
1
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Advanced Computational Intelligence
for Identification, Control and

Optimization of Nonlinear Systems

Ganesh Kumar Venayagamoorthy, PhD

Associate Professor of Electrical and Computer Engineering
& Director of Real-Time Power and Intelligent Systems Laboratory

University of Missouri-Rolla, USA

http://www.umr.edu/~ganeshv
www.ece.umr.edu/RTPIS

gkumar@ieee.org

2
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Acknowledgment

Support from the National Science Foundation, USA,
CAREER Grant ECS # 0348221, University of Missouri
Research Board and University of Missouri-Rolla, USA is
gratefully acknowledged.

3
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

• Ability to comprehend, to understand and profit from experience, to
interpret intelligence, having the capacity for thought and reason
(especially, to a higher degree).

• Creativity, skill, consciousness, emotion and intuition.

Intelligence

4
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

• Computational Intelligence (CI) is the study of adaptive mechanisms
to enable or facilitate intelligent behavior (intelligence) in complex
and changing environments.

• These mechanisms include paradigms (AI) that exhibit an ability to
learn or adapt to new situations, to generalize, abstract, discover
and associate.

• Turing Test - 1950

Computational Intelligence (1)

5
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

• Computational Intelligence (CI) can be defined as the
computational models and tools of intelligence capable
of inputting raw numerical sensory data directly,
processing them by exploiting the representational
parallelism and pipelining the problem, generating
reliable & timely responses and withstanding high fault
tolerance.

Computational Intelligence (2)

6
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR
Computational Intelligence Paradigms

Evolutionary
Computing

Neural & Immune
Networks

Fuzzy Systems

Swarm
Intelligence

Neuro-Fuzzy
Systems

Neuro-Genetic
Systems

Neuro-Swarm
Systems

Fuzzy-PSO
Systems

Fuzzy-GA
Systems

Evolutionary-Swarm
Systems

7
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

• A neural network can be defined as a
massively parallel distributed processor
made up of simple processing units,
which has the natural propensity for
strong experiential knowledge and
making it available for use.

• The neural network resembles the brain
in two aspects –
• Knowledge is acquired by the network

from its environment through a learning
process.

• Interneuron connection strengths, known
as synaptic weights, are used to store
acquired knowledge.

Neural Networks

8
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

• Artificial Immune Systems (AIS) are biologically
inspired models for immunization of engineering
systems.

• The pioneering task of AIS is to detect and
eliminate non-self materials, called antigens such
as virus or cancer cells.

• The AIS also plays a great role to maintain its
own system against dynamically changing
environment.

• The immune systems thus aim at providing a new
methodology suitable for dynamic problems
dealing with unknown/hostile environments.

Artificial Immune Systems

9
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

• Evolutionary Computing has as its
objective the model of natural
evolution, where the main concept is
survival of the fittest: the weak must
die, the elites move to the next level.

• In natural evolution, survival is
achieved through reproduction.
Offspring, reproduced from two
parents, contain genetic material of
both parents – hopefully the best
characteristics of each parent.

• Those individuals that inherit the bad
characteristics are weak and lose the
battle to survive.

• In some bird species, one hatchling
manages to get more food, gets
stronger, and at the end kicks out all
its siblings from the nest to die.

• GAs, GP, EP, ES

Evolutionary Computing

10
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

• Swarm intelligence originated from
the study of colonies (ants, bees,
termites) or swarms of social
organisms – flock of birds, school
of fish.

• Studies of the social behavior of
organisms (individuals) in swarms
prompted the design of very
efficient optimization and clustering
algorithms.

• SI is an innovative distributed
intelligent paradigm for solving
optimization problems.

Swarm Intelligence

11
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

• Traditional set theory requires elements to be either part of a set or
not. Similarly, binary-valued logic requires the values of parameters
to be either 0 or 1, with similar constraints on the outcome of an
inferencing process.

• Fuzzy sets and fuzzy logic allow what is referred to as approximate
reasoning.

• With fuzzy sets, an element belongs to a set to a certain degree of
certainty.

• Fuzzy logic allows reasoning with these uncertain facts to infer new
facts, with a degree of certainty associated with each fact.

• In a sense, fuzzy sets and logic allow the modeling of common
sense.

Fuzzy Systems

12
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Computational Intelligence

Neural & Immune
Networks

Evolutionary
Computing

Swarm Intelligence

Fuzzy Logic

Swarm-Neuro-Fuzzy

Evolutionary-Neuro-Fuzzy

Evolutionary-Swarm-Neuro Systems

Evolutionary-Swarm-Fuzzy Systems

Evolutionary-
Swarm-
Neuro-Fuzzy
Systems

13
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Single Layer Feedforward NetworksMulti-Layer Feedforward Networks

14
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Feedback (Recurrent) Networks

Inputs Output

Activation
Functions:

Input & Context
Layer – Linear

Hidden Layer –
Hyperbolic
Tangent

Output Layer –
Linear

X(t) X(t+1)

1 1

Context Layer

Hidden Layer

Input Layer Output Layer

Bias

Z-1

Z-1

Z-1

15
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Cellular Architectures

16
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Learning Methods

Learning Methods can be broadly classified into three basic types: supervised, unsupervised,
and reinforcement.

Supervised Learning:-

TeacherEnvironment

Learning
system Σ

+

-
Actual response

Error signal

Desired
response

Vectors describing
state of the
environment

TeacherTeacherEnvironment

Learning
system

Learning
system ΣΣ

+

-
Actual response

Error signal

Desired
response

Vectors describing
state of the
environment

17
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Learning Methods

Unsupervised Learning:- In contrast to supervised learning, the objective of unsupervised
learning is to discover patterns or features in the input data with no help from a teacher,
basically performing a clustering of input space.

Reinforcement Learning:- In this method, a teacher though available, does not present the
expected answer but only indicates if the computed output is correct or incorrect. The
information provided helps the network in its learning process. A reward is given for a correct
answer computed and a penalty for a wrong answer.

Reinforcement
Learning Controller Plant

Noise
Plant

Response

Performance
Evaluation

Reinforcement, r

18
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Classification of Learning Algorithms

Neural Network Learning Algorithms

Supervised Learning
(Error based) Unsupervised Learning

Reinforced Learning
(Output based)

Error Correction
Gradient descent Stochastic Hebbian Competitive

Least Mean
Square Backpropagation PSO ES/GA

Simulated
Annealing

19
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Gradient Descent Learning Rule – Neuron

2

1
()

P

p p
p

Error t f
=

= −∑
1

1

n

j ji i
i

f w xψ
+

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑

where tp and fp are respectively the target and actual output for patterns p, and
P is the total number of input-target vector pairs (patterns) in the training set.

