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Introduction
• Complex problem domains like Landmine Detection, ATR, 

Handwriting Recognition, etc

• Need multiple features, algorithms, sensors to resolve ambiguity

• Uncertainty abounds in these situations

• We Need Models and Calculi to Manage Uncertainty in Computational 
Systems for Algorithm/Sensor Fusion

• Here, we discuss Fuzzy Set Theory and Fuzzy Logic as the underlying 
fusion technology
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LADAR Range Image

Humanitarian Demining
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Pattern Recognition

• Find Meaningful Associations Among Representations 
of Objects
– Assign Class Labels to New (Unknown) Samples

• Supervised Learning
– Have Labeled Training Data to “Learn”the Assignment 

Function
• Bayes Decision Theory,
• MLP Neural Networks, …

• Unsupervised Learning
– Find “Natural” Groups Within a Complex DataSet

• Clustering,
• SOFM, etc
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How We’d Like the “World” to Be
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More Likely How It Is!

decision 
boundary 
is not 
crisp

feature 1

 

fe
at

ur
e 

2Need to 
Model and 
Manage the 
Uncertainty
in the Data



Electrical and Computer Engineering The University of Missouri - Columbia

Class Membership Ambiguity

• To What Chacter Classes Do the Following Cursive Examples 
Belong?

• Can We Make a Precise Assignment Here for Use in  a 
Handwritten Word Recognition System?
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Class Membership Ambiguity

• Context is Needed to Resolve Ambiguity
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Another Look at Handwriting Recognition

Pixel Patterns

Assignment is 
not Unique

Need to Allow Multiple Hypotheses for Character Class Assignment

Principle of Least Committment
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Uncertainty in Class "A" Definition

All are perfectly good A’s
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Fuzzy Set Theoretic Solutions Support the 
Two Principles of David Marr 

for the 
Design of Intelligent (Vision) Algorithms:

Principle of Least Commitment

Don't do something that may later have to be undone

"If the Principle of Least Commitment has to be disobeyed, one is 
either doing something wrong or something very difficult"
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Marr’s Second Principle

Principle of Graceful Degradation

Degrading the data will not prevent the delivery of at least 
some of the answer

Algorithms Should Be Robust

Processes should possess some degree of Continuity
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Fuzzy Confidence in Pattern Recognition

• Many (most) pattern recognition algorithms can be “softened”

• Advantage comes from combination of multiple features

• Example in Land Mine Detection using 3-D volumetric GPR data

– Fuzzy prototypes for mines/background developed
• Based on idea that a hyperbola in radar should exist for idea mine

– Confidence assigned in 3 space, aggregated and projected to 
surface
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Simple Fuzzy Set Approach to Landmine Detection

OLD ALGORITHM MU ALGORITHMOLD ALGORITHM MU ALGORITHM

y (down-track)

x
(cross-track)

z (Depth)

Three dimensional 
Ground Penetrating 
Radar

DECREASE False Alarms
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Simple Fuzzy Set Approach to Landmine Detection

Increased Detections (Verified through Blind Tests)

Plastic Land MinePlastic Land Mine

OLD ALGORITHM MU ALGORITHM
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Information Fusion

• Wald gave a definition of information fusion
“Information Fusion is a formal framework in which are 
expressed means and tools for the alliance of data originating 
from different sources”.

• The different sources of information 
Different Sensor Systems
Different classifiers

Statistical
Deterministic
Fuzzy

Different features for the same classifier
Human Intelligence
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What Fusion methods will we discuss?

• Fuzzy Integrals

– Non-linear combination of information source confidence with 
(possibly subjective) estimates of worth of subsets of the 
information sources

– Will consider numeric and linguistic (higher order) fusion

• Fuzzy Logic

– Rule-based approaches, attempting to model human decision making
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Fuzzy Integrals

• Sources of information in a set X (sensors, features, algorithms, etc.)

