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Basic Control Design Problem

Controller Plant

Controller designer needs following:
• Problem domain specifications
• Design objectives / Criteria for “success”
• All available a priori information about

Plant and Environment
High Level Design Objective: “Intelligent”

 
Control
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In this tutorial, we focus on
Adaptive Critic Method (ACM)

A methodology for designing an (approximately) optimal 
controller for a given plant according to a stated 
criterion, via a learning process.

ACM may be implemented using two neural networks (also 
Fuzzy systems):
---> one in role of controller, and
---> one in role of critic.
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Simple, 1-Hidden Layer, Feedforward
Neural Network [ to implement y=f(x) ]
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Overview of Adaptive Critic method
User provides the

Design objectives / Criteria for “success”
through a Utility Function, U(t) (local cost).
Then, a new utility function is defined (Bellman Eqn.), 

[“cost to go”]

which is to be minimized [~ Dynamic Programming].

[We note:                                    Bellman Recursion]
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Family of Adaptive Critic Methods:
The critic approximates either J(t) or the 
gradient of J(t)

 
wrt state vector R(t) [   J(R)]

Two members of this “family”:
•� Heuristic Dynamic Programming (HDP)

Critic approximates J(t)
(cf. “Q Learning”)

•� Dual Heuristic Programming (DHP)
Critic approximates    J(R(t)) ≡

 
λ(t)

[Today, focus on DHP]
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May describe DHP training process via 
two primary feedback loops:
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Desire a training “Delta Rule”

 

for wij to minimize cost-to-go J(t).

Obtain this via                   and the chain rule of differentiation.

To develop feel for the weight update rule, consider  a 
partial block diagram and a little math (discrete time):
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The weights in controller NN are updated with 
objective of minimizing J(t):

where 

and   

and 

Call this term (to be output of critic)

( )( )
( )i j

ij

J tw t lcoef
w t
∂

Δ = − ⋅
∂

1

( )( ) ( )
( ) ( )

a
k

ij k ijk

u tJ t J t
w t u t w=

∂∂ ∂
= ⋅

∂ ∂ ∂∑

( ) ( ) ( 1)
( ) ( ) ( )k k k

J t U t J t
u t u t u t
∂ ∂ ∂ +

= +
∂ ∂ ∂

1

( 1)( 1) ( 1)
( ) ( 1) ( )

n
s

k s ks

R tJ t J t
u t R t u t=

∂ +∂ + ∂ +
= ⋅

∂ ∂ + ∂∑
( 1)s tλ +



11

NW Computational Intelligence LaboratoryNW Computational Intelligence Laboratory

It follows that Controller
 

training is based on:

Similarly, Critic
 

training is based on:

[Bellman Recursion & Chain Rule used in above.]
Plant model is needed to calculate partial derivatives 
for DHP …
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Key ADP Process Parameters

Specification of:

• state variables
• size of NN structure, connection pattern, and

type of activation functions 
• learn rate of weight update rules
• discount factor (gamma of Bellman Equation)
• scaling of variable values (unit hypersphere)
• “lesson plan”

 
for training

•
•
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Pole-Cart Benchmark Problem
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Experimental Procedure (“lesson plan”):
A. Train 3 passes through sequence

(5, -10, 20, -5, -20, 10) [degrees from vertical].
Train 30 sec. on each angle.

B. Accumulate absolute values of U: C(1), C(2), C(3).
C. Perform TEST pass through train sequence

(30 sec. each angle). Accumulate U values: C(4).
D. Perform GENERALIZE pass through sequence

(-23, -18, -8, 3, 13, 23) [degrees from vertical]

 

and
accumulate U values: C(5).

E. Perform GENERALIZE pass through sequence
(-38, -33, 23, 38) [degrees from vertical]

 

and 
accumulate U values: C(6).
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STRATEGIES TO SOLVE EARLIER EQUATIONS: 
Strategy 1.

 
Straight application of the equation.

Strategy 2.
 

