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• Ability to comprehend, to understand and profit from experience, to 
interpret intelligence, having the capacity for thought and reason
(especially, to a higher degree).

• Creativity, skill, consciousness, emotion and intuition.

Intelligence
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• Computational Intelligence (CI) is the study of adaptive mechanisms 
to enable or facilitate intelligent behavior (intelligence) in complex 
and changing environments.

• These mechanisms include paradigms (AI) that exhibit an ability to 
learn or adapt to new situations, to generalize, abstract, discover 
and associate.

• Turing Test - 1950

Computational Intelligence (1)
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• Computational Intelligence (CI) can be defined as the 
computational models and tools of intelligence capable 
of inputting raw numerical sensory data directly, 
processing them by exploiting the representational 
parallelism and pipelining the problem, generating 
reliable & timely responses and withstanding high fault 
tolerance.

Computational Intelligence (2)
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• A neural network can be defined as a 
massively parallel distributed processor 
made up of simple processing units, 
which has the natural propensity for 
strong experiential knowledge and 
making it available for use.

• The neural network resembles the brain 
in two aspects –
• Knowledge is acquired by the network 

from its environment through a learning 
process.

• Interneuron connection strengths, known 
as synaptic weights, are used to store 
acquired knowledge.

Neural Networks
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• Artificial Immune Systems (AIS) are biologically 
inspired models for immunization of engineering 
systems.

• The pioneering task of AIS is to detect and 
eliminate non-self materials, called antigens such 
as virus or cancer cells.

• The AIS also plays a great role to maintain its 
own system against dynamically changing 
environment.

• The immune systems thus aim at providing a new 
methodology suitable for dynamic problems 
dealing with unknown/hostile environments.

Artificial Immune Systems
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• Evolutionary Computing has as its 
objective the model of natural 
evolution, where the main concept is 
survival of the fittest: the weak must 
die, the elites move to the next level. 

• In natural evolution, survival is 
achieved through reproduction. 
Offspring, reproduced from two 
parents, contain genetic material of 
both parents – hopefully the best 
characteristics of each parent. 

• Those individuals that inherit the bad 
characteristics are weak and lose the 
battle to survive.

• In some bird species, one hatchling 
manages to get more food, gets 
stronger, and at the end kicks out all 
its siblings from the nest to die.

• GAs, GP, EP, ES

Evolutionary Computing
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• Swarm intelligence originated from 
the study of colonies (ants, bees, 
termites) or swarms of social 
organisms – flock of birds, school 
of fish.

• Studies of the social behavior of 
organisms (individuals) in swarms 
prompted the design of very 
efficient optimization and clustering 
algorithms.

• SI is an innovative distributed 
intelligent paradigm for solving 
optimization problems.

Swarm Intelligence
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• Traditional set theory requires elements to be either part of a set or 
not. Similarly, binary-valued logic requires the values of parameters 
to be either 0 or 1, with similar constraints on the outcome of an 
inferencing process.

• Fuzzy sets and fuzzy logic allow what is referred to as approximate 
reasoning. 

• With fuzzy sets, an element belongs to a set to a certain degree of 
certainty.

• Fuzzy logic allows reasoning with these uncertain facts to infer new 
facts, with a degree of certainty associated with each fact.

• In a sense, fuzzy sets and logic allow the modeling of common 
sense.

Fuzzy Systems
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Single Layer Feedforward NetworksMulti-Layer Feedforward Networks
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Feedback (Recurrent) Networks

Inputs Output

Activation 
Functions:
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Cellular Architectures
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Learning Methods

Learning Methods can be broadly classified into three basic types: supervised, unsupervised, 
and reinforcement.

Supervised Learning:-

TeacherEnvironment
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TeacherTeacherEnvironment

Learning
system

Learning
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Learning Methods

Unsupervised Learning:- In contrast to supervised learning, the objective of unsupervised
learning is to discover patterns or features in the input data with no help from a teacher,
basically performing a clustering of input space.

Reinforcement Learning:- In this method, a teacher though available, does not present the
expected answer but only indicates if the computed output is correct or incorrect. The
information provided helps the network in its learning process. A reward is given for a correct
answer computed and a penalty for a wrong answer. 