• Worth of sources comes from a Fuzzy Measure:    g: 2X → [0,1]

– g(φ) = 0  and g(X) = 1
– g(A) ≤ g(B) if A ⊆ B
– If {Ai} is an increasing sequence of subsets of X, then
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Fuzzy Integrals

• A fuzzy measure g is called a Sugeno measure (g
λ
-fuzzy measure) if 

additionally:

• For any Sugeno fuzzy measure λ can be uniquely determined for a 
finite set X by solving 

• where X = {x1, …, xn} and gi = g({xi})  interpreted as the (possibly 
subjective) importance of the single information source xi in 
determining the evaluation of a class hypothesis

,BAX with  B A, all For φ=∩⊆
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Where do the fuzzy measures come from?

• Heuristic assignment
– easier for λ-measures:  Only need to specify “worth” of each 

source

• Direct training of the densities
– Reward/punishment approach
– Genetic algorithms

• Optimize entire measure for Choquet integral via Quadratic 
Programming – more on this later
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The Sugeno Fuzzy Integral

• Let X be a finite set of information sources, h:X→[0,1] a partial 
evaluation function, and g:2X→[0,1] a fuzzy measure

• The Sugeno fuzzy integral of h with respect to g is

where

• The Best Pessimistic Agreement between evidence and the worth 
of the evidence
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The Sugeno Fuzzy Integral

• Since X is finite, re-order X so that

• Then the Sugeno Fuzzy Integral is

where

• The measures of these n subsets can be found recursively for λ-measures

• Problem: Not a true extension of Lebesgue integral (if measure is 
additive)
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Choquet Fuzzy Integral
• Let X={x1,…,xn}, g be a fuzzy measure and h: X→[0, 1]

• Finite Choquet Integral

• where h(xn+1) = 0, g(X0) = 0, h(x1) ≥ h(x2) ≥ … ≥ h(xn) and 
Xi = {x1, …, xi}

• Looks like a linear combination, but depends on the sort
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Fuzzy Integrals for Image Processing

• Both Sugeno and Choquet fuzzy integrals used for non-linear 
image filtering

• Can implement morphological filters, all linear and order statistic 
filters, all linear combination of order statistic filters, etc.

• Used instead of means and variances for “size-contrast” filters

• Used to segmentation and to fuse multiple detectors
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Choquet Integrals in LADAR ATR

Original

Scaled (for Viewing)

Preprocessed by Choquet Filter
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Detector 1 Detector 2

Detector 3

Keep detections up but 
lower false alarms

Thresholded and DilatedChoquet Fusion
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Information Fusion for Demining
Fusing Outputs of Multiple Algorithms on GPR
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Numeric Fusion on MU Signature Library

Improvement given by Algorithm Fusion with Choquet and Sugeno Fuzzy Integrals

Reduction in False Alarms over Line-Based ATR (One Basic ATR)
DETRANGE       LINE  CHOQ        SUG CHOQ_RED SUG_RED

206-207 82 97 ND -18% NA
187-193 42 27 27 36% 36%
183-186 40 22 24 45% 40%
181-183 32 22 24 32% 26%

AVERAGE REDUCTION IN FALSE ALARM     24% 34%

ND = No detections in that range
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Numeric Fusion on MU Signature Library

Reduction in False Alarms over Gradient-Based ATR
(Another Basic Detection Algorithm)

DETRANGE     GRAD    CHOQ      SUG      CHOQ_RED       SUG_RED

206-207 82 97 ND -18% NA
201-203 64 67 42 -4% 35%
198-199 57 45 36 22% 37%
195-197 54 37 ND 31% NA
191-193 52 ND 27 NA 48%
187-189 50 27 ND 46% NA
181-183 50 22 18 56% 64%

AVERAGE REDUCTION IN FALSE ALARMS   22% 46%

ND = No detections in that range
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Minimum Classification Error for Information Fusion
Hot off the Press!

