
1

Genetic Programming 

Practice and Theory
Riccardo Poli

Department of Computing and Electronic Systems

University of Essex

R. Poli - University of Essex 2

Overview
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�Theory
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Genetic Programming

�GP is a systematic method for getting 

computers to automatically solve a 
problem starting from a high-level 

statement of what needs to be done.

�GP is a domain-independent method that 
genetically breeds a population of 

computer programs to solve a problem. 
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� GP iteratively transforms a population of 
programs into a new generation of programs.

� GP applies analogues of genetic operations
like sexual recombination, mutation, etc.
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Program Representation

�Programs are expressed in GP as syntax 

trees rather than as lines of code. 

�For example, 

max(x*x,x+3*y) =

Terminals
Functions

R. Poli - University of Essex 6

Prefix Notation

�GP trees and the corresponding 

expressions can be represented in prefix 
notation.

� In this notation, functions always precede 

their arguments. E.g.

max(x*x,x+3*y)

(max (* x x)(+ x (* 3 y)))
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Linear Representation

� If all functions have a fixed arity, the 
brackets become redundant in prefix-
notation expressions. 

� E.g.

(max (* x x)(+ x (* 3 y)))

max * x x + x * 3 y

� So, often GP trees are stored internally as 
linear sequences of instructions.
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Preparatory Steps of GP 

Users need to specify:

1. The terminal set

2. The function set

3. The fitness measure

4. Certain parameters for controlling the run

5. The termination criterion and method for 
designating the result of the run
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Terminal Set (Step 1)

�Steps 1 and 2 specify the ingredients that 

are available to create the computer 
programs (primitive set). 

�The terminal set may consist of 

�The program’s external inputs (e.g. x, y), 

�0-arity functions (e.g. rand(), go_left()),

�Numerical constants (e.g. 0.1, 3, R ). 
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� For some problems, the function set may 
consist of merely the arithmetic functions (+, 
-, *, /) and a conditional branching operator. 

� But all sort of functions are allowed, e.g.

Function Set (Step 2)

Kind Example(s)
Arithmetic +, *, /
Mathematical sin, cos, exp
Boolean AND, OR, NOT
Conditional IF-THEN-ELSE
Looping FOR, REPEAT
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� For many other problems, the primitive set 
includes specialized functions and terminals. E.g.

� If the goal is to program a robot to mop the floor

Function set = {moving, turning, swishing the mop} 

� If the goal is the automatic creation of a 

controller

Function set = {integrators, differentiators, leads, lags, 
gains} 

Terminal set = {reference signal, plant output} 

� If the goal is the synthesis of analog electrical 

circuits

Function set = {transistors, capacitors, resistors}
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Syntax Errors Are Impossible

� IF all programs in the initial population of a run 
of GP are syntactically valid, executable 
programs,

� AND the genetic operations performed during 
the run are designed to produce offspring that 

are syntactically valid, executable programs,

� THEN every individual created during a run of 
GP is a syntactically valid, executable program.
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Run-time Errors Can Be 
Avoided

� IF all functions in the primitive set can 
take as input the results produced by any 
other function or terminal (closure)

�THEN run-time errors are avoided.

�Sometime this requires modifying the 
primitive set appropriately, e.g. using 
protected versions of division, logarithm, 
square root, etc.
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Fitness Measure (Step 3)

�The fitness measure is the mechanism 

for giving a high-level statement of the 

problem’s requirements to the GP 
system. 

�The first two preparatory steps define 

the search space whereas the fitness 

measure implicitly specifies the search’s 
desired goal.
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�The amount of error between its output and 
the desired output

�The amount of time (fuel, money, etc.) 
required to bring a system to a desired 
target state

�The accuracy of the program in recognizing 
patterns or classifying objects into classes

�The payoff that a game-playing program 
produces

�The compliance of a structure with user-
specified design criteria, ...

Fitness can be measured in terms of …
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�The fitness measure is, for many practical 
problems, multi-objective, i.e. it combines 
two or more different elements that are 
often in competition with one another.

�For many problems, each program in the 
population is executed over a 
representative sample of different fitness 
cases. 