Reinforcement 
Learning Controller Plant

Noise
Plant 

Response

Performance
Evaluation

Reinforcement, r
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Classification of Learning Algorithms

Neural Network Learning Algorithms

Supervised Learning
(Error based) Unsupervised Learning

Reinforced Learning
(Output based)

Error Correction
Gradient descent Stochastic Hebbian Competitive

Least Mean
Square Backpropagation PSO ES/GA

Simulated
Annealing 
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Gradient Descent Learning Rule – Neuron
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where tp and fp are respectively the target and actual output for patterns p, and
P is the total number of input-target vector pairs (patterns) in the training set.
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Gradient Descent Learning Rule – Neuron
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The weights are updated using:
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Feedforward Neural Networks

Feedforward
Operation

Backpropagation
Operation



22
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

FFNN/MLP Functional Block Diagram
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FFNN Feedforward Operation
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FFNN Backpropagation Operation

The error function used to derive the
backpropagation training algorithm is based 
on the principle of gradient descent and is
given as half the square of the Euclidean norm
of the ANN output error vector.

21(.) ( ) ( , , , )
2y yE E e E x W V y e≡ ≡ ≡

This is called the objective function for ANN
learning to be optimized by the optimization
method.

The square law results in more sensitivity to
larger errors than smaller errors. Thus, 

-Large parameter adjustments for fast reduction 
of large errors, and
-Fine parameter adjustments for settling into
Desired error function minima.
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Weight Adjustments/Updates

Two types of supervised learning algorithms exist, based on when/how weights 
are updated:

• Stochastic/Delta/(online) learning, where the
weights are adjusted after each  pattern
presentation. In this case the next input pattern
is selected randomly from the training set, to 
prevent any bias that may occur due to the
sequences in which patterns occur in the
training set.

• Batch/(offline) learning, where the weight changes
are accumulated and used to adjust weights only
after all training patterns have been presented.
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FFNN Backpropagation Operation
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Step 3: The weights changes are given by
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FFNN Weight Updates

( 1) ( ) ( )
( 1) ( ) ( )

V k V k V k
W k W k W k

+ = + Δ
+ = + Δ

Step 3: The weights updates are given by

One set of weight modifications is called
an epoch, and many of these may be
required before the desired accuracy of
approximation is reached.
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Feedforward Neural Networks
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Feedforward Neural Networks
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Evolutionary Computing

1. Evolution is the process of adaptation with the aim of improving
the survival capabilities through processes such as natural 
selection, survival of the fittest, reproduction, mutation, 
competition and symbiosis. 

2. Evolution is an optimization process.

3. EC is a field of CI which models the processes of natural 
evolution.
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Evolutionary Computing

Evolutionary Computing

Genetic Algorithms

Genetic Programming

Evolutionary 
Programming

Evolutionary 
Strategies

Differential 
Evolution
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Main Steps in Evolutionary Computation

1. Encoding of solutions to the problem as a chromosome.

2. Fitness function – evaluation of individual strength.

3. Initialization of the initial populations.

4. Selection operators.

5. Reproduction operators.
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Encoding Process

1. Population of individuals – each individual is a candidate 
solution.

2. Characteristics of an individual are represented by a 
chromosome, or genome.

3. Characteristics of a chromosome represented in two classes –
genotypes and phenotypes.

4. A genotype describes the genetic make up of an individual as 
inherited from its parents. Experience of parents stored in 
genotypes.

5. A phenotype is the expressed behavioral traits/physical 
characteristics of an individual in a specific environment.
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Fitness Function

1. Important part for EA to be successful.

2. Fitness is a scalar quantity. 

3. Fitness function quantifies the quality of a potential solution, i.e
how close is the solution to the optimal solution.

4. Selection, cross-over, mutation and elitism operators are 
based on fitness function values.

5. The fitness function should include all criteria to be optimized.

6. Penalty can be imposed on those individuals that violate 
constraints within the fitness function, in the initialization, 
reproduction and mutation operators.
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Selection Operators

1. Random selection – good or bad individuals have equal 
chance.

2. Proportional Selection – chance of individuals selected is 
proportional to their fitness. Roulette wheel selection is used.

(Probability of ith individual = fitness of ith individual /sum of all 
individual fitness)

3. Tournament Selection – a group of k individuals are randomly 
selected to take part in a tournament. The winner is selected.