Mendez-Vazquez, A., Gader, P., Keller, J., and Chamberlin, 
K., “Minimum classification error training for Choquet

integrals with applications to landmine detection”,         
IEEE Transactions on Fuzzy Systems, in Press, 2007
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Choquet Integral for Fusion

• Potential Problem when used for classification
Fusion of evidence for each class is treated independently
Measures are learned for each class

• Provide target values for each intgral
Class-Integral values are not directly comparable
Similar to problem with HMMs

• Like with HMMs, use discriminative training
Train all integrals simultaneously
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The Choquet Integral

• For this development, use the alternate formulation 
• Let the original sources of information {x1, … ,xn} be 

reordered into {x(1), … ,x(n)} such that 

• Let A(i) be defined as 

• Then
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Least Squared Error (LSE)

• Error Function depends on knowing desired outputs

• Use Quadratic Programming to find the measure
• Or use Gradient Descent for Sugeno λ-measures

Need some of the derivatives to follow
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Minimum Classification Error

• In minimum classification error (MCE):
We do not consider cost functions that used fixed desired 
outputs
W depend on a function of differences of Choquet integral in 
the dissimilarity measure

Note that under this function, smaller values of
give higher confidence that ω belongs to the class i.
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Minimum classification error (Cont)

• Use a smooth, monotonically increasing function that is 
differentiable almost in everywhere
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Final Cost function

• The final cost function to be minimized looks like 

• Use Gradient Descent
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Derivative of the cost function

• Differentiating the cost function with respect to the 
densities we have 

where gi
j represent the jth density for class i.
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Problem: What is                      ?

• This is simply

• Hence, we still need to know
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jg∂
∂λThe derivative

• Using the fact that the Sugeno λ-measure has the 
property

• We have (using implicit differentiation)
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Gradient Descent for the MCE

• With the previous results, we implement a Gradient Descent 
algorithm for the MCE

• Does not need complex formulations 
Required for non-linear optimization

Egg ∇α+=
rr
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Experiments in Landmine Detection

• The Least Squared Error(LSE) and MCE training 
methods were applied to a two-class algorithm fusion 
problem in landmine detection
– The landmine detection problem involved processing Ground 

Penetrating Radar (GPR) sensor returns

• The data set contained 2422 8-dimensional samples of 
confidence values from each of the eight detection 
algorithms. The data set contained 271 mines samples 
and 2151 non-mine samples.
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Experimental Results
Least squared error sensitive to desired outputs

• ROC curves showing the sensitivity to desired outputs for LSE in the full measure.  α1 and α2
represent the desired outputs for mine and non-mines. 
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Advantages of MCE

• MCE is not sensitive to desired outputs, as is LSE

• MCE is, in general, better than the individual detectors, 
with a range of improvement between 0.44% and 65.07%

• On this data, improvement of MCE over LSE training
– Ranges between 11.06% and 37.51%

• It is possible for the Sugeno λ-measure and the general 
measure trained with LSE to be as good as the one trained 
by MCE. For this to happen, it is necessary to have a set of 
correct desired outputs!
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Experiments as a Classifier
• The MCE training was also applied to the Iris and Breast Cancer data with results in 
• K. Xu, Z. Wang, P.-A. Heng, and K.-S. Leung, “Classification by nonlinear integral 

projections,” IEEE Transactions on Fuzzy Systems, ol. 11, no. 2, pp. 187–2001, 2003

Method  Iris Data(%) Breast Cancer Data(%)
Linear 2 29
Quadratic 2.7 34.4
Nearestneighbor 4 34
Bayes independent 6.7 28.2
Bayes quadratic 16 34.4
Neuronal net 3.3 28.5
PVM rule 4 22.9
QUAD 3.3 31.5
CLMS 4 27.1
HLMS 4.7 22.6
WCIPP 4 26.2
MCE 4 22.73
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• But, sometimes numbers aren’t enough

– Confidence is High
– IR sensor is Weak
– Mine location is Around (1.5, 3.7)

• Need Higher Order Constructs

– Type II fuzzy sets and linguistic vectors
– Fuzzy logic rules
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Story from the 
Local 

Newspaper

Doctors Make 
Decisions from 

This type of 
Information

Shouldn’t 
Computers?
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Linguistic Sensor Fusion

• What if Entities to be Fused Don’t Lend Themselves to Numeric 
Representations?

