
Neurodynamic Optimization:
Models and Applications

Jun Wang
jwang@mae.cuhk.edu.hk

Department of Mechanical & Automation Engineering

The Chinese University of Hong Kong

Shatin, New Territories, Hong Kong

http://www.mae.cuhk.edu.hk/j̃wang

Computational Intelligence Laboratory, CUHK – p. 1/145

Outline
• Introduction

Computational Intelligence Laboratory, CUHK – p. 2/145

Outline
• Introduction
• Problem Formulation

Computational Intelligence Laboratory, CUHK – p. 2/145

Outline
• Introduction
• Problem Formulation
• Dynamic Optimization

Computational Intelligence Laboratory, CUHK – p. 2/145

Outline
• Introduction
• Problem Formulation
• Dynamic Optimization
• Exiting Approaches

Computational Intelligence Laboratory, CUHK – p. 2/145

Outline
• Introduction
• Problem Formulation
• Dynamic Optimization
• Exiting Approaches
• Neurodynamic Models

Computational Intelligence Laboratory, CUHK – p. 2/145

Outline
• Introduction
• Problem Formulation
• Dynamic Optimization
• Exiting Approaches
• Neurodynamic Models
• Design Procedure

Computational Intelligence Laboratory, CUHK – p. 2/145

Outline
• Introduction
• Problem Formulation
• Dynamic Optimization
• Exiting Approaches
• Neurodynamic Models
• Design Procedure
• Winners Take All

Computational Intelligence Laboratory, CUHK – p. 2/145

Outline
• Introduction
• Problem Formulation
• Dynamic Optimization
• Exiting Approaches
• Neurodynamic Models
• Design Procedure
• Winners Take All
• Linear Assignment

Computational Intelligence Laboratory, CUHK – p. 2/145

Outline
• Introduction
• Problem Formulation
• Dynamic Optimization
• Exiting Approaches
• Neurodynamic Models
• Design Procedure
• Winners Take All
• Linear Assignment
• Machine Learning

Computational Intelligence Laboratory, CUHK – p. 2/145

Outline
• Introduction
• Problem Formulation
• Dynamic Optimization
• Exiting Approaches
• Neurodynamic Models
• Design Procedure
• Winners Take All
• Linear Assignment
• Machine Learning
• Robot Control

Computational Intelligence Laboratory, CUHK – p. 2/145

Outline
• Introduction
• Problem Formulation
• Dynamic Optimization
• Exiting Approaches
• Neurodynamic Models
• Design Procedure
• Winners Take All
• Linear Assignment
• Machine Learning
• Robot Control
• Concluding Remarks

Computational Intelligence Laboratory, CUHK – p. 2/145

Outline
• Introduction
• Problem Formulation
• Dynamic Optimization
• Exiting Approaches
• Neurodynamic Models
• Design Procedure
• Winners Take All
• Linear Assignment
• Machine Learning
• Robot Control
• Concluding Remarks
• Future Works Computational Intelligence Laboratory, CUHK – p. 2/145

Introduction
Optimization is ubiquitous in nature and society.

Computational Intelligence Laboratory, CUHK – p. 3/145

Introduction
Optimization is ubiquitous in nature and society.

Optimization arises in a wide variety of scientific
problems.

Computational Intelligence Laboratory, CUHK – p. 3/145

Introduction
Optimization is ubiquitous in nature and society.

Optimization arises in a wide variety of scientific
problems.

Optimization is an important tool for design,
planning, control, operation, and management of
engineering systems.

Computational Intelligence Laboratory, CUHK – p. 3/145

Problem Formulation
Consider a general optimization problem:

OP1 : Minimize f(x)

subject to c(x) ≤ 0,

d(x) = 0,

wherex ∈ ℜn is the vector of decision variables,f(x)

is an objective function,c(x) = [c1(x), . . . , cm(x)]T is
a vector-valued function, and
d(x) = [d1(x), . . . , dp(x)]T a vector-valued function.

Computational Intelligence Laboratory, CUHK – p. 4/145

Problem Formulation
Consider a general optimization problem:

OP1 : Minimize f(x)

subject to c(x) ≤ 0,

d(x) = 0,

wherex ∈ ℜn is the vector of decision variables,f(x)

is an objective function,c(x) = [c1(x), . . . , cm(x)]T is
a vector-valued function, and
d(x) = [d1(x), . . . , dp(x)]T a vector-valued function.
If f(x) andc(x) are convex andd(x) is affine, then
OP is a convex programming problem CP. Otherwise,
it is a nonconvex program.