�Fitness cases may represent different 
values of the program’s input(s), different 
initial conditions of a system, or different 
environments. 
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Control Parameters (Step 4)

�An important control parameter is the 

population size. 

�Other control parameters include

�The probabilities of performing the genetic 
operations, 

�The maximum size for programs, and 

�Other details of the run. 
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Termination Criterion (Step 5)

� We need to specify the termination criterion
and the method of designating the result of 
the run.

� The termination criterion may include a 
maximum number of generations to be run 

as well as a problem-specific success 
predicate.

� The best-so-far individual is then harvested 

and designated as the result of the run.

R. Poli - University of Essex 19

Executional Steps of GP

1. Randomly create an initial population of programs 
from the available primitives.

2. Iterate the following sub-steps until the termination 
criterion is satisfied:

i. Execute each program and ascertain its fitness.

ii. Select one or two program(s) from the population with a 

probability based on fitness to participate in genetic 
operations. 

iii. Create new individual program(s) by applying genetic 
operations with specified probabilities.

3. Return the best-so-far individual

R. Poli - University of Essex 20

Genetic Operations
� Reproduction: copy the selected individual 

program to the new population.

� Crossover: create new offspring 
program(s) by recombining randomly 
chosen parts from two selected programs.

� Mutation: create one new offspring 
program by randomly mutating a randomly 
chosen part of one selected program.

� Architecture-altering operations: choose 
an architecture-altering operation from the 
available repertoire and create one new 
offspring using it.
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Flowchart of GP
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Random Program Generation

�The programs in the initial population are 

typically built by recursively generating a 
tree composed of random choices of 

functions and terminals.

�The initial individuals are usually 
generated subject to a pre-established 

maximum size.
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“Full” Initialisation Method

�Nodes are taken from the function set 
until a maximum tree depth is reached. 

Beyond that depth only terminals can 

be chosen. 

�E.g.
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“Grow” Initialisation Method
� It behaves like “full” except it allows the 

selection of nodes from the whole 

primitive set until the depth limit is 
reached.

�E.g.
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Fitness
�Normally, fitness evaluation requires 

executing the programs in the population 

multiple times within the GP system. 

�A variety of execution strategies exist, 
including:

�off-line or on-line compilation and linking, 

�virtual-machine-code compilation,

� interpretation. 
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Program Interpretation

� Interpreting a program tree means 
recursively traversing the tree and executing 

its nodes only when their arguments are 

known. 

� E.g.
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Selection
� Genetic operators are applied to 

individual(s) that are probabilistically 

selected based on fitness. 

� Better individuals are favoured over inferior 

individuals.

� The most commonly employed methods for 
selecting individuals are tournament 

selection and fitness-proportionate selection. 

� Both methods are not greedy.
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Sub-tree Crossover

� Given two parents crossover randomly 
selects a crossover point in each parent tree 
and swaps the sub-trees rooted at the 
crossover points. 
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Sub-tree Mutation

�Mutation randomly selects a mutation 

point in a tree and substitutes the sub-

tree rooted there with a randomly 
generated sub-tree. 
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Examples
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Toy Example

� Goal: to automatically create a computer 
program whose output is equal to the values of 
the quadratic polynomial x2+x+1 in the range 
from –1 to +1. 

� Step 1 – Definition of the Terminal Set:
� The problem is to find a mathematical function of one 

independent variable, so the terminal set must 
include x. 

� In order to evolve any necessary coefficients, the 
terminal set also includes numerical constants. 

� That is: T = {X, ℜ}, where ℜ denotes constant 
numerical terminals in some range (e.g. [–5.0,+5.0]). 
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�Step 2 – Definition of the Function Set:

�One possible choice consists of the four 

ordinary arithmetic functions of addition, 

subtraction, multiplication, and division:

F = {+, -, *, %}.

�To avoid run-time errors, the division function 

% is protected: it returns a value of 1 when 

division by 0 is attempted, but otherwise returns 
the quotient of its two arguments. 
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�Step 3 – Definition of the Fitness Function:

�The fitness of an individual in the population 

must reflect how closely the output of a program 

comes to x2+x+1. 