20
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Gradient Descent Learning Rule – Neuron

,

(1) () ()

() ()

2()

i i i

i
i

p p i p
i p

w t w t w t
Ewith w t
w

E fwhere t f x
w u

η

+ = + Δ

∂
Δ = −

∂

∂ ∂
= − −

∂ ∂

The weights are updated using:

where η is the learning rate and wi(t+1) is the new weights.

2

1
()

P

p p
p

Error t f
=

= −∑

21
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Feedforward Neural Networks

Feedforward
Operation

Backpropagation
Operation

22
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

FFNN/MLP Functional Block Diagram

23
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

FFNN Feedforward Operation

(.)1
1(.)

)(

−+
=

=

e
sigwhere

asigd ii

Input vector xj where j =1 to n (number of inputs).
Input weight matrix Wij where i = 1 to m (hidden neurons).

Step 1: Activation vector ai is given by

Decision vector di is given by
−−

=

=

= ∑
xWa

xwa j

n

j
iji

1

Step 2: Output vector yi is given by (r is no. of
outputs)

^

{ }

−−

=

=

∈=∑

dVy

rhdvy
m

i
ihih

^
1

^
,...3,2,1;

24
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

FFNN Backpropagation Operation

The error function used to derive the
backpropagation training algorithm is based
on the principle of gradient descent and is
given as half the square of the Euclidean norm
of the ANN output error vector.

21(.) () (, , ,)
2y yE E e E x W V y e≡ ≡ ≡

This is called the objective function for ANN
learning to be optimized by the optimization
method.

The square law results in more sensitivity to
larger errors than smaller errors. Thus,

-Large parameter adjustments for fast reduction
of large errors, and
-Fine parameter adjustments for settling into
Desired error function minima.

25
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Weight Adjustments/Updates

Two types of supervised learning algorithms exist, based on when/how weights
are updated:

• Stochastic/Delta/(online) learning, where the
weights are adjusted after each pattern
presentation. In this case the next input pattern
is selected randomly from the training set, to
prevent any bias that may occur due to the
sequences in which patterns occur in the
training set.

• Batch/(offline) learning, where the weight changes
are accumulated and used to adjust weights only
after all training patterns have been presented.

26
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

FFNN Backpropagation Operation

^

y
y ye
− −

= −

Step 1: The output error vector is given by

Step 2: The decision error vector is given by
T

d y
Ve e=

The activation error vector is given by

i iia d
i

d d
dae e= (1)i i i

i

d d d d
da

= −

(1)
i ii ia d

d de e= −

() () () (1)

() () () (1)

.

T
g y m

T
g a m

g m

V k e k d k V k

W k e k x k w k

where and are learning and momentum gains respectively

γ γ

γ γ

γ γ

Δ = + Δ −

Δ = + Δ −

Step 3: The weights changes are given by

27
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

FFNN Weight Updates

(1) () ()
(1) () ()

V k V k V k
W k W k W k

+ = + Δ
+ = + Δ

Step 3: The weights updates are given by

One set of weight modifications is called
an epoch, and many of these may be
required before the desired accuracy of
approximation is reached.

28
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Feedforward Neural Networks

29
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Feedforward Neural Networks

30
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Evolutionary Computing

1. Evolution is the process of adaptation with the aim of improving
the survival capabilities through processes such as natural
selection, survival of the fittest, reproduction, mutation,
competition and symbiosis.

2. Evolution is an optimization process.

3. EC is a field of CI which models the processes of natural
evolution.

31
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Evolutionary Computing

Evolutionary Computing

Genetic Algorithms

Genetic Programming

Evolutionary
Programming

Evolutionary
Strategies

Differential
Evolution

Cultural
Evolution

32
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Main Steps in Evolutionary Computation

1. Encoding of solutions to the problem as a chromosome.

2. Fitness function – evaluation of individual strength.

3. Initialization of the initial populations.

4. Selection operators.

5. Reproduction operators.

33
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Encoding Process

1. Population of individuals – each individual is a candidate
solution.

2. Characteristics of an individual are represented by a
chromosome, or genome.

3. Characteristics of a chromosome represented in two classes –
genotypes and phenotypes.

4. A genotype describes the genetic make up of an individual as
inherited from its parents. Experience of parents stored in
genotypes.

5. A phenotype is the expressed behavioral traits/physical
characteristics of an individual in a specific environment.

34
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Fitness Function

1. Important part for EA to be successful.

2. Fitness is a scalar quantity.

3. Fitness function quantifies the quality of a potential solution, i.e
how close is the solution to the optimal solution.

4. Selection, cross-over, mutation and elitism operators are
based on fitness function values.

5. The fitness function should include all criteria to be optimized.

6. Penalty can be imposed on those individuals that violate
constraints within the fitness function, in the initialization,
reproduction and mutation operators.

35
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Selection Operators

1. Random selection – good or bad individuals have equal
chance.

2. Proportional Selection – chance of individuals selected is
proportional to their fitness. Roulette wheel selection is used.

(Probability of ith individual = fitness of ith individual /sum of all
individual fitness)

3. Tournament Selection – a group of k individuals are randomly
selected to take part in a tournament. The winner is selected.

4. Rank-Based Selection – Ranking is given either in decreasing
or increasing order based on the fitness values.

5. Elitism – Best individuals are copied into the next generation.

36
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

General Evolutionary Algorithm

1. Initialize a population of N individuals.

2. While no convergence:
• Evaluate the fitness of each individual in the population
• Perform cross-over

• select 2 individuals
• produce offspring

• Perform mutation
• select one individual
• mutate

• Select the new generation
• Evolve the next generation.

• Convergence is reached when: max. generations is exceeded,
acceptable fitness is evolved, fitness does not change
significantly over past x generations.

37
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Evolutionary Computing versus Classical
Optimization

1. No-Free-Lunch theorem [Wolpert and Macready 1996] states
that cannot exist any algorithm for solving all problems that is
on average superior to any other algorithm.

2. Thus, the motivation for research into new optimization
especially EC.

3. Classical optimization algorithms are very successful for linear,
quadratic, strongly convex, unimodal problems.

4. EAs are more efficient for discontinuous, nondifferentiable,
mutlimodal and noisy problems.

5. COs use deterministic rules to move from one point to other in
the search space while ECs use probabilistic transition rules.