Computational Intelligence Laboratory, CUHK – p. 4/145

Quadratic Programs

QP1 : minimize
1

2
xTQx + qTx

subject to Ax = b,

l ≤ Cx ≤ h,

whereQ ∈ ℜn×n , q ∈ ℜn, A ∈ ℜm×n,
b ∈ ℜm, C ∈ ℜn×n, l ∈ ℜn, h ∈ ℜn.

Computational Intelligence Laboratory, CUHK – p. 5/145

Quadratic Programs

QP1 : minimize
1

2
xTQx + qTx

subject to Ax = b,

l ≤ Cx ≤ h,

whereQ ∈ ℜn×n , q ∈ ℜn, A ∈ ℜm×n,
b ∈ ℜm, C ∈ ℜn×n, l ∈ ℜn, h ∈ ℜn.
Whenl = 0, h = ∞, C = I, QP1 becomes a standard
QP:

QP2 : minimize
1

2
xTQx + qTx

subject to Ax = b, x ≥ 0
Computational Intelligence Laboratory, CUHK – p. 5/145

Linear Programs
WhenQ = 0, andC = I, QP1 becomes a linear
program with bound constraints:

LP1 : minimize qTx

subject to Ax = b,

l ≤ x ≤ h

Computational Intelligence Laboratory, CUHK – p. 6/145

Linear Programs
WhenQ = 0, andC = I, QP1 becomes a linear
program with bound constraints:

LP1 : minimize qTx

subject to Ax = b,

l ≤ x ≤ h

In addition, whenl = 0, andh = +∞, LP1 becomes a
standard linear program:

LP2 : minimize qTx

subject to Ax = b,

x ≥ 0

Computational Intelligence Laboratory, CUHK – p. 6/145

Dynamic Optimization
In many applications (e.g., online pattern recognition,
robot motion control, and onboard signal processing),
real-time solutions to optimization problems are
necessary or desirable.

Computational Intelligence Laboratory, CUHK – p. 7/145

Dynamic Optimization
In many applications (e.g., online pattern recognition,
robot motion control, and onboard signal processing),
real-time solutions to optimization problems are
necessary or desirable.
For such applications, classical optimization
techniques may not be competent due to the problem
dimensionality and stringent requirement on
computational time.

Computational Intelligence Laboratory, CUHK – p. 7/145

Dynamic Optimization
In many applications (e.g., online pattern recognition,
robot motion control, and onboard signal processing),
real-time solutions to optimization problems are
necessary or desirable.
For such applications, classical optimization
techniques may not be competent due to the problem
dimensionality and stringent requirement on
computational time.
It is computationally challenging when optimization
procedures have to be performed in real time to
optimize the performance of dynamical systems.

Computational Intelligence Laboratory, CUHK – p. 7/145

Dynamic Optimization
In many applications (e.g., online pattern recognition,
robot motion control, and onboard signal processing),
real-time solutions to optimization problems are
necessary or desirable.
For such applications, classical optimization
techniques may not be competent due to the problem
dimensionality and stringent requirement on
computational time.
It is computationally challenging when optimization
procedures have to be performed in real time to
optimize the performance of dynamical systems.
One very promising approach to dynamic
optimization is to apply artificial neural networks.

Computational Intelligence Laboratory, CUHK – p. 7/145

Neurodynamic Optimization
Because of the inherent nature of parallel and
distributed information processing in neural networks,
the convergence rate of the solution process is not
decreasing as the size of the problem increases.

Computational Intelligence Laboratory, CUHK – p. 8/145

Neurodynamic Optimization
Because of the inherent nature of parallel and
distributed information processing in neural networks,
the convergence rate of the solution process is not
decreasing as the size of the problem increases.

Neural networks can be implemented physically in
designated hardware such as ASICs where
optimization is carried out in a truly parallel and
distributed manner.

Computational Intelligence Laboratory, CUHK – p. 8/145

Neurodynamic Optimization
Because of the inherent nature of parallel and
distributed information processing in neural networks,
the convergence rate of the solution process is not
decreasing as the size of the problem increases.

Neural networks can be implemented physically in
designated hardware such as ASICs where
optimization is carried out in a truly parallel and
distributed manner.

This feature is particularly desirable for dynamic
optimization in decentralized decision-making
situations.

Computational Intelligence Laboratory, CUHK – p. 8/145

Existing Approaches
In their seminal work, Tank and Hopfield (1985,
1986) applied the Hopfield networks for solving a
linear program and the traveling salesman problem.