�The fitness measure could be defined as the 

value of the integral of the errors between the 

value of the individual mathematical expression 

and x2+x+1. 

�Often this numerically approximated using 

dozens or hundreds of different values of the 

independent variable x.
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�Step 4 – Fixing GP Parameters:

�Population size: 4 (typically thousands or millions 

of individuals).

�Crossover probability: 50% (commonly about 

90%).

�Reproduction probability: 25% (typically about 

8%). 

�Mutation probability: 25% (usually about 1%)

�Architecture-altering operation probability: 0% 

(frequently around 1%).
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�Step 5 – Termination Criterion:

�A reasonable termination criterion for this 

problem is that the run will continue from 

generation to generation until the fitness

(error) of some individual gets below 0.01. 

�Often a maximum number of generations is 

also used as an additional stopping 

criterion.
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Example Run

� Initial population of four randomly created 

individuals of generation 0
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�The fitness of each of the four randomly 
created individuals of generation 0 is 

equal to the area between two curves.

-2
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(a) (b) (c) (d)

0.67 1.0 1.67  2.67  

R. Poli - University of Essex 38

+

x 1

-

0

+

2 0*

x

1

+

x

x

*

-

-1 -2

(a) (b) (c) (d)

+1x
2

+1x 2 x

+

x 1

-

0 x

-

0

+

1

1 *

x+

x

% 0

+

x x

(a) (b) (c) (d)

+1x 1 x
2

+ +1x x

Reproduction

R. Poli - University of Essex 39

+

x 1

-

0

+

2 0*

x

1

+

x

x

*

-

-1 -2

(a) (b) (c) (d)

+1x
2

+1x 2 x

+

x 1

-

0 x

-

0

+

1

1 *

x+

x

% 0

+

x x

(a) (b) (c) (d)

+1x 1 x
2

+ +1x x

Mutation

R. Poli - University of Essex 40

+

x 1

-

0

+

2 0*

x

1

+

x

x

*

-

-1 -2

(a) (b) (c) (d)

+1x
2

+1x 2 x

+

x 1

-

0 x

-

0

+

1

1 *

x+

x

% 0

+

x x

(a) (b) (c) (d)

+1x 1 x
2

+ +1x x

Crossover



11

R. Poli - University of Essex 41

+

x 1

-

0 x

-

0

+

1

1 *

x+

x

% 0

+

x x

(a) (b) (c) (d)

+1x 1 x
2

+ +1x x

0.67 1.00 2.67 0Fitness

New Generation

Solution (0<0.01)

R. Poli - University of Essex 42

Symbolic Regression

� Regression is a technique used to interpret 
experimental data. It consists in finding the 
coefficients of a prefixed function such that 
the resulting function best fits the data. 

� If the fit is not good then the experimenter 
has to try with a different function until a 
good model for the data is found. 

� The problem of symbolic regression consists 
in finding a good function (with its 
coefficients) that fits well the data points. 

R. Poli - University of Essex 43

Real Symbolic Regression Run
� Problem: find the symbolic expression that 

best fits the data: 
{xi ,yi} = {(-1.0,0.0) (-0.9,-0.1629) (-0.8,-0.2624)…(1.0,4.0)}

� GP parameters: 

Parameter Value
Population size 1000
Function set {+ - * plog pexp sin cos pdiv}
Terminal set {x}
Initial max depth 4
Initialisation method Full
Number of generations 50
Crossover probability 0.7
Mutation probability 0
Fitness - Sum of absolute errors
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Best Program of Generation 1
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Best Program of Generation 3

R. Poli - University of Essex 46

Best Program of Generation 6
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Best Program of Generation 26
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Evolution of Fitness and Size

Best-of-generation    

Fitness vs. Generation

Best-of-generation        

Size vs. Generation

BLOAT
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Real World Applications
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Human-competitive Results
� Getting machines to produce human-like 

results is the reason for the existence of the 
fields of artificial intelligence and machine 
learning.