4. Rank-Based Selection – Ranking is given either in decreasing 
or increasing order based on the fitness values.

5. Elitism – Best individuals are copied into the next generation.
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General Evolutionary Algorithm

1. Initialize a population of N individuals.

2. While no convergence:
• Evaluate the fitness of each individual in the population
• Perform cross-over

• select 2 individuals
• produce offspring

• Perform mutation
• select one individual
• mutate

• Select the new generation
• Evolve the next generation.

• Convergence is reached when: max. generations is exceeded, 
acceptable fitness is evolved, fitness does not change 
significantly over past x generations.
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Evolutionary Computing versus Classical 
Optimization

1. No-Free-Lunch theorem [Wolpert and Macready 1996] states 
that cannot exist any algorithm for solving all problems that is
on average superior to any other algorithm.

2. Thus, the motivation for research into new optimization 
especially EC.

3. Classical optimization algorithms are very successful for linear, 
quadratic, strongly convex, unimodal problems.

4. EAs are more efficient for discontinuous, nondifferentiable, 
mutlimodal and noisy problems.

5. COs use deterministic rules to move from one point to other in 
the search space while ECs use probabilistic transition rules.
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Evolutionary Computing versus Classical 
Optimization

1. COs use sequential search while EAs use parallel search.

2. COs use derivative information, using first order or second 
order, of the search space to guide the path to the optimum.

3. ECs use no derivative information. Only fitness values of 
individuals are used to guide the search.
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Islands of Population Based Algorithms

Migration
Visitation
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• Swarm Intelligence (SI) is the property of a system whereby 
the collective behaviors of (unsophisticated) agents interacting
locally with their environment cause coherent functional global 
patterns to emerge. 
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• Proximity principle: the population should be able to carry out 
simple space and time computations.

• Quality principle: the population should be able to respond to 
quality factors in the environment.

• Diversity principle: the population should not commit its activities 
along excessively narrow channels.

• Stability principle: the population should not change its mode of 
behavior every time the environment changes.

• Adaptability principle: the population must be able to change 
behavior mode when it’s worth the computational price.

Basic Principles of Swarm Intelligence 
(Mark Millonas, Santa Fe Institute)
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School of Fish/ Flock of Birds 

“… and the thousands off fishes moved as a
huge beast, piercing the water. They appeared
united, inexorably bound to a common fate. How
comes this unity?” – Anonymous, 17th century

The motion of a flock of birds is 
one of nature’s delights.
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Particle Swarm Optimization (PSO)

• A concept applicable to optimizing nonlinear functions 
• Has roots in artificial life and evolutionary computation
• Developed by Kennedy and Eberhart (1995) 
• Key points -

• Simple in concept
• Easy to implement 
• Computationally efficient 
• Effective on a variety of problems
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Swarm Topologies
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The system initially has a population of random solutions called
particles

Each particle has random velocity and memory that keeps track 
of previous best position and corresponding fitness

The previous best value of the particle position is called the ‘pbest’

It has another value called ‘gbest’, which is the best value of all 
the ‘pbest’ positions in the swarm

Basic concept of PSO lies in accelerating each particle towards 
its pbest and the gbest locations at each time step

In local PSO, the ‘gbest’ is changed to ‘lbest’ where ‘lbest’ is the best 
value of all the particles in local neighborhood.

Particle Swarm Optimization
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PSO Equations 

Xk r Vini

s (Pbestk-Xk)

t (Gbest-Xk)

Xk+1

Vmod

Y

X

1 1 2 2( ) ( )id id bestid id bestid idV w V c rand P X c rand G X= × + × × − + × × −

id id idX X V= +

The velocity of the particles is given as follows

The position vector  of the particles is changed as follows
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Differential Evolution

1.  Initialize a population of N individuals. 

2. In every generation, for each individual select
3 distinct individuals randomly from the
remaining population.

3. Compute a random number to determine
whether to mutate or not.

4. For each parent and its offspring, the individual
with the greater fitness is passed on to the next
generation.

5. Test for convergence. If all the individuals have not converged the 
procedure is repeated from (2).

( )1, 4, 2, 3,j j j jO P P Pγ= + × −

1, 1,j jO P=

 

P2

P3 P4 T

P1

X

Y

O1=P4+(P2-P3)
P2

P3 P4 T

P1

X

Y

O1=P4+(P2-P3)
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Differential Evolution