Computational Intelligence Laboratory, CUHK – p. 9/145

Existing Approaches
In their seminal work, Tank and Hopfield (1985,
1986) applied the Hopfield networks for solving a
linear program and the traveling salesman problem.

Kennedy and Chua (1988) developed a neural network
for nonlinear programming, which contains finite
penalty parameters and thus its equilibrium points
correspond to approximate optimal solutions only.

Computational Intelligence Laboratory, CUHK – p. 9/145

Existing Approaches
In their seminal work, Tank and Hopfield (1985,
1986) applied the Hopfield networks for solving a
linear program and the traveling salesman problem.

Kennedy and Chua (1988) developed a neural network
for nonlinear programming, which contains finite
penalty parameters and thus its equilibrium points
correspond to approximate optimal solutions only.

The two-phase optimization networks by Maa and
Shanblatt (1992).

Computational Intelligence Laboratory, CUHK – p. 9/145

Existing Approaches
In their seminal work, Tank and Hopfield (1985,
1986) applied the Hopfield networks for solving a
linear program and the traveling salesman problem.

Kennedy and Chua (1988) developed a neural network
for nonlinear programming, which contains finite
penalty parameters and thus its equilibrium points
correspond to approximate optimal solutions only.

The two-phase optimization networks by Maa and
Shanblatt (1992).

The Lagrangian networks for quadratic programming
by Zhang and Constantinides (1992) and Zhang, et al.
(1992).

Computational Intelligence Laboratory, CUHK – p. 9/145

Existing Approaches (cont’d)
A recurrent neural network for quadratic optimization
with bounded variables only by Bouzerdoum and
Pattison (1993).

Computational Intelligence Laboratory, CUHK – p. 10/145

Existing Approaches (cont’d)
A recurrent neural network for quadratic optimization
with bounded variables only by Bouzerdoum and
Pattison (1993).

The deterministic annealing network for linear and
convex programming by Wang (1993, 1994).

Computational Intelligence Laboratory, CUHK – p. 10/145

Existing Approaches (cont’d)
A recurrent neural network for quadratic optimization
with bounded variables only by Bouzerdoum and
Pattison (1993).

The deterministic annealing network for linear and
convex programming by Wang (1993, 1994).

The primal-dual networks for linear and quadratic
programming by Xia (1996, 1997).

Computational Intelligence Laboratory, CUHK – p. 10/145

Existing Approaches (cont’d)
A recurrent neural network for quadratic optimization
with bounded variables only by Bouzerdoum and
Pattison (1993).

The deterministic annealing network for linear and
convex programming by Wang (1993, 1994).

The primal-dual networks for linear and quadratic
programming by Xia (1996, 1997).

The projection networks for solving projection
equations, constrained optimization, etc by Xia and
Wang (1998, 2002, 2004) and Liang and Wang
(2000).

Computational Intelligence Laboratory, CUHK – p. 10/145

Existing Approaches (cont’d)
The dual networks for quadratic programming by Xia
and Wang (2001), Zhang and Wang (2002).

Computational Intelligence Laboratory, CUHK – p. 11/145

Existing Approaches (cont’d)
The dual networks for quadratic programming by Xia
and Wang (2001), Zhang and Wang (2002).

A two-layer network for convex programming subject
to nonlinear inequality constraints by Xia and Wang
(2004).

Computational Intelligence Laboratory, CUHK – p. 11/145

Existing Approaches (cont’d)
The dual networks for quadratic programming by Xia
and Wang (2001), Zhang and Wang (2002).

A two-layer network for convex programming subject
to nonlinear inequality constraints by Xia and Wang
(2004).

A simplified dual network for quadratic programming
by Liu and Wang (2006)

Computational Intelligence Laboratory, CUHK – p. 11/145

Existing Approaches (cont’d)
The dual networks for quadratic programming by Xia
and Wang (2001), Zhang and Wang (2002).

A two-layer network for convex programming subject
to nonlinear inequality constraints by Xia and Wang
(2004).

A simplified dual network for quadratic programming
by Liu and Wang (2006)

Two one-layer networks with discontinuous activation
functions for linear and quadratic programming by
Liu and Wang (2007).

Computational Intelligence Laboratory, CUHK – p. 11/145

General Design Procedure
A design procedure begins with a given objective
function and constraint(s).

The next step involves the derivation of a
neurodynamic equation which prescribes the motion
of the activation states of the neural network.