� A result cannot acquire the rating of “human 
competitive” merely because it is endorsed by 
researchers inside the specialized fields that 
are attempting to create machine intelligence. 

� A result produced by an automated method 
must earn the rating of “human competitive”
independent of the fact that it was generated by 
an automated method. 
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Criteria for Human-competitiveness

A. The result was patented as an invention in the past, is 
an improvement over a patented invention, or would 
qualify today as a patentable new invention

B. The result is equal to or better than a result that was 
accepted as a new scientific result at the time when it 
was published in a peer-reviewed scientific journal

C. The result is equal to or better than a result that was 
placed into a database or archive of results
maintained by an internationally recognized panel of 
scientific experts

D. The result is publishable in its own right as a new 
scientific result − independent of the fact that the 
result was mechanically created
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Criteria for Human-competitiveness

E. The result is equal to or better than the most recent 
human-created solution to a long-standing problem
for which there has been a succession of increasingly 
better human-created solutions 

F. The result is equal to or better than a result that was 
considered an achievement in its field at the time it 
was first discovered

G. The result solves a problem of indisputable difficulty
in its field

H. The result holds its own or wins a regulated 
competition involving human contestants (in the form 
of either live human players or human-written 
computer programs)
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Pre-2004 GP Human-competitive 
Results
� 36 human-competitive results

� 23 instances where GP has duplicated the 
functionality of a previously patented invention, 
infringed a previously patented invention, or created a 
patentable new invention

� 15 instances where GP has created an entity that 
either infringes or duplicates the functionality of a 
previously patented 20th-century invention

� 6 instances where GP has done the same with 
respect to an invention patented after January 1, 2000

� 2 instances where GP has created a patentable new 
invention (general-purpose controllers).
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1. Creation of a better-than-classical quantum algorithm for 
Grover’s database search problem

2. Creation of a quantum algorithm for the depth-two AND/OR 
query problem that is better than any previously published 
result

3. Creation of a soccer-playing program that won its first two 
games in the Robo Cup 1997 competition

4. Creation of four different algorithms for the transmembrane
segment identification problem for proteins

5. Creation of a sorting network for seven items using only 16 
steps

6. Synthesis of 60 and 96 decibel amplifiers

7. Synthesis of analog computational circuits for squaring, 
cubing, square root, cube root, logarithm, and Gaussian 
functions

8. Synthesis of a real-time analog circuit for time-optimal control 
of a robot

9. Synthesis of an electronic thermometer

A selection of results 
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10. Creation of a cellular automata rule for the majority 
classification problem that is better than the Gacs-
Kurdyumov-Levin (GKL) rule and all other known rules 
written by humans 

11. Synthesis of topology for a PID-D2 (proportional, integrative, 
derivative, and second derivative) controller

12. Synthesis of NAND circuit

13. Simultaneous synthesis of topology, sizing, placement, and 
routing of analog electrical circuits

14. Synthesis of topology for a PID (proportional, integrative, and 
derivative) controller

15. Synthesis of a voltage-current conversion circuit

16. Creation of PID tuning rules that outperform the Ziegler-
Nichols and Astrom-Hagglund tuning rules

17. Creation of three non-PID controllers that outperform a PID 
controller that uses the Ziegler-Nichols or Astrom-Hagglund
tuning rules

R. Poli - University of Essex 56

Human-competitive-result 

competition

� Held at GECCO 2004-2007

� Example winners:

� Automated Quantum Programming, L. 

Spector

� An Evolved Antenna for Deployment on 

NASA's Space Technology 5 Mission, J. 

Lohn et al.
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Understanding GP
Motivation
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Understanding GP Search 

Behaviour with Empirical Studies

�We can perform many GP runs with a 

small set of problems and a small set of 

parameters

�We record the variations of certain 

numerical descriptors.

�Then, we suggest explanations about the 
behaviour of the system that are 

compatible with (and could explain) the 

empirical observations. 
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�GP is a complex adaptive system with 
zillions of degrees of freedom. 

�So, any small number of descriptors can 
capture only a fraction of the complexities 
of such a system.

�Choosing which problems, parameter 
settings and descriptors to use is an art 
form. 