– Position Estimates - Commonly Use Halos or Windows

– Confidence May Not be Known Exactly 
- varies among classifiers/sensors

• Generalize These Values to Fuzzy Sets 

– Linguistic Vectors
• Generalize halos and confidence intervals



Electrical and Computer Engineering The University of Missouri - Columbia

Linguistic Choquet Fuzzy Integral

• So, How Do We Fuse Linguistic Vectors of Sensor Output?

• Both Position Confidence and Detection Confidence

• Extend the Choquet Integral to These Vectors

• Based on Extension Principle and Decomposition Theorem of 
Fuzzy Set Theory

– Plus interval arithmetic if we use fuzzy numbers - nice fuzzy 
subsets of reals
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Background
• Extension Principle (How to extend functions from numbers to 

fuzzy sets)

• For fuzzy numbers (normal convex fuzzy subsets of the reals)

– Use interval arithmetic and the decomposition theory:

• Linguistic Vectors
– Vectors of Non-interactive Fuzzy Numbers
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Linguistic Choquet Fuzzy Integral

• Extend regular Choquet integral to a linguistic Choquet fuzzy integral 

[Grabisch94b]:

• Let h: X→ℑ([0, 1]) where ℑ([0, 1]) is a fuzzy power set of [0, 1], and

for 1 ≤ i ≤ n and 0 ≤ α ≤ 1.

• Then

where
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Linguistic Choquet Fuzzy Integral

• How to Compute Densities? Two properties:

– Property 1. The more uncertain a sensor is, the less important 
it is for the fusion

– Property 2. The further away the sensor’s detection location is 
from the true location in training data, the less important that
sensor is for the fusion
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Linguistic Choquet Fuzzy Integral

• How to Compute Densities? Two properties:

Property 1.  The more uncertain a sensor is, the less important it is for the 
fusion

– Use U-uncertainty measure[Klir95] to compute density of fuzzy 
number Aj in a particular dimension.
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Linguistic Choquet Fuzzy Integral
• Property 2. The further away the sensor’s detection location is from the 

true location in training data, the less important that sensor is for the 
fusion

– Know that

– The distance between             and is

– where β represents the actual location in a particular dimension
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Linguistic Choquet Fuzzy Integral
• The densities of fuzzy number j in a particular dimension relating to the 

distance are:

where

• The final densities of fuzzy number Aj in a particular dimension relating 
to both properties are:
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Linguistic Fusion of Real Algorithm Results

Position hit

Confidence
value

Build position fuzzy
vector for each
position hit

Build confidence
fuzzy number for
each hit

Fuse position fuzzy
vector

Fuse confidence fuzzy
number

Fusion
result

Original
confidence
map
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Linguistic Fusion Experiment

• Fuse the information from the Fuzzy ATR, the HMM and the CMSNN

– Generated from GPR data at Aberdeen site

• Threshold confidences from three algorithms

• Use the centroid of each connected component to be the hit position (x,y)

• Fuzzify each dimension of each hit location:

– 5x5 window with center at (x,y), average column-wise to get vector in 
along-track and average row-wise to get vector in cross-track

– Build normal convex fuzzy sets for these vectors

• Build the mask with the center of mask at the current hit position 

• Fuse locations inside the mask



Electrical and Computer Engineering The University of Missouri - Columbia

Example of Position Fusion
Sensor 1 Sensor 2

Fusion result
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Linguistic Fusion

• Build the confidence fuzzy number 
– Pick the maximum confidence p in corresponding 5x5 window 
– Compute standard deviation std of the confidence in that 

neighborhood 

1

membership

confidence
p

std std

• Fuse confidences corresponding to the position linguistic vectors that 
are combined at a particular “position”
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Linguistic Fusion
• Original confidence map from three algorithms on GPR data 

on Mine Lane collected at a US site

Fuzzy ATR

HMM

CMSNN
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Linguistic Fusion
• After Thresholding: The Fuzzy ATR has 6 detections and 27 false alarms, 