Computational Intelligence Laboratory, CUHK – p. 12/145

General Design Procedure
A design procedure begins with a given objective
function and constraint(s).

The next step involves the derivation of a
neurodynamic equation which prescribes the motion
of the activation states of the neural network.

The derivation of a neurodynamic equation is crucial
for success of the neural network approach to
optimization.

Computational Intelligence Laboratory, CUHK – p. 12/145

General Design Procedure
A design procedure begins with a given objective
function and constraint(s).

The next step involves the derivation of a
neurodynamic equation which prescribes the motion
of the activation states of the neural network.

The derivation of a neurodynamic equation is crucial
for success of the neural network approach to
optimization.

A properly derived neurodynamic equation can ensure
that the state of neural network reaches an equilibrium
and the equilibrium satisfies the constraints and
optimizes the objective function.

Computational Intelligence Laboratory, CUHK – p. 12/145

General Design Procedure
(cont’d)
In general, there are two approaches to design
neurodynamic equations.

Computational Intelligence Laboratory, CUHK – p. 13/145

General Design Procedure
(cont’d)
In general, there are two approaches to design
neurodynamic equations.

The first approach is based on an defined energy
function.

Computational Intelligence Laboratory, CUHK – p. 13/145

General Design Procedure
(cont’d)
In general, there are two approaches to design
neurodynamic equations.

The first approach is based on an defined energy
function.

The second approach is based on the existing
optimality conditions.

Computational Intelligence Laboratory, CUHK – p. 13/145

General Design Procedure
The first approach starts with the formulation of an
energy function based on a given objective function
and constraints

Computational Intelligence Laboratory, CUHK – p. 14/145

General Design Procedure
The first approach starts with the formulation of an
energy function based on a given objective function
and constraints

It plays an important role in neurodynamic
optimization.

Computational Intelligence Laboratory, CUHK – p. 14/145

General Design Procedure
The first approach starts with the formulation of an
energy function based on a given objective function
and constraints

It plays an important role in neurodynamic
optimization.

Ideally, the minimum of a formulated energy function
corresponds to the optimal solution of the original
optimization problem.

Computational Intelligence Laboratory, CUHK – p. 14/145

General Design Procedure
The first approach starts with the formulation of an
energy function based on a given objective function
and constraints

It plays an important role in neurodynamic
optimization.

Ideally, the minimum of a formulated energy function
corresponds to the optimal solution of the original
optimization problem.

For constrained optimization, the minimum of the
energy function has to satisfy a set of constraints.

Computational Intelligence Laboratory, CUHK – p. 14/145

General Design Procedure
(cont’d)
The majority of the existing approaches formulates an
energy function by incorporating objective function
and constraints through functional transformation and
numerical weighting.

Computational Intelligence Laboratory, CUHK – p. 15/145

General Design Procedure
(cont’d)
The majority of the existing approaches formulates an
energy function by incorporating objective function
and constraints through functional transformation and
numerical weighting.

Functional transformation is usually used to convert
constraints to a penalty function to penalize the
violation of constraints; e.g.,
p(x) =

∑m
i=1{[−ci(x)]+}2 +

∑p
j=1[dj(x)]2, where

[y]+ = max{0, y}.

Computational Intelligence Laboratory, CUHK – p. 15/145

General Design Procedure
(cont’d)
The majority of the existing approaches formulates an
energy function by incorporating objective function
and constraints through functional transformation and
numerical weighting.

Functional transformation is usually used to convert
constraints to a penalty function to penalize the
violation of constraints; e.g.,
p(x) =

∑m
i=1{[−ci(x)]+}2 +

∑p
j=1[dj(x)]2, where

[y]+ = max{0, y}.

Numerical weighting is often used to balance
constraint satisfaction and objective optimization;
e.g.,E(x) = f(x) + wp(x) wherew is a positive
weight. Computational Intelligence Laboratory, CUHK – p. 15/145

General Design Procedure
(cont’d)
The majority of the existing approaches formulates an
energy function by incorporating objective function
and constraints through functional transformation and
numerical weighting.

Functional transformation is usually used to convert
constraints to a penalty function to penalize the
violation of constraints; e.g.,
p(x) =

∑m
i=1{[−ci(x)]+}2 +

∑p
j=1[dj(x)]2, where

[y]+ = max{0, y}.

Numerical weighting is often used to balance
constraint satisfaction and objective optimization;
e.g.,E(x) = f(x) + wp(x) wherew is a positive
weight. Computational Intelligence Laboratory, CUHK – p. 15/145

General Design Procedure
(cont’d)
Neurodynamic equations are usually derived as the
negative gradient of the energy function:

dx(t)

dt
∝ −∇E(x(t)).