�Plotting the wrong data increases the
confusion about GP’s behaviour, rather 
than clarify it.

Problem with Empirical Studies
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Example: Bloat
� Bloat = growth without (significant) return in 

terms of fitness. E.g.

� Bloat exists and continues forever, right?

sizefitness
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Why do we need mathematical 

theory?

� Empirical studies are rarely conclusive

� Qualitative theories can be incomplete

Search Space 

Characterisation
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How many programs in the search 

space?

= Number of trees of depth at 
most d
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Example

R. Poli - University of Essex 66

Logarithmic scale Superexponential
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Doubly logarithmic scale

Exponentials
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GP cannot possibly work!

� The GP search space is immense, and 
so any search algorithm can only explore 

a tiny fraction of it (e.g. 10-1000 %).

� Does this mean GP cannot possibly 

work?

Not necessarily.

� We need to know the ratio between the 

size of solution space and the size of
search space
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{d0,d1,NAND} search space
Proportion of 2-input logic functions 
implemented using NAND primitives
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Limiting distribution
� Empirically is has been shown that as 

program length grows the distribution of 
functionality reaches a limit

� So, beyond a certain length, the proportion of 
programs which solve a problem is constant

� Since there are exponentially many more long 
programs than short ones, in GP 

size of the solution space

= constant
size of the search space

� Proofs?

R. Poli - University of Essex 71

Linear model of computer
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States, inputs and outputs

� Assume n bits of memory

� There are 2n states. 

� At each time step the machine is in a 

state, s
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Instructions

� Each instruction changes the state of the 
machine from a state s to a new s′, so 

instructions are maps from binary strings to 

binary strings of length n

E.g. if n = 2, AND m0 m1 � m0 is represented as

1111

0001

1010

0000

m′1m′0m1m0

11001000=

R. Poli - University of Essex 74

Behaviour of programs

� A program is a sequence of instructions

� So also the behaviour of a program can 
be described as a mapping from initial 

states s to corresponding final states s′
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� For example, 

AND m0 m1 � m0

NOP

OR    m0 m1 � m0

AND m0 m1 � m0 1111

0001

1110

0000

m′1m′0m1m0

11001100
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Does the behaviour tend to a 

limiting distribution?

11011000
Identity function
(no instruction 
executed yet)

AND m0 m1 � m0 OR m0 m1 � m0

11001000 11011100

1/2 1/2

A B

� Two primitives: AND m0 m1 � m0      OR m0 m1 � m0
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11001000

AND m0 m1 � m0 OR m0 m1 � m0

11001000 11001100

1/2 1/2

A

A C
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11011100

AND m0 m1 � m0 OR m0 m1 � m0

11001100 11011100

1/2 1/2

B

C B
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11001100

AND m0 m1 � m0 OR m0 m1 � m0

11001100 11001100

1/2 1/2

C

C C
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Probability tree

AND OR

Identity

A B

AND OR

C B

AND OR

C C

AND OR

C B

AND OR

A C

AND OR

A C

AND OR

C C
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Distribution of behaviours

07/81/161/164

0100∞

0¾1/81/83

0½¼¼2

00½½1

10000

IdentityBehaviour 

C

Behaviour 

B

Behaviour 

A

Program 

length
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Yes….

� …for this primitive set the distribution 

tends to a limit where only behaviour C
has non-zero probability.

� Programs in this search space tend to 

copy the initial value of m1 into m0.
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Markov chain proofs of limiting distribution

� Using Markov chain theory we have 

proved that a limiting distributions of 
functionality exists for a large variety of 

CPUs

� There are extensions of the proofs from 
linear to tree-based GP.

� See Foundations of Genetic 

Programming book for an introduction to 

the proof techniques.
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So what?

� Generally instructions lose information. 
Unless inputs are protected, almost all 

long programs are constants. 

� Write protecting inputs makes linear GP 

more like tree GP.

� No point searching above threshold?

� Predict where threshold is? Ad-hoc or 

theoretical.
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Implication of                                  
|solution space|/|search space|=constant

� GP can succeed if

� the constant is not too small or

� there is structure in the search space to 
guide the search or 

� the search operators are biased
towards searching solution-rich areas of 

the search space

or any combination of the above.