1.  Initialize a population of N individuals. 

2. In every generation, for each individual select
3 distinct individuals randomly from the
remaining population.

3. Compute a random number to determine
whether to mutate or not.

4. For each parent and its offspring, the individual
with the greater fitness is passed on to the next
generation.

5. Test for convergence. If all the individuals have not converged the 
procedure is repeated from (2).
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Fuzzy System
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Fuzzy Fuzzy
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Fuzzy Logic Controller

Non-Fuzzy
Inputs
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Computing Degree of Membership

0

1

A B C D E

slope 1 slope 2

point 1 point 2

0E
(point 2 - X) × slope 2D

maxC
(X – point 1) × slope 1B

0A
Degree of MembershipSystem Input Range
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Fuzzy Rule Based System

• Example
– If there is heavy rain and strong winds then there 

must be severe flood warning.
– Fuzzy sets = {heavy, strong, severe}
– Fuzzy variables = {rain, winds, flood}

• If the conclusion C to be drawn from a rule 
base R is the conjunction of all the individual 
consequents Ci of each rule, then 

C = C1∩C2 ∩C3 ∩… ∩Cn

where
μC(y) = min (μC1(y), μC2(y), μC3(y), …, μCn(y)) 
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Inference Engine (Firing)

• The task of the inference engine is to carry out 
the inferencing process which is to map the 
fuzzified inputs to the rule base, and to 
produce a fuzzified output for each rule.

• Fuzzy inference is referred to as approximate 
reasoning (evaluating linguistic descriptions).

• Rules that are not activated have a zero firing 
strength.
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Defuzzification

• This is the reverse process to fuzzification.

• The fuzzy output of the inference engine (fuzzy rules) is converted into 
scalar, or non-fuzzy value.

• Defuzzification resolves conflicts between competing actions such as 
‘output to be set to positive medium’ and ‘output to be set to 
positive large’ (example illustrates this). In this case, defuzzification 
employs compromising techniques to resolve both the vagueness and 
conflict issues.

• Several methods exist for finding an approximate scalar value, namely:
– Max-min method
– Averaging method
– Root-sum-square method
– Clipped center of gravity method
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Defuzzification

• Clipped center of gravity method
– Each membership is clipped at the corresponding rule firing 

strengths. The centroid of the composite area is calculated 
and its x coordinate is the output of the controller.

0 25531 63 95 127 159 191 223

1
NL NM NS ZE PS PM PL

0.7
0.45
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Training of a Feedforward Neural 
Network
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For training a neural network using the PSO:

The fitness value of each particle of the swarm is the value of the 
error evaluated at the current position of the particle

The position vector of the particle corresponds to the weight matrix 
of the neural network.

PSO for Neural Network Training
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Target Function for Neural Network Training

Y = 2x2 + 1
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Training MSE of the PSO Particles –
Y = 2x2+1
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1.14206.1226Ratio of computations
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1314861683520014045808523800Backward path (additions+ multiplications)
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Comparison of Number of Computations in Training a 
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IJCNN04 CATS Problem

Missing data to be predicted
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Recurrent Neural Network

• An Elman RNN 
is chosen as the 
predictor

• Novel training 
algorithm 

Output layer
(5)

Hidden Layer 2
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Hidden Layer 1
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Input layer
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Hybrid PSO+EA

• Hybrid = Co-operative + Competitive
– (PSO + EA)

• Apply evolutionary operators to PSO
– Selection, crossover and mutation

• Benefits:
– Focus on good region
– Increase the diversity of the population
– Save computation
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Hybrid PSO+EA
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Prediction
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There are many methods to design combinational circuits, generally 
K-maps, Quine-McCluskey methods are used

The problem with the human designs is that they become 
cumbersome and problematic with the complexity of the function 

Design of circuits based on the principles of Darwinian evolution is 
known as Evolvable Hardware (EHW)

To design conventional hardware, it is necessary to know all the
specifications of the hardware functions in advance. In contrast to 
this, EHW can configure itself without such specifications known in 
advance

One of the goals of EHW is to evolve complex designs, not 
achievable with the traditional design methods

Evolvable Hardware
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“Desired” Circuit Hardware Evolution

The “desired” circuit refers to the circuit required to map 100 %
exactly the outputs for corresponding inputs, typically given by a truth 
table for a digital function, with the least number of gates. 

Evaluate evolved
circuits and 

compare with 
“desired” circuit. 