Computational Intelligence Laboratory, CUHK – p. 16/145

General Design Procedure
(cont’d)
Neurodynamic equations are usually derived as the
negative gradient of the energy function:

dx(t)

dt
∝ −∇E(x(t)).

If the enegery function is bounded blow, the stability
of the neurodynamics can be ensured.

Computational Intelligence Laboratory, CUHK – p. 16/145

General Design Procedure
(cont’d)
Second approach: Neurodynamic equations of some
recent neural networks for optimization are derived
based on optimality conditions (e.g.,
Karush-Kuhn-Tucker condition) and projection
equations.

Computational Intelligence Laboratory, CUHK – p. 17/145

General Design Procedure
(cont’d)
Second approach: Neurodynamic equations of some
recent neural networks for optimization are derived
based on optimality conditions (e.g.,
Karush-Kuhn-Tucker condition) and projection
equations.

Stability analysis is needed explicitly to ensure the
that resulting neural network is stable.

Computational Intelligence Laboratory, CUHK – p. 17/145

General Design Procedure
(cont’d)
Second approach: Neurodynamic equations of some
recent neural networks for optimization are derived
based on optimality conditions (e.g.,
Karush-Kuhn-Tucker condition) and projection
equations.

Stability analysis is needed explicitly to ensure the
that resulting neural network is stable.

All equilibria of a stable neural network satisfy the
optimality condition.

Computational Intelligence Laboratory, CUHK – p. 17/145

General Design Procedure
(cont’d)
Second approach: Neurodynamic equations of some
recent neural networks for optimization are derived
based on optimality conditions (e.g.,
Karush-Kuhn-Tucker condition) and projection
equations.

Stability analysis is needed explicitly to ensure the
that resulting neural network is stable.

All equilibria of a stable neural network satisfy the
optimality condition.

If the problem is a convex program, an equilibrium
point represents an optimal solution.

Computational Intelligence Laboratory, CUHK – p. 17/145

General Design Procedure
(cont’d)
The next step is to determine the architecture of the
neural network in terms of the neurons and
connections based on the derived dynamical equation.

Computational Intelligence Laboratory, CUHK – p. 18/145

General Design Procedure
(cont’d)
The next step is to determine the architecture of the
neural network in terms of the neurons and
connections based on the derived dynamical equation.

An activation function models important
characteristics of a neuron.

Computational Intelligence Laboratory, CUHK – p. 18/145

General Design Procedure
(cont’d)
The next step is to determine the architecture of the
neural network in terms of the neurons and
connections based on the derived dynamical equation.

An activation function models important
characteristics of a neuron.

The range of an activation function usually prescribes
the the state space of the neural network.

Computational Intelligence Laboratory, CUHK – p. 18/145

General Design Procedure
(cont’d)
The next step is to determine the architecture of the
neural network in terms of the neurons and
connections based on the derived dynamical equation.

An activation function models important
characteristics of a neuron.

The range of an activation function usually prescribes
the the state space of the neural network.

The activation function depends on the feasible region
delimited by the constraints.

Computational Intelligence Laboratory, CUHK – p. 18/145

General Design Procedure
(cont’d)
The next step is to determine the architecture of the
neural network in terms of the neurons and
connections based on the derived dynamical equation.

An activation function models important
characteristics of a neuron.

The range of an activation function usually prescribes
the the state space of the neural network.

The activation function depends on the feasible region
delimited by the constraints.

Specifically, it is necessary for the state space to
include the feasible region.

Computational Intelligence Laboratory, CUHK – p. 18/145

General Design Procedure
(cont’d)
Any explicit bounds on decision variables can be
realized by properly selecting the range of activation
functions.

Computational Intelligence Laboratory, CUHK – p. 19/145

General Design Procedure
(cont’d)
Any explicit bounds on decision variables can be
realized by properly selecting the range of activation
functions.

If the gradient-based method is adopted in deriving
the dynamical equation, then the convex energy
function results in an increasing activation function.

Computational Intelligence Laboratory, CUHK – p. 19/145

General Design Procedure
(cont’d)
Any explicit bounds on decision variables can be
realized by properly selecting the range of activation
functions.

If the gradient-based method is adopted in deriving
the dynamical equation, then the convex energy
function results in an increasing activation function.

Precisely, if the steepest descent method is used, the
activation function is equal to the derivative of the
energy function.