The HMM has 5 detections and 10 false alarms, and The CMSNN has 6 
detections and 6 false alarms

Fuzzy ATR

HMM

CMSNN
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Linguistic Fusion
• After Fusion

After Thresholding: 6 detections and 2 false alarms

Before thresholding After thresholding
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Linguistic Fusion
• Example of false alarm eliminated by fusion

Position from Fuzzy ATR Position from HMM

Position from CMSNN Position fusion result
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Linguistic Fusion

Confidence from HMMConfidence from Fuzzy ATR

Confidence fusion resultConfidence from CMSNN
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Linguistic Fusion

After multiplying the peak of confidence fusion with the 
membership of position fusion 
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Linguistic Fusion
• Example of mine that fusion can detect while one algorithm cannot

Position from Fuzzy ATR

Position from HMM hit location at 
(38,419). Considered as noise by 
HMM when scoring because there 
are only 2 pixels above threshold.

Position from CMSNN
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Linguistic Fusion

Position fusion result
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Linguistic Fusion

Confidence from Fuzzy ATR Confidence from HMM

Confidence fusion resultConfidence from CMSNN
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Linguistic Fusion

After multiplying the peak of confidence fusion with the 
membership of position fusion
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Linguistic Fusion - The Payoff
• Run on ten lanes (16 passes) from US Army temperate site
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Predictive Sensor Fusion

• Two Questions:

– Can we predict the value added by fusing  multiple sensor system
outputs together?

– Can we specify the needed characteristics of a new sensor system to 
add to an existing suite to a gain a desired improvement in 
performance?

• Approach

– Use Monte Carlo simulations based on actual data from 2 GPRs to 
study effect of adding a third senor
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Experimental Setup

• Summary results from [Rotondo98] on the position 
accuracy of GPR detection systems for two contractors 
during the Advanced Technology Demonstrations at 
Aberdeen
– We chose the on-road information generated at Aberdeen

– The data is in terms of the position error over the lanes modeled by 
a gaussian density function.  

– Hence, we have the expected performance of these two 
sensor/algorithm suites in terms of mean and standard deviation of 
position error in two dimensions.
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Predictive Fusion Experiment
• Chose position resolution from GPR on  on-road generated at 

Aberdeen

• Generate error position (e1,e2) in along-track and cross-track

• Assume the actual location is (p1,p2). The detection location is at 
(p1+e1,p2+e2)

• Fuzzify each dimension of each location using Guassian distributions, 
e.g., N(0.1,σ1) or N(0.21, σ1) etc.

 
1

w2 w2

p2+e2

1

w1 w1
p1+e1
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Predictive Fusion Experiment
• An example of the linguistic position fusion of the 2 sensor systems

• Defuzzy each fuzzy number by picking the midpoint of the core. Also, 
compute the radius of the support to represent the width of that fuzzy 
number

• Generate 2000 trials according to a given Guassian distribution.
• Collect the error and width, then compute mean and standard deviation
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Adding a “Third” System

• Changing error mean of hypothetical sensor system 3

Along-track Cross-track
Position 

resolution 
(mean(m),std

(m))

Width 
(mean(m),std

(m))

Position 
resolution 

(mean(m),std
(m))

Width 
(mean(m),std(

m))

1 (0.1,0.12) (0.12,0) (-0.06,0.21) (0.21,0)
2 (-0.1,0.1) (0.1,0) (0.04,0.08) (0.08,0)
3 (x,0.1) (0.1,0) (x,0.1) (0.1,0)

Sensor 
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Predictive Fusion Results
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Fuzzy Logic Systems

• Rule-based approaches to combine evidence

• Rules used by “intelligent” systems may not contain 

PRECISE PREDICATES

• Propositions modeled via fuzzy set theory

– Simple propositions, conjunctions, disjunctions, implication

• Rules of inference generalized to accommodate extensions from 
binary to continuous
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Basic Configuration of a Fuzzy Logic Control System
Fuzzy 