Download evolved
“desired” circuit

Re-generate 
circuits 

using PSO

Evaluate
fitnessA  Swarm

of circuits

Reconfigurable
Haedware

Platform (FPGA)

Evaluate evolved
circuits and 

compare with 
“desired” circuit. 

Download evolved
“desired” circuit

Re-generate 
circuits 

using PSO

Evaluate
fitnessA  Swarm

of circuits

Reconfigurable
Hardware

Platform (FPGA)
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3 input
Truth Tables for the examples taken
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Collective Robotic Search

• Unmanned vehicles/mobile robots are used to 
explore environments inhospitable to humans such 
as remote areas, military surveillance applications, 
seismic activity detection, planetary exploration, toxic 
area exploration, etc.

• A large number of mobile robots are used for these 
applications.
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Multiple Targets

Graphical representation of a multiple target case – each robot is 
equipped with sensors to measure desired intensities.

T1

T2

T3

T4Group 4

Group 3

Robots

Targets

Group 1 Group 2
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Flow chart for Optimal 
PSO

• Optimization is done in an 
offline environment

• 2-level hierarchy
• Inner Swarm:

– Specific application
– Fitness: intensity, 

Euclidean distance, etc
• Outer Swarm:

– Optimizes parameters of 
the application

– Fitness: number of 
iterations of inner swarm

Initialize PSO parameters for the outer swarm 
(wout, c1out, c2out) 

Initialize the values of win, c1in & c2in to be 
used in the inner swarm 

OUTER PSO 

INNER SWARM FOR TARGET 
SEARCHING 

 
Uses the values win, c1in & c2in as 

passed into it 

Fitness: lowest number of iterations

Chooses the values of win, c1in & c2in that 
corresponds to the particle with the least 

number of iterations 

Best values of win, c1in & 
c2in 

The target search application program 
that uses PSO  

TARGET SEARCHING 
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Comparison of PSO & Optimal PSO
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Comparison PSO, DE and DEPSO
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Fuzzy Logic Control

Knowledge Base 
(Rules)

Inference EngineFuzzification
Process

Defuzzification
Process

Non-Fuzzy
Inputs

Non-Fuzzy
Outputs

Fuzzy Logic Controller

Non-Fuzzy
Inputs

Fuzzification
Process
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The Fuzzy System

• Equations:
– Pi = (Xi +ΔXi , Yi +ΔYi )

• ΔXi = f(Ii, Gdx)
• ΔYi = f(Ii, Gdy)

Where, 
• Gdx=Lbestx - Px and Gdy=Lbesty – Py
• Px and Py are the X-Y coordinates of the sensors 

current position
• Lbestx and Lbesty are the X-Y coordinates of the Lbest of 

the swarm. 
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Optimized Fuzzy System

• PSO was used to optimize the Fuzzy Parameters
– Membership Functions
– Coarse and Fine Rule Set 

• IF (a set of conditions is satisfied), then (a set 
of consequences can be inferred).
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Problem Search Space
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Results for PSO Based Navigation
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Results for the Fuzzy Based Navigation 
(100% Convergence)
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What is Control?

Plant or 
Environment

z-1

Control system

R

Control Variables 
(Actions) u(t)

Observables X(t)

• t may be discrete (0, 1, 2, ...) or continuous
• “Decisions” may involve multiple time scales
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What is Intelligent Control?

Intelligent Control is a form of control is defined 
as the ability of a system to comprehend, 
reason, and learn about 

• processes
• disturbances and
• operating conditions.
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What are the Goals of 
Intelligent Control?

The fundamental goals of intelligent control may be
described as follows:

• Full utilization of knowledge of a system and/or feedback
from a system to provide reliable control in accordance with
some preassigned performance criterion

• Use of the knowledge to control the system in an intelligent
manner, as a human expert may function in light of the same
knowledge

• Improved ability to control the system over time through the
accumulation of experiential knowledge (i.e., learning from
experience).
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Neural Network Controller 
Design Approaches

Neural Network Controller designs fall mostly into 
the following five categories:

• Supervised Control
• Direct Inverse Control
• Neural Adaptive Control
• Backpropagation Through Time (BPTT)
• Adaptive Critic Designs (ACDs)
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Direct Inverse Control
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Neural Direct Adaptive Control
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Neural Indirect Adaptive Control

Nonlinear Plant
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Backpropagated Through Time 