Computational Intelligence Laboratory, CUHK – p. 19/145

General Design Procedure
(cont’d)
Any explicit bounds on decision variables can be
realized by properly selecting the range of activation
functions.

If the gradient-based method is adopted in deriving
the dynamical equation, then the convex energy
function results in an increasing activation function.

Precisely, if the steepest descent method is used, the
activation function is equal to the derivative of the
energy function.

The last step is usually devoted to simulation to test
the performance of the neural network numerically or
physically.

Computational Intelligence Laboratory, CUHK – p. 19/145

Kennedy-Chua Network
The Kennedy-Chua network for solving OPa:

ǫ
dx

dt
= −∇f(x)−s ·h(c(x))T∇c(x)−s ·d(x)T∇d(x),

whereǫ > 0 is a scaling parameter,x ∈ ℜn is the state
vector,s > 0 is a penalty parameter,
h(r) = (h(r1), ..., h(rn))T , andh(ri) = max{0, ri}.

aM. P. Kennedy and L. O. Chua, “Neural networks for nonlinear programming,”IEEE Trans-

actions on Circuits and Systems, vol. 35, no. 5, pp. 554–562, May 1988.

Computational Intelligence Laboratory, CUHK – p. 20/145

Kennedy-Chua Network
The Kennedy-Chua network for solving OPa:

ǫ
dx

dt
= −∇f(x)−s ·h(c(x))T∇c(x)−s ·d(x)T∇d(x),

whereǫ > 0 is a scaling parameter,x ∈ ℜn is the state
vector,s > 0 is a penalty parameter,
h(r) = (h(r1), ..., h(rn))T , andh(ri) = max{0, ri}.

With a finite penalty parameters, the network is
globally convergent to a near-optimal solution to an
OP even though CP.

aM. P. Kennedy and L. O. Chua, “Neural networks for nonlinear programming,”IEEE Trans-

actions on Circuits and Systems, vol. 35, no. 5, pp. 554–562, May 1988.

Computational Intelligence Laboratory, CUHK – p. 20/145

Deterministic Annealing Net-
work
The deterministic annealing network for solving OPa:

ǫ
dx

dt
= −T (t)∇f(x)−h(c(x))T∇c(x)−d(x)T∇d(x),

whereǫ > 0 is a scaling parameter,x ∈ ℜn is the state
vector,T (t) ≥ 0 is a temperature parameter,
h(r) = (h(r1), ..., h(rn))T , andh(ri) = max{0, ri}.

aJ. Wang, “A deterministic annealing neural network for convex programming,”Neural Net-

works, vol. 7, no. 4, pp. 629-641, 1994.

Computational Intelligence Laboratory, CUHK – p. 21/145

Deterministic Annealing Net-
work
The deterministic annealing network for solving OPa:

ǫ
dx

dt
= −T (t)∇f(x)−h(c(x))T∇c(x)−d(x)T∇d(x),

whereǫ > 0 is a scaling parameter,x ∈ ℜn is the state
vector,T (t) ≥ 0 is a temperature parameter,
h(r) = (h(r1), ..., h(rn))T , andh(ri) = max{0, ri}.
If limt→∞ T (t) = 0, then the network is globally
convergent to a feasible near-optimal solution to CP.

aJ. Wang, “A deterministic annealing neural network for convex programming,”Neural Net-

works, vol. 7, no. 4, pp. 629-641, 1994.

Computational Intelligence Laboratory, CUHK – p. 21/145

Deterministic Annealing Net-
work
The deterministic annealing network for solving OPa:

ǫ
dx

dt
= −T (t)∇f(x)−h(c(x))T∇c(x)−d(x)T∇d(x),

whereǫ > 0 is a scaling parameter,x ∈ ℜn is the state
vector,T (t) ≥ 0 is a temperature parameter,
h(r) = (h(r1), ..., h(rn))T , andh(ri) = max{0, ri}.
If limt→∞ T (t) = 0, then the network is globally
convergent to a feasible near-optimal solution to CP.
If T (t) decreases gradually to 0, then the network is
globally convergent to an optimal solution to CP.

aJ. Wang, “A deterministic annealing neural network for convex programming,”Neural Net-

works, vol. 7, no. 4, pp. 629-641, 1994.