38
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Evolutionary Computing versus Classical
Optimization

1. COs use sequential search while EAs use parallel search.

2. COs use derivative information, using first order or second
order, of the search space to guide the path to the optimum.

3. ECs use no derivative information. Only fitness values of
individuals are used to guide the search.

39
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Islands of Population Based Algorithms

Migration
Visitation

40
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

• Swarm Intelligence (SI) is the property of a system whereby
the collective behaviors of (unsophisticated) agents interacting
locally with their environment cause coherent functional global
patterns to emerge.

41
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

• Proximity principle: the population should be able to carry out
simple space and time computations.

• Quality principle: the population should be able to respond to
quality factors in the environment.

• Diversity principle: the population should not commit its activities
along excessively narrow channels.

• Stability principle: the population should not change its mode of
behavior every time the environment changes.

• Adaptability principle: the population must be able to change
behavior mode when it’s worth the computational price.

Basic Principles of Swarm Intelligence
(Mark Millonas, Santa Fe Institute)

42
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

School of Fish/ Flock of Birds

“… and the thousands off fishes moved as a
huge beast, piercing the water. They appeared
united, inexorably bound to a common fate. How
comes this unity?” – Anonymous, 17th century

The motion of a flock of birds is
one of nature’s delights.

43
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Particle Swarm Optimization (PSO)

• A concept applicable to optimizing nonlinear functions
• Has roots in artificial life and evolutionary computation
• Developed by Kennedy and Eberhart (1995)
• Key points -

• Simple in concept
• Easy to implement
• Computationally efficient
• Effective on a variety of problems

44
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Swarm Topologies

45
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

The system initially has a population of random solutions called
particles

Each particle has random velocity and memory that keeps track
of previous best position and corresponding fitness

The previous best value of the particle position is called the ‘pbest’

It has another value called ‘gbest’, which is the best value of all
the ‘pbest’ positions in the swarm

Basic concept of PSO lies in accelerating each particle towards
its pbest and the gbest locations at each time step

In local PSO, the ‘gbest’ is changed to ‘lbest’ where ‘lbest’ is the best
value of all the particles in local neighborhood.

Particle Swarm Optimization

46
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

PSO Equations

Xk r Vini

s (Pbestk-Xk)

t (Gbest-Xk)

Xk+1

Vmod

Y

X

1 1 2 2() ()id id bestid id bestid idV w V c rand P X c rand G X= × + × × − + × × −

id id idX X V= +

The velocity of the particles is given as follows

The position vector of the particles is changed as follows

47
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Differential Evolution

1. Initialize a population of N individuals.

2. In every generation, for each individual select
3 distinct individuals randomly from the
remaining population.

3. Compute a random number to determine
whether to mutate or not.

4. For each parent and its offspring, the individual
with the greater fitness is passed on to the next
generation.

5. Test for convergence. If all the individuals have not converged the
procedure is repeated from (2).

()1, 4, 2, 3,j j j jO P P Pγ= + × −

1, 1,j jO P=

P2

P3 P4 T

P1

X

Y

O1=P4+(P2-P3)
P2

P3 P4 T

P1

X

Y

O1=P4+(P2-P3)

48
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Differential Evolution

1. Initialize a population of N individuals.

2. In every generation, for each individual select
3 distinct individuals randomly from the
remaining population.

3. Compute a random number to determine
whether to mutate or not.

4. For each parent and its offspring, the individual
with the greater fitness is passed on to the next
generation.

5. Test for convergence. If all the individuals have not converged the
procedure is repeated from (2).

()1, 4, 2, 3,j j j jO P P Pγ= + × −

1, 1,j jO P=

P2

P3 P4 T

P1

X

Y

O1=P4+(P2-P3)
P2

P3 P4 T

P1

X

Y

O1=P4+(P2-P3)

49
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR
Fuzzy System

Knowledge Base

Inference EngineFuzzification
Process

Defuzzification
Process

Non-Fuzzy
Inputs

Non-Fuzzy
Outputs

Fuzzy Fuzzy
Rules Sets

Fuzzy Logic Controller

Non-Fuzzy
Inputs

Fuzzification
Process

50
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Computing Degree of Membership

0

1

A B C D E

slope 1 slope 2

point 1 point 2

0E
(point 2 - X) × slope 2D

maxC
(X – point 1) × slope 1B

0A
Degree of MembershipSystem Input Range

51
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR
Fuzzy Rule Based System

• Example
– If there is heavy rain and strong winds then there

must be severe flood warning.
– Fuzzy sets = {heavy, strong, severe}
– Fuzzy variables = {rain, winds, flood}

• If the conclusion C to be drawn from a rule
base R is the conjunction of all the individual
consequents Ci of each rule, then

C = C1∩C2 ∩C3 ∩… ∩Cn

where
μC(y) = min (μC1(y), μC2(y), μC3(y), …, μCn(y))

52
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR
Inference Engine (Firing)

• The task of the inference engine is to carry out
the inferencing process which is to map the
fuzzified inputs to the rule base, and to
produce a fuzzified output for each rule.

• Fuzzy inference is referred to as approximate
reasoning (evaluating linguistic descriptions).

• Rules that are not activated have a zero firing
strength.

53
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR
Defuzzification

• This is the reverse process to fuzzification.

• The fuzzy output of the inference engine (fuzzy rules) is converted into
scalar, or non-fuzzy value.

• Defuzzification resolves conflicts between competing actions such as
‘output to be set to positive medium’ and ‘output to be set to
positive large’ (example illustrates this). In this case, defuzzification
employs compromising techniques to resolve both the vagueness and
conflict issues.

• Several methods exist for finding an approximate scalar value, namely:
– Max-min method
– Averaging method
– Root-sum-square method
– Clipped center of gravity method

54
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR
Defuzzification

• Clipped center of gravity method
– Each membership is clipped at the corresponding rule firing

strengths. The centroid of the composite area is calculated
and its x coordinate is the output of the controller.