GP Search 

Characterisation
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GA and GP search

� GAs and GP search like this:

� How can we understand (characterise, 

study and predict) this search? 
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Schema Theories

� Divide the search space into subspaces

(schemata)

� Characterise the schemata using 

macroscopic quantities

� Model how and why the individuals in the 
population move from one subspace to 

another (schema theorems).



23

R. Poli - University of Essex 89

Example 

� The number of individuals in a given 
schema H at generation t, m(H,t), is a good 
descriptor

� A schema theorem models mathematically 
how and why m(H,t) varies from one 
generation to the next.
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Exact Schema Theorems

� The selection/crossover/mutation process 
is a random coin flip (Bernoulli trial). New 

individuals are either in schema H or not.

� So, m(H,t+1) is a binomial stochastic 

variable. 

� Given the success probability of each trial 

α(H,t), an exact schema theorem is

E[m(H,t+1)] = M α(H,t) 
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Exact Schema Theory 
for GP with 

Subtree Crossover
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GP Schemata

� Syntactically, a GP schema is a tree with 
some “don’t care” nodes (“=”) that represent 
exactly one primitive.

� Semantically, a schema is the set of all 
programs that match size, shape and 
defining nodes of such a tree. 

=

x +

y =

+

x +

y x

+

x +

y y

×

x +

y x

×

x +

y y
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Creation of individuals via 

crossover is a compound event
{create individual} =

{select parent 1, 

select parent 2, 

choose crossover point 1, 

choose crossover point 2 }
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1st parent is 
prog 1 ….

1st parent is 
prog Nprogs

2nd parent is 
prog 1

….
2nd parent is 

prog Nprogs
….

A

2nd parent is 
prog 1

2nd parent is 
prog Nprogs

Selection-Crossover Probability 

tree

A A A

Selection 1

Selection 2

p(prog1) p(progN)

p(prog1) p(progN) p(prog1) p(progN)
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Subtree A

offspring 
in H

not in H

chosen XO point 
1 in 1st parent ….

chosen XO point 
N1 in 1st parent

chosen XO point 
1 in 2nd parent ….

chosen XO point 
N2 in 2nd parent

offspring 
in H

not in H offspring 
in H

not in H

chosen XO point 
1 in 2nd parent ….

chosen XO point 
N2 in 2nd parent

offspring 
in H

not in H

XO point 1

XO point 2

1/N1 1/N1

1/N2 1/N2

N1 = size(parent1)

1/N2 1/N2

N2 = size(parent2)
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Microscopic schema model

� Problems: 

� many paths � many terms to evaluate 
(most=0)

� r.h.s. quantities are not about schemata

� model misses regularities in creation process

� Can we do better?

α(H,t) = sum of products of probabilities 

along paths leading to offspring in H
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� The process of crossover point selection is 
independent from the actual primitives in the 
parent tree. 

� The probability of choosing a particular 
crossover point depends only on the actual size 
and shape of  the parent.

� For example, the probability of choosing any 
crossover point in the program 

(+ x (+ y x))
is identical to the probability of choosing any 

crossover point in 

(AND D1 (OR D1 D2))

Regularities

R. Poli - University of Essex 98

Fragmenting selection
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{select parent} = {select size/shape,
select individual of that size/shape}

can be 
postponed
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1st parent has 
shape 1 ….

1st parent has 
shape Nshapes

2nd parent has 
shape 1

….
2nd parent has 

shape Nshapes
….`

A

2nd parent has 
shape 1

2nd parent has 
shape Nshapes

Selection-XO Probability Tree 

revisited

A A A

Selection 

Shape 1

Selection 

Shape 2

p(shape1) p(shapeN)

p(shape1) p(shapeN) p(shape1) p(shapeN)
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Subtree         revisitedA

chosen XO point 
1 in 1st shape ….

chosen XO point 
N1 in 1st shape

chosen XO point 
1 in 2nd shape ….

chosen XO point 
N2 in 2nd shape

chosen XO point 
1 in 2nd shape ….

chosen XO point 
N2 in 2nd shape

XO point 1

XO point 2

BB B B

1/N1 1/N1

1/N2 1/N21/N2 1/N2
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1st parent is 
prog 1 ….