Basic 2-stage process [“flip/flop”].
[e.g., Santiago/Werbos, Prokhorov/Wunsch]

During stage 1, train criticNN, not actionNN;
During stage 2, train actionNN, not criticNN.

Strategy 3.
 

Modified 1st stage of 2-stage process.
While train criticNN during stage 1, keep
parameters constant in module that
calculates critic’s desired output (R).
Then adjust weights all at once at end of
stage 1.

Strategy 4.
 

Single-stage process, using
modifications introduced in Strategy 3.
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Progress of training process under each of the strategies.
[ Pole angles during the first 80 sec. of training. Note how 
fast Strategies 4a & 4b learn.]
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Pole angles during part of test sequence. 
[Markings below and parallel to axis are plotting artifacts.]

Controller Responses to Disturbances



20

NW Computational Intelligence LaboratoryNW Computational Intelligence Laboratory

The following table lists the value of the performance 
measure for each DHP train strategy, averaged over 4 
separate training runs.

1        2a      2b /3b      3a           4a         4b
C(1)  368     740       883        209        107       160
C(4)      3.2      3.1        2.9         2.8         2.4       2.2
C(5)      5.1      7.9        7.4         7.5         6.2       5.5
C(6)    30.5    24.1      25.4       20.7       14.5      14.0

We observe in this table that strategies 4a & 4b 
converge the fastest

 
[lowest value of C(1)], and also 

appear to yield the best controllers
 

[lowest values in 
C(4), C(5) & C(6) rows]. We note separately that 
strategy 1 (when it converges) yields controllers on par 
with the better ones.
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S1: Simultaneous/Classical Strategy
S2: Flip-Flop Strategy
S4: Shadow Critic Strategy

Introduce a copy of the criticNN in the lower loop.
Run both loops simultaneously. Lower loop: train the copy

 

for an epoch;  
upload the weight values from copy (called shadow critic) into the active
criticNN; repeat.

S5: Shadow Controller Strategy
Introduce a copy of the actionNN in the upper loop.
Run both loops simultaneously. Upper loop, train the copy

 

for an epoch;
upload the weight values from copy (called shadow controller) into the
active actionNN, repeat.

S6: Double Shadow Strategy
Make use of the NN copies in both training loops.
Run both loops simultaneously. Both loops: train the copies

 

for an epoch;
upload the weight values from the copies into their respective active NNs.

Lendaris, G.G., T.T. Shannon &

 

A. Rustan (1999), "A Comparison of Training Algorithms for DHP 
Adaptive Critic Neuro-control," Proceedings of International Conference on Neural Networks’99 
(IJCNN'99), Washington,DC IEEE Press 
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Autonomous Vehicle Example
(Two-axle terrestrial vehicle)

Objective: Demonstrate design via DHP
(“from scratch”) of a steering controller
which effects a Change of Lanes (on a
straight highway).

Controller Task: Specify sequence of
steering angles to effect accelerations
needed to change orientations of vehicle
velocity vector.



23

NW Computational Intelligence LaboratoryNW Computational Intelligence Laboratory

Design Scenarios --
 

general:

Maintain approximately constant forward
velocity during lane change.
Control angular velocity of wheel.
Thus, Controller needs 2 outputs:

1.) Steering angle
2.) Wheel rotation velocity
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Major unknown for controller:
Coefficient of Friction (cof)
between tire/road at any point in time.

It can change abruptly
(based on road conditions).

Requires Robustness and/or fast
on-line adaptation.
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Tire side-force/side-slip-angle as a function of COF
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Assume on-board sensors
for constructing state information

Only 3 accelerometers needed:
--

 
x direction accel. of chassis

--
 

lateral accel. at rear axle
--

 
lateral accel. at front axle

Plus load cells at front & rear axles
(to give estimate of c.g. location)

[Simulation used analytic proxies]
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Criteria for various
Design Scenarios:

1. Velocity Error
• reduce to zero.

2. Velocity Rate
• limit rate of velocity corrections.

3. Y-direction Error
• reduce to zero.

4. Lateral front axle acceleration
• re. “comfort”

 
design specification.