(BPTT) Based Neurocontrol

Neurocontroller Neurocontroller

Model

X(k)

Neurocontroller

Model Model

-
Σ
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Rd(T)

R(T)

e(T)

t = k t = k + 1 t = k + h - 1 t = k + h = T
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Power Grid

Generators

Loads

Buses

Transmission Lines
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A CONTINUALLY ONLINE TRAINED 
NEUROCONTROLLER FOR EXCITATION AND 

TURBINE CONTROL OF A TURBOGENERATOR

IEEE Transactions on Energy Conversion, 
vol. 16, no.3, September 2001, pp. 261-269.
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Power System Model
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PID Compensation
and limits
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Series-parallel Nonlinear Auto Regressive Moving Average (NARMA) 
model 

The NARMA model has been chosen in preference to other system 
identification models because online learning is desired to identify the 
dynamics of the power systems (as shown in the following slides). 
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ANN Identifier/Model
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Power deviations at inputs to the turbine and the ANN
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Plant and ANN Outputs 

Speed deviations at outputs of the PLANT and the ANN
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Voltage deviations at outputs of the PLANT and the ANN
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Inputs to the Neurocontroller
Delayed values of Terminal voltage deviation ΔVt
Delayed values of Speed deviation Δω
Outputs of the Neurocontroller
Deviation in Field voltage ΔVfield
Deviation in Turbine Power ΔPref

Neuroidentifier weights
Fixed
Backpropagation of
errors at H 

Desired Response Predictor

Pre-training of the Neurocontroller
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Online training continues
Three procedures are carried out every sampling period:

Training the neuroidentifier
Training the neurocontroller
Controlling the turbogenerator

First Procedure: Training the Neuroidentifier

Post-control Training

Neuro-
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Second Procedure: Training the Neurocontroller

Third Procedure: Controlling the turbogenerator
New control signals Δu are calculated using the updated weights 
from the second procedure and are applied at time (k+1) to the 
turbogenerator at B.

Post-control Training
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Simulation Results:
Three Phase Short Circuit at the Infinite Bus
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Adaptive Critic’s Based 
Neurocontrol

• The Adaptive critic designs have the potential of 
replicating critical aspects of human intelligence:
- ability to cope with a large number of variables in
parallel, in real time, in a noisy nonlinear non-
stationary environment.

• The ACDs show a family of promising methods to solve
optimal control problems.

• The origins of ACDs are ideas synthesized from dynamic
programming, reinforcement learning and backpropagation.
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What is Reinforcement Learning?

• Learning from interaction – theories of learning 
and intelligence. 

• Learning is an active process.
• Goal-oriented learning than other approaches 

of ML.
• Learning about, from, and while interacting with 

an external environment
• Learning what to do—how to map situations to 

actions—so as to maximize a numerical reward 
signal
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Reinforcement Learning
• Reinforcement learning is defined by Barto as follows:

If an action taken by a learning system is followed by a satisfactory 
state of affairs, then the tendency of the system to produce that 
particular action is strengthen or reinforced.  Otherwise, the tendency 
of the system to produce that action is weaken.

Reinforcement Learning is a computational approach to learning 
whereby an agent tries to maximize the total amount of reward it
receives when interacting with a complex, uncertain environment.

• There are two types of reinforcement learning: non-associative and 
associative. 

• The simplest and most frequently used reinforcement learning 
methods is the Q – learning (Watkins).

• Reinforcement learning control system may be used where the correct 
actions are not known.
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Dynamic Programming

The basic concept of all forms of dynamic 
programming can be summarized as follows:

Dynamic Programming

Utility
Function (U)

Model of
Reality (F)

Secondary Utility (J)
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Bellman’s equation of dynamic programming

Approximate dynamic programming is obtained using 
a neural network called ‘the Critic network’ to 
approximate the J - function.

∑
∞

=
+γ=

0k

k )kt(U)t(J
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ACDs as Supervised and 
Reinforcement Learning

Types of primary reinforcement:
• 1)  Explicit targets for system outputs are provided at

every step.
• 2)  Explicit differentiable cost as a function of system

variables is provided at every step.
• 3)  A graded cost is provided at each step but explicit

relationship with system states is not given.
• 4)  Ungraded reinforcement is provided when appropriate,

e.g. binary outcome at the end of a game.