1st parent is 
prog Nprogs

2nd parent is 
prog 1

….
2nd parent is 

prog Nprogs
….

2nd parent is 
prog 1

2nd parent is 
prog Nprogs

Parent 

Selection 1

Parent

Selection 2

p(prog1|shape1)
p(progN|shape1)

p(prog1|shape2)
p(progN|shape2)

p(prog1|shape2)
p(progN|shape2)

Subtree         (take 1)B

offspring 
in H

not in H offspring 
in H

not in H offspring 
in H

not in H offspring 
in H

not in H
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Variable Arity Hyperschemata

� A GP variable arity hyperschema is a tree

with internal nodes from F ∪ {=, # } and 
leaves from  T ∪ { =, # }.

= is a “don't care” symbols which stands for 
exactly one node

# is a more general “don’t care” that represents 

either a valid subtree or a tree fragment 

depending on its arity
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� For example, (# x (+ = #))



27

R. Poli - University of Essex 105

Upper and lower building blocks

Variable arity hyperschemata express which 

parents produce instances of a schema

Crossing over at points i and j any individual in L(H,i,j) with 
any individual in U(H,i) � offspring in H

U(H,i) U(H,i)L(H,i,j) L(H,i,j)

i
i

j
j
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Subtree        (take 2)

offspring 
in H

chosen parent in 
U(H,i)

not in H

chosen parent in 
L(H, i, j)

Parent 1 

selection 

Parent 2 
selection

p(U(H,i) | shape1)

B

not in H

p(L(H,i,j) | shape2)
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Bayes

p(U(H,i)∩shape1)

p(U(H,i) | shape1) = 

p( shape1)

p(L(H,i,j)∩shape2)

p(L(H,i,j) | shape2) = 

p( shape2 )
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Exact GP Schema Theorem for 

Subtree Crossover (2001)

� Schema theorem for selection + 

100% standard GP crossover

shape1 shape2 size(shape2)=N2size(shape1)=N1

XO points in shape1XO points in shape2

α(H,t)=
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�Let us assume that also reproduction is 

performed.

�Creation probability tree for a schema H:

To reproduce or not to reproduce …

reproduction crossover

offspring in H not in H

1-pxo pxo

selection picks an 
individual in H

parent selection and XO 
point choice produce 

an individual in H

Selection-XO

Probability Tree
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Exact GP Schema Theorem with 

Reproduction, Selection, Crossover

α(H,t) =
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So what?

� A model is as good as the predictions 

and the understanding it can produce

� So, what can we learn from schema 
theorems?
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Lessons

� Operator biases

� Size evolution equation

� Bloat control

� Optimal parameter setting

� Optimal initialisation

� …
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Selection Bias
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Crossover Bias
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So where is evolution going?
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GP with subtree XO pushes the population 
towards a Lagrange distribution of the 2nd kind

Proportion of programs 
with n internal nodes

Mean program sizeMean function arity

Note: uniform selection of crossover 

points
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� Theory is right!
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Sampling probability under Lagrange

� Probability of sampling a particular 
program of size n under subtree 

crossover

� So, GP samples short programs much 

more often than long ones
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Allele Diffusion

� The fixed-point distribution for linear, 

variable-length programs under GP

subtree crossover is

with
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� Crossover attempts to push the 
population towards distributions of 
primitives where each primitive of a given 
arity is equally likely to be found in any 
position in any individual.

� The primitives in a particular individual 
tend not just to be swapped with those of 
other individuals in the population, but 
also to diffuse within the representation 
of each individual.