Knowledge 
Base

Fuzzification
Interface

Inference 
Engine

Defuzzification
Interface

Physical   
Plant

State Variables 
(Crisp)

Linguistic Variables 
(Fuzzy)

Linguistic Variables 
(Fuzzy)

Rules and 
Facts 

(Fuzzy)

Control Variables 
(Crisp)
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Knowledge Base contains the Translations of 
Linguistic Propositions into Fuzzy Logic Constructs

• Simple Propositions “X is A”

• Compound Propositions

Conjunctions:  “X is A  ANDAND Y is B”

Disjunctions:  “X is A  OROR Y is B”

Implications(Rules):  “IFIF X is A  THENTHEN Y is B”

• Plus, current knowledge of system parameters and choices
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Knowledge Base

• Propositions are modeled by Possibility Distributions

“Region is LONG” induces a fuzzy variable -LENGTH whose value is LONG

LONG is then described by a fuzzy set over an appropriate domain of 
discourse

1.0

0.5

Length (in pixels)40 100

µ
LONG
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Knowledge Base
Compound Propositions

X is NOT A :  Replace membership function with that of Ac

)}u(1{   )u()u( AAX c µ−=µ=µ

Conjunctions and Disjunctions  (Induces fuzzy set on pair (X,Y)):

Use your favorite Intersection and Union Operator

)v()u()v,u( BA)Y,X( µ∧µ=µX is A AND Y is B:

)v()u()v,u( BA)Y,X( µ∨µ=µX is A OR Y is B:
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Knowledge Base
Implication

Implication is more difficult:    IF X is A THEN Y is B

From Classical Logic:  “A implies B”  equivalent to   “Not A OR B”

Direct Translation:
)v()u(  )v,u( BA)Y,X( c µ∨µ=µ

)v())u(1( BA µ∨µ−=

1))v()u(1( BA ∧µ+µ−=

compatible with Lukasiewicz multivalued
logic
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Knowledge Base
Implication

There are many other translation schemes

Most Common for Control:

Correlation Min: )v()u(  )v,u( BA)Y,X( µ∧µ=µ

)v()u(  )v,u( BA)Y,X( µ×µ=µCorrelation Product:

Why?  Because they are Simple and Fast!
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Fuzzy Logic Inference

• So, Now You’ve Got

P1:  IF X is A Then Y is B

P2:       X is A’

• Want to Derive Value for Y:   (Y is B’)

Generalized Modus Ponens

Actually, Many Ways to Do This

• Interesting to Note that if all Domains are finite, this looks like    
Matrix-Vector Multiplication with SumSum replaced by UnionUnion and ProductProduct
Replaced by IntersectionIntersection
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Ingredients of a Fuzzy Logic System

• Linguistic Variables:  Angle, ∆angle, GPR Confidence, Aspect Ratio, etc. 

- Problem Dependent

• Membership Functions to Model the Meaning of Variable Values

0.05 0.2 0.5 0.7 1.0

low medium high
1.0

Typical Membership Functions
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More Ingredients

• Add a cup full of rules (the more the merrier)

IF GPR peak strength is MEDIUM AND 
GPR confidence is LOW AND 
ASPECT RATIO of the IR is NOT_MINE_LIKE

THEN
Overall_Target_Confidence is LOW

IF GPR peak strength is HIGH AND 
GPR confidence is MEDIUM AND 
ASPECT RATIO of the IR is MEDIUM_MINE_LIKE

THEN
Overall_Target_Confidence is RATHER HIGH
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How’s Inference Really Done?
• All Rules Fire to Some Degree - Produce Output Fuzzy Sets

• Output Fuzzy Sets Are “Aggregated” - Usually Added; Sometimes Maxed

• Output Value is Computed From All Outputs - Defuzzification (UGH!!!!)