Computational Intelligence Laboratory, CUHK – p. 21/145

Primal-Dual Network
The primal-dual network for solving LP2a:

ǫ
dx

dt
= −(qTx − bTy)q − AT (Ax − b) + x+,

ǫ
dy

dt
= −(qTx − bTy)b,

whereǫ > 0 is a scaling parameter,x ∈ ℜn is the
primal state vector,y ∈ ℜm is the dual (hidden) state
vector,x+ = (x+

1), ..., x+
n)T , andx+

i = max{0, xi}.

aY. Xia, “A new neural network for solving linear and quadratic programming problems,”

IEEE Transactions on Neural Networks, vol. 7, no. 6, 1544-1548, 1996.

Computational Intelligence Laboratory, CUHK – p. 22/145

Primal-Dual Network
The primal-dual network for solving LP2a:

ǫ
dx

dt
= −(qTx − bTy)q − AT (Ax − b) + x+,

ǫ
dy

dt
= −(qTx − bTy)b,

whereǫ > 0 is a scaling parameter,x ∈ ℜn is the
primal state vector,y ∈ ℜm is the dual (hidden) state
vector,x+ = (x+

1), ..., x+
n)T , andx+

i = max{0, xi}.
The network is globally convergent to an optimal
solution to LP1.

aY. Xia, “A new neural network for solving linear and quadratic programming problems,”

IEEE Transactions on Neural Networks, vol. 7, no. 6, 1544-1548, 1996.

Computational Intelligence Laboratory, CUHK – p. 22/145

Lagrangian Network for QP
If C = 0 in QP1:

ǫ
d

dt

(

x

y

)

=

(

−Qx(t) − ATy(t) − q,

Ax − b

)

.

whereǫ > 0, x ∈ ℜn, y ∈ ℜm.

It is globally exponentially convergent to the optimal
solutiona.

aJ. Wang, Q. Hu, and D. Jiang, “A Lagrangian network for kinematic control of redundant

robot manipulators,”IEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 1123-1132, 1999.

Computational Intelligence Laboratory, CUHK – p. 23/145

Projection Network
A recurrent neural network called the projection
network was developed for optimization with bound
constraints onlya b

ǫ
dx

dt
= −x + g(x −∇f(x)).

aY.S. Xia and J. Wang, “On the stability of globally projecteddynamic systems,”J. of Opti-

mization Theory and Applications, vol. 106, no. 1, pp. 129-150, 2000.
bY.S. Xia, H. Leung, and J. Wang, “A projection neural networkand its application to con-

strained optimization problems,”IEEE Trans. Circuits and Systems I, vol. 49, no. 4, pp. 447-458,

2002.

Computational Intelligence Laboratory, CUHK – p. 24/145

Convex Program
Consider a convex programming problem without
equality constraints:

CP2 : minimize f(x)

subject to c(x) ≤ 0, x ≥ 0

wheref(x) andc(x) = (c1(x), ..., cm(x))T are
convex,m ≤ n.

Computational Intelligence Laboratory, CUHK – p. 25/145

Equivalent Reformulation
The Karush-Kuhn-Tucker (KKT) conditions for CP:

y ≥ 0, c(x) ≤ 0, x ≥ 0

∇f(x) + ∇c(x)y ≥ 0, yT c(x) = 0

According to the projection method, the KKT
condition is equivalent to:

{

h(x − α(∇f(x) + ∇c(x)y)) − x = 0

h(y + αc(x)) − y = 0,
(1)

whereh(r) = (h(r1), ..., h(rn))
T ,

h(ri) = max{0, ri}, andα is any positive constant.
Computational Intelligence Laboratory, CUHK – p. 26/145

Two-layer network
Based on an equivalent formulation, a two-layer
neural network was developed for OPa is then given
by

ǫ
d

dt

(

x

y

)

=

(

−x + g(x − (∇f(x) + ∇c(x)y))

−y + h(y + c(x))

)

,

wherex ∈ ℜn andy ∈ ℜm.
aY.S. Xia and J. Wang, “A recurrent neural network for nonlinear convex optimization subject

to nonlinear inequality constraints,”IEEE Trans. Circuits and Systems I, vol. 51, no. 7, pp. 1385-

1394, 2004.

Computational Intelligence Laboratory, CUHK – p. 27/145

Model Architecture

Computational Intelligence Laboratory, CUHK – p. 28/145

Convergence Results
For anyx(t0) andy(t0), x(t) andy(t) are continuous
and unique.u(t) ≥ 0 if u(t0) ≥ 0. The equilibrium
point solves CP2.

If ∇2f(x) +
∑n

i=1 yi∇
2ci(x) is positive definite on

ℜn+m
+ , then the two-layer neural network is globally

convergent to the KKT point(x∗, y∗), wherex∗ is the
optimal solution to CP2.