� Experiments with unary GP confirm the 
theory.
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Size Evolution

�The mean size of the programs at 
generation t is 

µ(t) = ∑l N(Gl) Φ(Gl,t)

where

Gl = set of programs with shape l

N(Gl) = number of nodes in programs in Gl

Φ(Gl,t) = proportion of population of shape l

at generation t
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� E.g., for the population: 

x, (+ x y) (- y x) (+ (+ x y) 3)
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� In a GP system with symmetric subtree 
crossover

E[µ(t+1)] = ∑l N(Gl) p(Gl,t)

where
p(Gl,t) = probability of selecting a program of 

shape l from the population at

generation t

� The mean program size evolves as if
selection only was acting on the 
population

Size Evolution under Subtree XO
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Conditions for Growth

�Growth can happen only if 

E[µ(t+1)-µ(t)] > 0

�Or equivalently

∑l N(Gl) [p(Gl,t) - Φ(Gl,t)] > 0
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Tarpeian Bloat Prevention

� To prevent growth one needs

� To increase the selection probability 

for below-average-size programs

� To decrease the selection probability 

for above-average-size programs

Conclusions
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Theory

� In the last few years the theory of GP has 
seen a formidable development.

� Today we understand a lot more about 
the nature of the GP search space and 
the distribution of fitness in it.

� Also, schema theories explain and predict
the syntactic behaviour of GAs and GP.

� We know much more as to where 
evolution is going, why and how. 
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� Theory primarily provides 

explanations, but many recipes for 
practice have also been derived 

(initialisation, sizing, parameters, 

primitives, anti bloat, …)

� So, theory can help design competent 
algorithms

� Theory is hard and slow: empirical 

studies are important to direct theory 
and to corroborate it.
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Turing’s Intuition

� In his seminal 1948 paper entitled “Intelligent 
Machinery,” Turing identified three ways by 
which human-competitive machine intelligence 

might be achieved. In connection with one of 
those ways, Turing said:

“There is the genetical or evolutionary search 
by which a combination of genes is looked for, 
the criterion being the survival value.”
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� Turing did not specify how to conduct the 
“genetical or evolutionary search” for machine 
intelligence, but in his 1950 paper “Computing 
Machinery and Intelligence,” he wrote
“We cannot expect to find a good child-machine at 
the first attempt. One must experiment with 
teaching one such machine and see how well it 
learns. One can then try another and see if it is 
better or worse. There is an obvious connection 
between this process and evolution, by the 
identifications

Structure of the child machine = Hereditary material

Changes of the child machine = Mutations

Natural selection = Judgment of the experimenter”
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�So, over 50 years ago Turing perceived 
that one approach to machine intelligence 

would involve an evolutionary process in 

which 

�a description of a computer program (the 

hereditary material) 

�undergoes progressive modification (mutation) 

�under the guidance of natural selection (what 
we now call “fitness”).
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� Turing also understood the need to evaluate 
objectively the behaviour exhibited by 
machines, to avoid human biases when 
assessing their intelligence. 

� This led him to propose an imitation game, 
now know as the Turing test for machine 
intelligence, whose goals are summarised 
by Arthur Samuel’s position statement

“[T]he aim [is] … to get machines to exhibit 
behavior, which if done by humans, would 
be assumed to involve the use of 
intelligence.” [Arthur Samuel, 1983]
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GP Has Started Fulfilling Turing 

and Samuel’s Dreams

� GP has started fulfilling Turing’s dream by 
providing us with a systematic method, based 
on Darwinian evolution, for getting computers 
to automatically solve problems. 

� To do so, GP simply requires a high-level 
statement of what needs to be done (and 
enough computing power).
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�Today GP certainly cannot produce 
computer programs that would pass the 
full Turing test for machine intelligence. 

�But GP has been able to solve tens of 
difficult problems with human-competitive 
results. 

�No other AI technique has done this
“John Koza’s genetic programming approach to 

machine discovery can invent solutions to 
more complex specifications than any other I 
have seen.” [John McCarthy]
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� These are a small step towards fulfilling 
Turing and Samuel’s dreams, but they are 
also early signs of things to come. 

� In a few years’ time GP will be able to 
routinely and competently solve important 
problems for us in a variety of specific 
domains of application, becoming an 
essential collaborator for many of human 
activities. 

� This will be a remarkable step forward 
towards achieving true, human-competitive 
machine intelligence.
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