0 25531 63 95 127 159 191 223

1
NL NM NS ZE PS PM PL

0.7
0.45
0.2

55
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Training of a Feedforward Neural
Network

W1,2

W2,1

W2,2

W3,1

W4,1

W4,2

V1,1

V2,1

V3,1

V4,1

W3,2

Σ

Σ

Σ

Σ

W1,1x a1

a2

a3

a4

d1

d2

d3

d4

y

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

1
(bias)

Desired
Output

Σ

TRAINING ALGORITHM

Error

-
+

W1,2

W2,1

W2,2

W3,1

W4,1

W4,2

V1,1

V2,1

V3,1

V4,1

W3,2

Σ

Σ

Σ

Σ

W1,1x a1

a2

a3

a4

d1

d2

d3

d4

y

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

1
(bias)

Desired
Output

Σ

TRAINING ALGORITHM

Error

-
+

W1,2

W2,1

W2,2

W3,1

W4,1

W4,2

V1,1

V2,1

V3,1

V4,1

W3,2

ΣΣ

ΣΣ

ΣΣ

ΣΣ

W1,1x a1

a2

a3

a4

d1

d2

d3

d4

y

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

1
(bias)

Desired
Output

ΣΣ

TRAINING ALGORITHM

Error

-
+

ey

edieai

Δw Δv

yd

56
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

For training a neural network using the PSO:

The fitness value of each particle of the swarm is the value of the
error evaluated at the current position of the particle

The position vector of the particle corresponds to the weight matrix
of the neural network.

PSO for Neural Network Training

57
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR Problem 1:
Target Function for Neural Network Training

Y = 2x2 + 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
Target Function y=2x2+1

Input

O
ut

pu
t

58
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Training MSE of the PSO Particles –
Y = 2x2+1

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

Epochs

M
S

E
 o

f i
nd

iv
id

ua
l p

ar
tic

le
s

Particle 2

Particle 1

Maxepochs=100 Particles=25 MaxV=2 MaxX=100 Weight=0.8

0 50 100 150 200 250 3000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 3000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Epochs

M
S

E
BP

PSO

0 50 100 150 200 250 3000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 3000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Epochs

M
S

E
BP

PSO (gbest)

59
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

-0.1 -0.05 0 0.05 0.1 0.15
0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035
Blue : Target
Black : PSO
Red : BP

-0.1 -0.05 0 0.05 0.1 0.15
0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

input x

ou
tp

ut
 y

Blue : BP
Black : Target
Red : PSO

-0.1 -0.05 0 0.05 0.1 0.15
0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035
Blue : Target
Black : PSO
Red : BP

-0.1 -0.05 0 0.05 0.1 0.15
0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

input x

ou
tp

ut
 y

Blue : BP
Black : Target
Red : PSO

Magnified Test Results for Neural Networks
with Fixed Weights Trained
with BP and PSO - Bias 1

60
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

1.14206.1226Ratio of computations

1759594215407700187965963070050Total (Forward + Backward)

1314861683520014045808523800Backward path (additions+ multiplications)

44473261457250047507882546250Forward path (additions+ multiplications)

9621169836194Iterations

-1: 0.01:1-1: 0.1:1Patterns (input x)

BPPSOBPPSOError=0.001

1.3958Ratio of computations

586677420312Total (Forward + Backward)

43839671712Backward path (additions+ multiplications)

148281348600Forward path (additions+ multiplications)

9836(307194(83Iterations

-1: 0.1: 1Patterns (input x)

BPPSOError=0.001

Comparison of Number of Computations in Training a
Neural Network 2 × 4 × 1 (Bias 1)

With bias 2

61
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

IJCNN04 CATS Problem

Missing data to be predicted

62
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Recurrent Neural Network

• An Elman RNN
is chosen as the
predictor

• Novel training
algorithm

Output layer
(5)

Hidden Layer 2
(20)

Hidden Layer 1
(40)

Context
(40)

Input layer
(100)

1−Z

)(tx (99)x t +

^ ^
(100),..., (104)x t x t+ +

63
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Hybrid PSO+EA

• Hybrid = Co-operative + Competitive
– (PSO + EA)

• Apply evolutionary operators to PSO
– Selection, crossover and mutation

• Benefits:
– Focus on good region
– Increase the diversity of the population
– Save computation

64
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Hybrid PSO+EA

Old PopulationGeneration N

PSO EA
Mutation

Fitness
ranking

New Population

Winners Losers

Elites

Enhanced elites Offspring

Generation N+1

Discard half

Rank

65
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Prediction

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-600

-400

-200

0

200

400

600

800

Predicted missing data

66
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

35498941425[26]

131912291247[25]

18009951156[24]

41382781050[23]

35774021037[22]

794994954[21]

1592762928[20]

2737222725[19]

672677676[18]

1532442660[17]

1861351653[16]

1052542644[15]

1305395577[14]

1170370530[13]

838418502[12]

597402441[11]

656346408[10]

MSE (Last 20)MSE (80) E2MSE (100) - E1Author

67
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

There are many methods to design combinational circuits, generally
K-maps, Quine-McCluskey methods are used

The problem with the human designs is that they become
cumbersome and problematic with the complexity of the function

Design of circuits based on the principles of Darwinian evolution is
known as Evolvable Hardware (EHW)

To design conventional hardware, it is necessary to know all the
specifications of the hardware functions in advance. In contrast to
this, EHW can configure itself without such specifications known in
advance

One of the goals of EHW is to evolve complex designs, not
achievable with the traditional design methods

Evolvable Hardware

68
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

“Desired” Circuit Hardware Evolution

The “desired” circuit refers to the circuit required to map 100 %
exactly the outputs for corresponding inputs, typically given by a truth
table for a digital function, with the least number of gates.

Evaluate evolved
circuits and

compare with
“desired” circuit.

Download evolved
“desired” circuit

Re-generate
circuits

using PSO

Evaluate
fitnessA Swarm

of circuits

Reconfigurable
Haedware

Platform (FPGA)

Evaluate evolved
circuits and

compare with
“desired” circuit.

Download evolved
“desired” circuit

Re-generate
circuits

using PSO

Evaluate
fitnessA Swarm

of circuits

Reconfigurable
Hardware

Platform (FPGA)

69
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

3 input
Truth Tables for the examples taken

01 1 1

11 1 0

11 0 1

01 0 0

10 1 1

00 1 0

00 0 1

00 0 0

FX Y Z

2 AND,1 OR,
1 XOR,

2 AND,1 OR,
1 XOR,

2 AND,1 OR,
1 XOR

2 AND,1 OR,
2 XOR

4 gates4 gates4 gates5 gates

PSOMGANGAHD1

2 AND,1 OR,
1 XOR,

2 AND,1 OR,
1 XOR,

2 AND,1 OR,
1 XOR

2 AND,1 OR,
2 XOR

4 gates4 gates4 gates5 gates

PSOMGANGAHD1

)(
)(

XY
YXZF

⊕

+=

)(
)(

XY
YXZF

⊕

+=

)(
)(

ZXY
YXZF

⊕+
⊕=

)(
)(

ZXY
YXZF

⊕+
⊕=

XY
ZYXF

⊕
+=)(

XY
ZYXF

⊕
+=)(

)(ZXY
XZF
+
⊕=

)(ZXY
XZF
+
⊕=

X

Z

X

Z

Y

)(ZXY +

)(ZX

XZ

+

)(ZXYXZF +⊕=

X

Z

X

Z

Y

)(ZXY +

)(ZX

XZ

+

)(ZXYXZF +⊕=

X

Z

X

Z

Y

)(ZXY +

)(ZX

XZ

+

)(ZXYXZF +⊕=

70
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR
Collective Robotic Search

• Unmanned vehicles/mobile robots are used to
explore environments inhospitable to humans such
as remote areas, military surveillance applications,
seismic activity detection, planetary exploration, toxic
area exploration, etc.