5. Friction Sense
• estimate closeness to knee of cof curves.
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Utility Functions for
three Design Scenarios:

[different combinations of above criteria]
1.U(1,2,3)
2. U(1,2,3,5)
3. U(1,2,3,4,5)

All applied to task of designing controller
for autonomous 2-axle terrestrial vehicle.
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Design Scenario 2.

Add Criterion 5 (“friction sense”) in U2.
This is intended to allow aggressive lane
changes on dry pavement,

PLUS
make lane changes on icy road 
conditions as aggressively as the icy 
road will allow.
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Generalize Test: Ice patch at point where wheel angle is greatest in
dry pavement case, retrained with coefficient modified.  
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Conclusions from Utility Function Expts.
Controller Designs resulting via DHP satisfy intuitive 
sense of being “good”.
Control Engineer knows that controller design requires 
careful specification of objective, and that as change 
design criteria, controllers change.
For DHP, control objectives are contained in the Utility 
Function. 
The DHP process embodied the different requirements 
for the three design scenarios in qualitatively distinct 
controllers --

 
all yielding intuitively “good”

 
results, 

according to the design constraints.
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Conclusions from Utility Function 
Expts., cont.

“Of particular interest to the present 
researchers is the ability of the DHP method to
accept design criteria crafted into the Utility
function by the human designers, and to then
evolve a controller design whose response
“looks and feels”

 
like one a human designer

might have designed.”
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Expanded task for Autonomous 
Vehicle Controller: 

Additional road condition of 
encountering an ice patch while doing 
lane change: also, accommodate side-

 wind load disturbances.
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Aircraft Control Augmentation System
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System configuration during DHP Design of 
Controller Augmentation System
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Pilot stick-x doublet signal

 

(arbitrary scale in the Figure), and roll-rate responses of 3 
aircraft:
LoFLYTE®

 

w/Unaugmented control,
LoFLYTE®

 

w/Augmented Control, and LoFLYTE®*.
(Note: Responses of latter two essentially coincide.)
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Stick-x doublet: pilot’s stick signal vs. augmented signal
(the latter is sent to aircraft actuators)
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Roll-rate error (for above stick-x signal)
between LoFLYTE®* and LoFLYTE®

 

w/Unaugmented Control, and 
between LoFLYTE®* and LoFLYTE®

 

w/Augmented Control signals
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• Blue:  LoFLYTE®
 

w/ Unaugmented
 

control
• Red:   LoFLYTE®

 
w/Augmented Control

• Black: LoFLYTE®* 

Roll
1
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• Blue:  LoFLYTE®
 

w/ Unaugmented
 

control
• Red:   LoFLYTE®

 
w/Augmented Control

• Black: LoFLYTE®* 

Roll
2
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Pitch-rate error (for above stick-x signal) 
between LoFLYTE®* and LoFLYTE®

 

w/Unaugmented Control, and 
between LoFLYTE®* and LoFLYTE®

 

w/Augmented Control signals.
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Yaw-rate error (for above stick-x signal)
between LoFLYTE®* and LoFLYTE®

 

w/Unaugmented Control, and
between LoFLYTE®* and LoFLYTE®

 

w/Augmented Control signals.
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Augmentation commands for stick-y and pedal that the controller learned to
provide to make the induced a) pitch (stick-y) and b) yaw (pedal) responses
of LoFLYTE®

 

match those

 

of LoFLYTE®*
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• Blue:  LoFLYTE®
 

w/ Unaugmented
 

control
• Red:   LoFLYTE®

 
w/Augmented Control

• Black: LoFLYTE®* 

Pitch 
w/ 
cg 
Shift
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Conclusions re. Control 
Augmentation Example:

Basic motivation behind this work is the 
desire to ultimately generate a non-linear 
controller that has control capabilities 
equivalent to that of an “experienced 
pilot.”

Successful base demonstration  was 
presented here.
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Perform search over Criterion Function 
(J function) Surface in Weight (State) Space 
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