ACDs are supervised learning systems in the cases of (1) & (2). 
They are reinforcement learning systems in the cases of (3) & (4). 
Critic may be thought of as a transformer of cases (3) & (4) 
to case (2).
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Adaptive Critic Designs
A family of adaptive critic designs was proposed by 
Werbos in 1977 as a new optimization technique 
combining concepts of reinforcement learning and 
approximate dynamic programming. 
The adaptive critic method determines optimal control 
laws for a system by successively adapting two neural 
networks, namely an Action neural network (which 
dispenses control signals) and a Critic neural network
(which learns the desired performance index for some 
function associated with the performance index). 
These two neural networks approximate the Hamilton-
Jacobi-Bellman equation associated with optimal control 
theory.
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Summary: The goals of 
Intelligent Control with ACDs

• Adaptive Critic designs, which are rarely studied but 
very powerful design techniques that give brain-like
intelligence to controllers

- MIMO system
- Nonlinear system
- Model uncertainties
- Random disturbance
- Learns over time
- Adaptive
- Robustness (Hamilton-Jacobi-Bellman equation,
basic equation of stochastic optimal control)
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To actually build an adaptive critic control 
system, the following will have to be decided:

Exactly what the Critic network is supposed to 
approximate, and how it will adapted;

How the Action network will be adapted in response to 
the information coming out of the Critic network.

Adaptive Critic Designs
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ANN Controller based on Adaptive 
Critic Designs - HDP
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Critic Neural Network
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DHP Critic Network Adaptation
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Action Network Adaptation
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Critic Network’s Training Cycle

The following operations are repeated N times:

1.  Initialize t = 0 and ΔY(0)
2.  Compute output of the critic network at time t, J(t) = fC(ΔY(t), WC)
3.  Compute output of the action network at time t, 

A(t) = fA(ΔY(t), WA)
4.  Compute output of the model network at time t+1, 

ΔY(t+1) = fM(ΔY(t),A(t), WM)
5. Compute the output of the critic network at time t+1, 

J(t+1) = fC(ΔY(t+1), WC)
6. Compute the critic network error at time t, 

Ec1(t) = J( ΔY(t) - γJ(ΔY(t+1) - U(t))
U(t) = [4 ΔV(t) + 4 ΔV(t-1)+16 ΔV(t-2)]2+ [0.4 Δ(t)+ 0.4 Δ(t-1)

+ 0.16Δ(t-2)] 2

7. Update the critic network’s weights using the backpropagation
algorithm

8. Repeat steps 2 to 7.
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Power System Control Application

G K Venayagamoorthy, et al, Approximate Dynamic Programming for Power Systems Control, in the Handbook of Learning and Approximate 
Dynamic Programming, Edited by J Si, A G Barto, W B Powell, D Wunsch, Wiley-IEEE press, July 2004, ISBN: 0-471-66054-X. 
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Power System Control Application

Venayagamoorthy GK, Harley RG, Wunsch DC, “Implementation of Adaptive Critic Based Neurocontrollers for Turbogenerators in a 
Multimachine Power System”, IEEE Transactions on Neural Networks, vol. 14, no. 5, September 2003, pp. 1047 - 1064. 
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Power System Control Application
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Multimachine Power System”, IEEE Transactions on Neural Networks, vol. 14, no. 5, September 2003, pp. 1047 - 1064. 

Venayagamoorthy GK, Harley RG, Wunsch DC, “Comparison of Heuristic Dynamic 
Programming and Dual Heuristic Programming Adaptive Critics for Neurocontrol of 
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2002, pp. 764 - 773. 
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Power System Control Application

G K Venayagamoorthy, et al, Approximate Dynamic Programming for Power Systems Control, in the Handbook of Learning and Approximate 
Dynamic Programming, Edited by J Si, A G Barto, W B Powell, D Wunsch, Wiley-IEEE press, July 2004, ISBN: 0-471-66054-X. 
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Power System Control Application

G K Venayagamoorthy, et al, Approximate Dynamic Programming for Power Systems Control, in the Handbook of Learning and Approximate 
Dynamic Programming, Edited by J Si, A G Barto, W B Powell, D Wunsch, Wiley-IEEE press, July 2004, ISBN: 0-471-66054-X. 
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Multimachine Power System
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Machine #1: Trans. Line Impedance 
Increase
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Machine  #2: Trans. Line Impedance Increase
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