• A large number of mobile robots are used for these
applications.

71
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Multiple Targets

Graphical representation of a multiple target case – each robot is
equipped with sensors to measure desired intensities.

T1

T2

T3

T4Group 4

Group 3

Robots

Targets

Group 1 Group 2

72
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Flow chart for Optimal
PSO

• Optimization is done in an
offline environment

• 2-level hierarchy
• Inner Swarm:

– Specific application
– Fitness: intensity,

Euclidean distance, etc
• Outer Swarm:

– Optimizes parameters of
the application

– Fitness: number of
iterations of inner swarm

Initialize PSO parameters for the outer swarm
(wout, c1out, c2out)

Initialize the values of win, c1in & c2in to be
used in the inner swarm

OUTER PSO

INNER SWARM FOR TARGET
SEARCHING

Uses the values win, c1in & c2in as

passed into it

Fitness: lowest number of iterations

Chooses the values of win, c1in & c2in that
corresponds to the particle with the least

number of iterations

Best values of win, c1in &
c2in

The target search application program
that uses PSO

TARGET SEARCHING

73
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Comparison of PSO & Optimal PSO

139144 138

124128 112

70.7
w=0.6
c1=0.5
c2=2

Single Target
(Unoptimized)

Multiple Targets
(Optimized)

Multiple Targets
(Unoptimized)

Single Target
(Optimized)

Case

123
w =0.55
c1 =0.55
c2=2.23

137
w=0.6
c1=0.5
c2=2

39.5
w =0.45
c1 =0.60
c2 =1.50

of IterationsParameter Values

74
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Comparison PSO, DE and DEPSO

100% (94%)3624DE

100% (84%)11796PSO

DEPSO

Case

100% (100%)5723

ConvergenceEvaluations

75
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Fuzzy Logic Control

Knowledge Base
(Rules)

Inference EngineFuzzification
Process

Defuzzification
Process

Non-Fuzzy
Inputs

Non-Fuzzy
Outputs

Fuzzy Logic Controller

Non-Fuzzy
Inputs

Fuzzification
Process

76
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

The Fuzzy System

• Equations:
– Pi = (Xi +ΔXi , Yi +ΔYi)

• ΔXi = f(Ii, Gdx)
• ΔYi = f(Ii, Gdy)

Where,
• Gdx=Lbestx - Px and Gdy=Lbesty – Py
• Px and Py are the X-Y coordinates of the sensors

current position
• Lbestx and Lbesty are the X-Y coordinates of the Lbest of

the swarm.

77
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Optimized Fuzzy System

• PSO was used to optimize the Fuzzy Parameters
– Membership Functions
– Coarse and Fine Rule Set

• IF (a set of conditions is satisfied), then (a set
of consequences can be inferred).

78
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR
Problem Search Space

0 300

200

100

X

Y

1 2 3

4 5 6

100 200

79
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Results for PSO Based Navigation

94%4.90910.6022

0.6
99%4.79859.4020.5
32%5.07889.360.52
8%5.24841.850.50.5

0%6.351181.5822

0.8
0%5.881106.0920.5
26%4.98985.390.52
93%3.99924.100.50.5

ConvergenceTime (sec)# of Iterationsc2c1w

80
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Results for the Fuzzy Based Navigation
(100% Convergence)

326.78306.15PSOPSOPSO5

325.65307.44PSOOriginal
(heuristics)

Original
(heuristics)

4

356.18356.96Original
(heuristics)

PSOOriginal
(heuristics)

3

328.24308.41Original
(heuristics)

Original
(heuristics)

PSO2

349.97355.80Original
(heuristics)

Original
(heuristics)

Original
(heuristics)

1

Time
(sec)

IterationsFine Rule
set

Coarse
Rule Set

Membership
Function

Simulation
case study

81
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Nonlinear System Identification and
Control & Applications

Ganesh Kumar Venayagamoorthy, PhD

Associate Professor of Electrical and Computer Engineering
& Director of Real-Time Power and Intelligent Systems Laboratory

University of Missouri-Rolla, USA

http://www.umr.edu/~ganeshv
www.ece.umr.edu/RTPIS

gkumar@ieee.org

82
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR
What is Control?

Plant or
Environment

z-1

Control system

R

Control Variables
(Actions) u(t)

Observables X(t)

• t may be discrete (0, 1, 2, ...) or continuous
• “Decisions” may involve multiple time scales

83
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR
What is Intelligent Control?

Intelligent Control is a form of control is defined
as the ability of a system to comprehend,
reason, and learn about

• processes
• disturbances and
• operating conditions.

84
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

What are the Goals of
Intelligent Control?

The fundamental goals of intelligent control may be
described as follows:

• Full utilization of knowledge of a system and/or feedback
from a system to provide reliable control in accordance with
some preassigned performance criterion

• Use of the knowledge to control the system in an intelligent
manner, as a human expert may function in light of the same
knowledge

• Improved ability to control the system over time through the
accumulation of experiential knowledge (i.e., learning from
experience).