IR AspectConfidence

Final Target
Confidence

GPR Peak Strength GPR Confidence IR Aspect Ratio Target Confidence

Target ConfidencePeak Strength
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Example - Describing a GPR Signature
Plastic Mine

RAW GPR ENERGY LEADING & TRAILING EDGES
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Example - Describing a GPR Signature

R1: If Energy is HIGH AND
Leading Edge is STRONG AND
Trailing Edge is STRONG

THEN
Mine Confidence is HIGH

R2: If Energy is HIGH AND
Leading Edge is MEDIUM AND
Trailing Edge is STRONG

THEN
Mine Confidence is MEDIUM

R3: If Energy is HIGH AND
Leading Edge is WEAK AND
Trailing Edge is WEAK

THEN
Mine Confidence is LOW
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Example - Describing a GPR Signature (Mine)
ENERGY LEADING TRAILING

EDGE EDGE

ALL RULES FIRE TO SOME DEGREE

CAN BE IMPLEMENTED QUICKLY WITH LUT
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Example - Describing a GPR Signature
Clutter
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Example - Describing a GPR Signature (Clutter)
ENERGY LEADING TRAILING

EDGE EDGE

Defuzzification gives low confidence



Electrical and Computer Engineering The University of Missouri - Columbia

Fuzzy Rule Bases for Image Processing
Rules use Pixel Neighborhood Characteristics to “select” strength of different 
enhancement/smoothing operators in combination 

Median Filter Fuzzy Rule BaseOriginal (with Noise)

Which one do you like best?
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Lena Noisy Median

Saint-Marc Fuzzy Rules
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Information Fusion
Fusing Outputs of Multiple Algorithms on GPR

Bruce Nelson of Geo-Centers Made the Rule Base
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Multiple Algorithm Fusion Results for Blind Tests

• Fuzzy Integrals and Fuzzy Logic Rule Base 

– Developed on Signature Library
– Fused confidence outputs from several sources
– (3 primary detectors and 2 secondary algorithms)

• Taken to the field with Geo-Centers Mobile Landmine Detection 
System

• Target Reports submitted to US Army
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Information Fusion - Rule Base
Joint with Bruce Nelson - GeoCenters

GR AD ATR LINE ATR CAN CONF TRANS
CONF

BLOB
LENGTH

SYSTEM
CONF

1 L L L L L
2 L L L L
3 L L L L
4 L L L L
5 L L L L
6 L H M M M L
7 M H M L M L
8 L M M L
9 L H M L

10 L L L M L
11 L L L M L
12 L L L M L
13 L L L M L
14 L L L M L
15 L L L M L
16 M H M
17 M M M
18 L L M L
19 M M H L M
20 M H M L M
21 H M M L M
22 M L M H
23 H H H M H
24 H H H M H
25 H H H M H
26 H H H M H
27 H L M H
28 H M M H
29 H H L M H
30 H H L M H
31 H H L H
32 H H H H H
33 M H L M M L
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Blind Test Results at U.S. Army Site

Blind Test Results (Scored by U.S. Army)

Soil Type Method Fuzzy Rules Choquet Integal Sugeno Integral

PD FAR PD FAR PD FAR
DIRT AVERAGE 75% 0.05 74% 0.06 71% 0.06
DIRT MEDIAN 73% 0.05 75% 0.06 74% 0.06

GRAVEL AVERAGE 94% 0.03 93% 0.01 93% 0.02
GRAVEL MEDIAN 93% 0.03 91% 0.01 92% 0.02

OFFRD AVERAGE 83% 0.03 77% 0.02 80% 0.02
OFFRD MEDIAN 82% 0.02 77% 0.02 82% 0.02

ALL AVERAGE 83% 0.04 80% 0.04 80% 0.04
ALL MEDIAN 86% 0.03 78% 0.02 82% 0.02
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Conclusions
Fuzzy Set Theory and Fuzzy Logic are serious tools for         
complex, ill-defined decision making problems like fusion

Not competitive, but complementary to traditional methods

Many Open Questions
Good for research activities

Keep an open mind  -- Need a Big Bag of Tools

Have Fun!
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