelism:
 - coarsely grained network models
 - isolated islands with occasional migrations
 - finely grained diffusion models
 - continuous interaction in local neighborhoods

New developments and directions:
- Co-evolutionary models:
 - competitive co-evolution
 - improve performance via “arms race”
 - cooperative co-evolution
 - evolve subcomponents in parallel

New developments and directions:
- Exploiting Morphogenesis:
 - sophisticated genotype --> phenotype mappings
 - evolve plans for building complex objects rather than the objects themselves.
New developments and directions:

- Self-adaptive EAs:
 - dynamically adapt to problem characteristics:
 - varying population size
 - varying selection pressure
 - varying representation
 - varying reproductive operators
 - goal: robust “black box” optimizer

- Hybrid Systems:
 - combine EAs with other techniques:
 - EAs and gradient methods
 - EAs and TABU search
 - EAs and ANNs
 - EAs and symbolic machine learning

New developments and directions:

- Time-varying environments:
 - fitness landscape changes during evolution
 - goal: adaptation, tracking
 - standard optimization-oriented EAs not well-suited for this.

- Agent-oriented problems:
 - individuals more autonomous, active
 - fitness a function of other agents and environment-altering actions
 - standard optimization-oriented EAs not well-suited for this.
Conclusions:

• Powerful tool for your toolbox.
• Complements other techniques.
• Best viewed as a paradigm to be instantiated, guided by theory and practice.
• Success a function of particular instantiation.

More information:

• Journals:
 – Evolutionary Computation (MIT Press)
 – Trans. on Evolutionary Computation (IEEE)
 – Genetic Programming & Evolvable Hardware
• Conferences:
 – GECCO, CEC, PPSN, FOGA, …
• Internet:
 – www.cs.gmu.edu/~eclab
• My book:
 – Evolutionary Computation: A Unified Approach
 • MIT Press, 2006