85
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Neural Network Controller
Design Approaches

Neural Network Controller designs fall mostly into
the following five categories:

• Supervised Control
• Direct Inverse Control
• Neural Adaptive Control
• Backpropagation Through Time (BPTT)
• Adaptive Critic Designs (ACDs)

86
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR
Direct Inverse Control

OutputNonlinear
Plant

Neural Network
Inverse Controller

Control
Desired
Output

û

Σ

Nonlinear
Plant

Neural Network
Inverse Controller

Outputu

+

-

error

û

87
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR
Neural Direct Adaptive Control

Σ
Error

Desired output

OutputNonlinear
Plant

Backpropagation
Algorithm

Nonlinear neural
network controller

+

-

Setpoint
Control

System state

Adjust
weights

88
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR
Neural Indirect Adaptive Control

Nonlinear Plant

Nonlinear Differential
Plant Model

Neurocontroller

Desired Response
Predictor

Error Error

Error

Adjust
weights

Adjust
weights

Control

Output

(Neural Network Identifier)

89
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR
Backpropagated Through Time

(BPTT) Based Neurocontrol

Neurocontroller Neurocontroller

Model

X(k)

Neurocontroller

Model Model

-
Σ

+

Rd(T)

R(T)

e(T)

t = k t = k + 1 t = k + h - 1 t = k + h = T

90
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Power Grid

Generators

Loads

Buses

Transmission Lines

91
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

A CONTINUALLY ONLINE TRAINED
NEUROCONTROLLER FOR EXCITATION AND

TURBINE CONTROL OF A TURBOGENERATOR

IEEE Transactions on Energy Conversion,
vol. 16, no.3, September 2001, pp. 261-269.

92
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Power System Model

^

Micro-
alternator

Governor

Exciter

AVR

Z=R+ jX

Vb

Δω

Micro-turbine
+

-

Neuro-
Controller

Neuro-
Identifier

Vref+

-
Δω

+ -

S1

S2

Infinite
Bus

Pref

ΔΔPref

ΔVfield

ΔΔVt
ΔΔVt

Vt

2
3

2

3

Pm

Vfd

^

Σ

Σ

Vfield Σ

1

ΔPref

1

Vfield +ΔVfield

Δω

93
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

PID Compensation
and limits

1
1 5
+sTv

Input Filter

-
∑

Vref
+Vt

Vma

Vmi

Kav sTv sTv
sTv sTv

()()
()()

1 1 1 2
1 3 1 4

+ +
+ +

AVR

1
1+sTe

Saturation

Se

Exciter

Vfd

Vfdm

∑
-

Exciter

+

Kg sT
g

sT
g

()1
1

1
2

+

+

1
1

3
+sT

g

1
1

4
+sT

g
∑

()1 5
1 5

+

+

sFTg
sTg

servo motor

entrained

steam reheatersaturation

Governor
Pref

+

- PmΔω

Micro-turbine

ΔP

Automatic voltage regulator and exciter combination

Micro-turbine and governor combination

Conventional Controllers

94
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Adaptive Neurocontroller

Neuro-

Controller

Neuro-

Identifier

Turbogenerator

Desired
Response

Predictor

Error

Error

A

B

C

D

E
H

IJ

K

MTDL

TDL

TDL

[Δω(t+1),
^

ΔVt(t+1)]
^

ΔVe(t)

ΔPref(t)

G

A(t)

A(t)^

Ve, Pref

^^

^

X(t+1) =[ΔVt(t+1),

Δω(t+1)]

ΔY(t)=[Δω(t), ΔVt(t)]

[Δω(t), ΔVt(t)]

95
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR ANN Identifier/Model

Plant

Neural Network
Model

Training
Algorithm

Time delay
lineTime delay

line

∑

Plant Inputs Plant outputs

Weights
update

ANN outputs

+

−

Vt ,Δω

errors

Uf

P

Uf

P

Vt
ω

Vt
∧

, Δω
∧

Δ

Δ

Δ

Δ

Δ , Δδ
^

, Δδ

Δδ

96
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR ANN Identifier/Model

⎥
⎦

⎤
⎢
⎣

⎡
+−−
+−−

=+
)(.,..),(),(
),(.,..),(),(

)(
^

1mtu1tutu
1nty1tyty

f1ty

Series-parallel Nonlinear Auto Regressive Moving Average (NARMA)
model

The NARMA model has been chosen in preference to other system
identification models because online learning is desired to identify the
dynamics of the power systems (as shown in the following slides).

97
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR
ANN Identifier/Model

Δω(t-1)
Δω(t-2)
Δω(t-3)

Δω(t)

ΔVt(t)

ΔVt(t-1)
ΔVt(t-2)
ΔVt(t-3)

ΔPref (t-1)
ΔPref (t-2)
ΔPref (t-3)
ΔVe(t-1)
ΔVe(t-2)
ΔVe(t-3)

^

^

98
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Power deviations at inputs to the turbine and the ANN

0 5 10 15
-0.1
-0.08
-0.06
-0.04
-0.02

0
0.02
0.04
0.06
0.08
0.1

Time in seconds

Tu
rb

in
e

po
w

er
 in

pu
t d

ev
ia

tio
n

in
 p

u
Training Signals

99
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR
Plant and ANN Outputs

Speed deviations at outputs of the PLANT and the ANN

15 20 25 30
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Time in seconds

S
pe

ed
 d

ev
ia

tio
n

in
 ra

d/
s

ANN
PLANT

First operating
point Second operating

point (untrained)

Third operating
point (untrained)

100
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Voltage deviations at outputs of the PLANT and the ANN

15 20 25 30-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Time in seconds

Te
rm

in
al

 v
ol

ta
ge

 d
ev

ia
tio

n
in

 p
u

ANN

PLANT

First operating point

Second operating
point (untrained)

Third operating
point (untrained)

Plant and ANN Outputs

101
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Inputs to the Neurocontroller
Delayed values of Terminal voltage deviation ΔVt
Delayed values of Speed deviation Δω
Outputs of the Neurocontroller
Deviation in Field voltage ΔVfield
Deviation in Turbine Power ΔPref

Neuroidentifier weights
Fixed
Backpropagation of
errors at H

Desired Response Predictor

Pre-training of the Neurocontroller

Neuro-
Controller

Neuro-
Identifier

Turbogenerator
Desired
Response
Predictor

Error

Error

TDL

TDL

TDL

Δω(k)

ΔVt(k)

[Δω(k+1),^ ΔVt(k+1)]^

ΔVfield(k)
ΔPref(k)

Δu(k)

Δu(k)^

Vfield(k) +ΔVfield(k)

Pref(k)+ΔPref(k)

^

^
X(k+1) =[ΔVt(k+1)^

Δω(k+1)]
C

G
E

I

M

H

DB

A

K

J

102
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Online training continues
Three procedures are carried out every sampling period:

Training the neuroidentifier
Training the neurocontroller
Controlling the turbogenerator

First Procedure: Training the Neuroidentifier

Post-control Training

Neuro-
Controller

Neuro-
Identifier

Turbogenerator

Error

A B

C

D

E

TDL

TDL

TDL
[Δω(k), ΔVt(k)]

[Δω(k),
^

ΔΔVt(k)]G

FΔu(k)

Vfield, Pref

103
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Second Procedure: Training the Neurocontroller

Third Procedure: Controlling the turbogenerator
New control signals Δu are calculated using the updated weights
from the second procedure and are applied at time (k+1) to the
turbogenerator at B.

Post-control Training

Neuro-
Controller

Neuro-
Identifier

Turbogenerator
Desired
Response
Predictor

Error

Error

A
B

C

D

E
H

IJ

K

MTDL

TDL

TDL

Δω(k)

ΔVt(k)

[Δω(k+1),^
ΔVt(k+1)]

^

ΔVfield(k)
ΔPref(k)

G

Δu(k)

Δu(k)^

Vfield, Pref

^

^
X̂(k+1) =[ΔVt(k+1),

Δωω(k+1)]

104
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Simulation Results:
Three Phase Short Circuit at the Infinite Bus

0 1 2 3 4 5 6 7 8
45

50

55

60

65

70

75

80

85

Time in seconds

R
ot

or
 a

ng
le

 (d
eg

re
es

)

conventional controller
neurocontroller

The short circuit test is carried out at: Z = 0.025 + j 0.6 at P = 1 pu & Q = 0.62 pu

0 1 2 3 4 5 6 7 80.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Time in seconds

Te
rm

in
al

 v
ol

ta
ge

 (p
u)

conventional controller
neurocontroller

105
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Adaptive Critic Designs and
Applications in Power Systems

Ganesh Kumar Venayagamoorthy, PhD

Associate Professor of Electrical and Computer Engineering
& Director of Real-Time Power and Intelligent Systems Laboratory

University of Missouri-Rolla, USA

http://www.umr.edu/~ganeshv
www.ece.umr.edu/RTPIS

gkumar@ieee.org

106
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Adaptive Critic’s Based
Neurocontrol

• The Adaptive critic designs have the potential of
replicating critical aspects of human intelligence:
- ability to cope with a large number of variables in
parallel, in real time, in a noisy nonlinear non-
stationary environment.

• The ACDs show a family of promising methods to solve
optimal control problems.

• The origins of ACDs are ideas synthesized from dynamic
programming, reinforcement learning and backpropagation.

107
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

What is Reinforcement Learning?

• Learning from interaction – theories of learning
and intelligence.

• Learning is an active process.
• Goal-oriented learning than other approaches

of ML.
• Learning about, from, and while interacting with

an external environment
• Learning what to do—how to map situations to

actions—so as to maximize a numerical reward
signal

108
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Reinforcement Learning
• Reinforcement learning is defined by Barto as follows:

If an action taken by a learning system is followed by a satisfactory
state of affairs, then the tendency of the system to produce that
particular action is strengthen or reinforced. Otherwise, the tendency
of the system to produce that action is weaken.

Reinforcement Learning is a computational approach to learning
whereby an agent tries to maximize the total amount of reward it
receives when interacting with a complex, uncertain environment.

• There are two types of reinforcement learning: non-associative and
associative.

• The simplest and most frequently used reinforcement learning
methods is the Q – learning (Watkins).

• Reinforcement learning control system may be used where the correct
actions are not known.

109
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR
Dynamic Programming

The basic concept of all forms of dynamic
programming can be summarized as follows:

Dynamic Programming

Utility
Function (U)

Model of
Reality (F)

Secondary Utility (J)

110
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR Dynamic Programming
Bellman’s equation of dynamic programming

Approximate dynamic programming is obtained using
a neural network called ‘the Critic network’ to
approximate the J - function.

∑
∞

=
+γ=

0k

k)kt(U)t(J

111
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

ACDs as Supervised and
Reinforcement Learning

Types of primary reinforcement:
• 1) Explicit targets for system outputs are provided at

every step.
• 2) Explicit differentiable cost as a function of system

variables is provided at every step.
• 3) A graded cost is provided at each step but explicit

relationship with system states is not given.
• 4) Ungraded reinforcement is provided when appropriate,

e.g. binary outcome at the end of a game.

ACDs are supervised learning systems in the cases of (1) & (2).
They are reinforcement learning systems in the cases of (3) & (4).
Critic may be thought of as a transformer of cases (3) & (4)
to case (2).

112
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Adaptive Critic Designs
A family of adaptive critic designs was proposed by
Werbos in 1977 as a new optimization technique
combining concepts of reinforcement learning and
approximate dynamic programming.
The adaptive critic method determines optimal control
laws for a system by successively adapting two neural
networks, namely an Action neural network (which
dispenses control signals) and a Critic neural network
(which learns the desired performance index for some
function associated with the performance index).
These two neural networks approximate the Hamilton-
Jacobi-Bellman equation associated with optimal control
theory.

113
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Summary: The goals of
Intelligent Control with ACDs

• Adaptive Critic designs, which are rarely studied but
very powerful design techniques that give brain-like
intelligence to controllers

- MIMO system
- Nonlinear system
- Model uncertainties
- Random disturbance
- Learns over time
- Adaptive
- Robustness (Hamilton-Jacobi-Bellman equation,
basic equation of stochastic optimal control)

114
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

To actually build an adaptive critic control
system, the following will have to be decided:

Exactly what the Critic network is supposed to
approximate, and how it will adapted;

How the Action network will be adapted in response to
the information coming out of the Critic network.

Adaptive Critic Designs

115
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

ANN Controller based on Adaptive
Critic Designs - HDP

ACTION
Neural

Network

CRITIC
Neural

Network

J(t)

1

PLANT

MODEL
Neural

Network

TDL

TDL

A(t)

Yref

)(

)(
^

tY

tJ

Δ∂

∂)(
^

tYΔ

Y(t)
Δ Y(t)

)(
)(

tA
tJ

∂
∂

TDL

[A(t-1), A(t-2), A(t-3)]

[Δ Y(t-1), Δ Y(t-2), Δ Y(t-3)]

116
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Critic Neural Network

∑
∞

=
+=

0k

k))kt(Y(U))t(Y(J γ

CRITIC
Neural Network

Target =
γ J(Δ Y(t+1)) + U(Δ Y(t))

U(Δ Y(t))J(Δ Y(t+1))

Σ

)(
^

1tY +Δ

)(
^

tYΔ

)(
^

1tY −Δ

CRITIC
Neural Network)(

^
1tY −Δ

)(
^

tYΔ

)(
^

2tY −Δ

J(Δ Y(t))

error

+

-

117
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

DHP Critic Network Adaptation

PLANTTDL

ACTION
Neural

Network
MODEL
Neural

Network

CRITIC
Neural

Network

CRITIC
Neural

Network

TDL

MODEL
Neural

Network

Yref
Y(t)

A(t)
)(
)(

tA
tU

∂
∂

λ (t+1)
)(

^
1tY +Δ

)(
^

tYΔ

)(
^

1tY −Δ

TDL
TDL

Σ

)(
^

tYΔ

)(
^

1tY −ΔTDL
TDL)(

^
2tY −Δ

++
)(

)(
)(

^
1tY

1tJ
1t

+∂

+∂
=

+

Δ

λ

)(

)(
)(

^
1tY

1tJ
1t

+∂

+∂
=

+

Δ

λ

Σ

γ

)(
)(
tY
tU

Δ∂
∂

+
-
-
-

EC2(t)

118
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Action Network Adaptation

CRITIC

ACTION

Neuro-
Identifier

PLANT

∑

TDL

TDL

)1t(Y

)1t(J)1t(^
+Δ∂

+∂
=+λ

))1t(),t(),1t((Y
^

−+Δ

)1t(+λ

γ

)t(Y

)t(A

refY

)t(YΔ)t(A
)t(U

∂
∂

)t(A
)1t(J

∂
+∂

01
=

∂
+∂

+
∂
∂

=
∂
∂ ++

)t(A
)t(J

)t(A
)t(U

)t(A
)t(J γ

119
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Critic Network’s Training Cycle

The following operations are repeated N times:

1. Initialize t = 0 and ΔY(0)
2. Compute output of the critic network at time t, J(t) = fC(ΔY(t), WC)
3. Compute output of the action network at time t,

A(t) = fA(ΔY(t), WA)
4. Compute output of the model network at time t+1,

ΔY(t+1) = fM(ΔY(t),A(t), WM)
5. Compute the output of the critic network at time t+1,

J(t+1) = fC(ΔY(t+1), WC)
6. Compute the critic network error at time t,

Ec1(t) = J(ΔY(t) - γJ(ΔY(t+1) - U(t))
U(t) = [4 ΔV(t) + 4 ΔV(t-1)+16 ΔV(t-2)]2+ [0.4 Δ(t)+ 0.4 Δ(t-1)

+ 0.16Δ(t-2)] 2

7. Update the critic network’s weights using the backpropagation
algorithm

8. Repeat steps 2 to 7.

120
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Power System Control Application

G K Venayagamoorthy, et al, Approximate Dynamic Programming for Power Systems Control, in the Handbook of Learning and Approximate
Dynamic Programming, Edited by J Si, A G Barto, W B Powell, D Wunsch, Wiley-IEEE press, July 2004, ISBN: 0-471-66054-X.

121
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Power System Control Application

Venayagamoorthy GK, Harley RG, Wunsch DC, “Implementation of Adaptive Critic Based Neurocontrollers for Turbogenerators in a
Multimachine Power System”, IEEE Transactions on Neural Networks, vol. 14, no. 5, September 2003, pp. 1047 - 1064.

122
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Power System Control Application

Venayagamoorthy GK, Harley RG, Wunsch DC, “Implementation of Adaptive Critic Based Neurocontrollers for Turbogenerators in a
Multimachine Power System”, IEEE Transactions on Neural Networks, vol. 14, no. 5, September 2003, pp. 1047 - 1064.

Venayagamoorthy GK, Harley RG, Wunsch DC, “Comparison of Heuristic Dynamic
Programming and Dual Heuristic Programming Adaptive Critics for Neurocontrol of
a Turbogenerator”, IEEE Transactions on Neural Networks, vol. 13, no. 3, May
2002, pp. 764 - 773.

123
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Power System Control Application

G K Venayagamoorthy, et al, Approximate Dynamic Programming for Power Systems Control, in the Handbook of Learning and Approximate
Dynamic Programming, Edited by J Si, A G Barto, W B Powell, D Wunsch, Wiley-IEEE press, July 2004, ISBN: 0-471-66054-X.

124
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Power System Control Application

G K Venayagamoorthy, et al, Approximate Dynamic Programming for Power Systems Control, in the Handbook of Learning and Approximate
Dynamic Programming, Edited by J Si, A G Barto, W B Powell, D Wunsch, Wiley-IEEE press, July 2004, ISBN: 0-471-66054-X.

125
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Multimachine Power System

Infinite
Bus

1

2

3

5

6

j0.50j0.25

G1

Micro-Turbine
Exciter

Vref1

Pref1

G2

Micro-Turbine
Exciter

Vref2

Pref2

j0.75

Governor

Σ

AVR

Δω2

Vt2

Governor

AVR
Vt1

Δω1

Σ

0.0120.01

0.022
PSS Σ+

+

Δω1 Vpss
VE1

VE2

ΔPref1

ΔPref2

Micro #1

Micro #2

S3

4

j0.25 j0.75

S2

0.0220.01 j0.50.012

7

Load

S1

Pm1

Pm2

126
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR
Multimachine Power System

Infinite
Bus

1

2

3

5

6

j0.50j0.25

G1

Micro-Turbine
Exciter

Ve1

Pref1

G2

Micro-Turbine
Exciter

Vref2

Pref2

j0.75

Governor

Σ

AVR

Δω2

Vt2

ΔVt1

Σ

0.0120.01

0.022

Σ+

+

Δω1

VE1

VE2

ΔPref1

ΔPref2

DHP
Neurocontroller

Ve1Δ

Micro #2

Micro #1
1 4

j0.25 j0.75

S2

0.0220.01 j0.50.012

7

Load

S1

Pm1

Pm2

127
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Micro-Machine Research Laboratory at the
University of Natal, Durban, South Africa

128
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Micro-Machine Research Laboratory at the
University of Natal, Durban, South Africa

December 2000/ January 2001

129
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Machine #1: Trans. Line Impedance
Increase

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
20

25

30

35

40

Time in seconds

Lo
ad

 a
ng

le
 in

 d
eg

re
es

DHP_CONV

CONV_PSS_CONV
CON_CONV

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5

0.97

0.98

0.99

1

1.01

Time in seconds

Te
rm

in
al

 v
ol

ta
ge

 in
 p

u

DHP_CONV
CONV_PSS_CONV

CONV_CONV

130
© Ganesh Kumar Venayagamoorthy, IEEE Symposium Series on Computational Intelligence, April 1-5, 2007, Honolulu, USA

UMR

Machine #2: Trans. Line Impedance Increase

10 12 14 16 18 20 22

30

35

40

Time in seconds

Lo
ad

 a
ng

le
 in

 d
eg

re
es

DHP_CONV

CONV_PSS_CONV
CON_CONV