Computational Intelligence Laboratory, CUHK – p. 29/145

Two-layer Neural Network for
QP
If C = I in QP1, let α = 1 in the two-layer neural
network for CP:

ǫ
d

dt

(

x

y

)

=

(

−x + g((I − Q)x + ATy − q)

−Ax + b

)

.

whereǫ > 0, x ∈ ℜn, y ∈ ℜm,
g(x) = [g(x1), ..., g(xn)]T

g(xi) =







li xi < li
ui li ≤ xi ≤ hi

hi xi > hi.

It is globally asymptotically convergent to the optimal
solution. Computational Intelligence Laboratory, CUHK – p. 30/145

Illustrative Example

minimize
1

4
x4

1 + 0.5x2
1 +

1

4
x4

2 + 0.5x2
2 − 0.9x1x2

subject to Ax ≤ b, x ≥ 0

where

A =





1 1

−1 1

1 −3



 and b =





2

2

−2



 .

This problem has an optimal solution
x∗ = [0.427, 0.809]T .

Computational Intelligence Laboratory, CUHK – p. 31/145

Simulation Results

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

.
Ω

P
1
(−3,−2)

P
2
(−1,−3) P

3
(−2,−3) P

4
(3,−3)

P
5
(3,3)P

6
(−1,3)

P
7
(−3,2)

x*

Computational Intelligence Laboratory, CUHK – p. 32/145

Illustrative Example

minimize x2
1 + 2x1x2 + x2

2 + (x1 − 1)4 + (x2 − 3)4

subject to x ≥ 0, ci(x) ≤ 0 (i = 1, 2, 3),

where






c1(x) = x2
1 + x2

2 − 64,

c2(x) = (x1 + 3)2 + (x2 + 4)2 − 36,

c3(x) = (x1 − 3)2 + (x2 + 4)2 − 36.

This problem has an optimal solutionx∗ = (0, 1.96)T .

Computational Intelligence Laboratory, CUHK – p. 33/145

Simulation Results

−6 −4 −2 0 2 4 6

−8

−6

−4

−2

0

2

4

6

. x*

Ω

P
1
(−4,−9) P

2
(4,−9)

P
3
(6,−6)

P
4
(6,6)

P
5
(−6,5)

P
6
(−6,1)

P
7
(−6,−4)

Computational Intelligence Laboratory, CUHK – p. 34/145

Illustrative Example

minimize (x1 − x2)
2 + (x2 − x3)

2 + (x3 − x4)
4

subject to x ≥ 0, ci(x) ≤ 0 (i = 1, 2),

where

c1(x) = x2
1 + x2

2 + x2
3 + x2

4 − 9

c1(x) = (x1 − 4)2 + (x2 + 4)2 + (x3 − 1)2 + (x4 + 1)4

This problem has an optimal solution
x∗ = (3.013, 0, 0.766, 0)T .

Computational Intelligence Laboratory, CUHK – p. 35/145

Simulation Results

0 0.5 1 1.5
−3

−2

−1

0

1

2

3

4

time

t

x
1
(t)

x
3
(t)

x
2
(t), x

4
(t)

Computational Intelligence Laboratory, CUHK – p. 36/145

Dual Network for QP 2

For strictly convex QP2, Q is invertible. The dynamic
equation of the dual network:

ǫ
dy(t)

dt
= −CQ−1CTy + g

(

CQ−1CTy − y − Cq
)

+Cq + b,

x(t) = Q−1CTy − q,

whereǫ > 0.
It is also globally exponentially convergent to the
optimal solutiona b.

aY. Xia and J. Wang, “A dual neural network for kinematic control of redundant robot manip-

ulators,”IEEE Trans. on Systems, Man, and Cybernetics, vol. 31, no. 1, pp. 147-154, 2001.
bY. Zhang and J. Wang, “A dual neural network for convex quadratic programming subject to

linear equality and inequality constraints,”Physics Letters A, pp. 271-278, 2002.
Computational Intelligence Laboratory, CUHK – p. 37/145

Simplified Dual Network for
QP1

For strictly convex QP1, Q is invertible. The dynamic
equation of the simplified dual networka:

ǫ
du

dt
= −Cx + g(Cx − u),

x = Q−1(ATy + CTu − q),

y = (AQ−1AT)−1
[

−AQ−1CTu + AQ−1q + b
]

,

whereu ∈ R
n is the state vector,ǫ > 0.

It is proven to be globally asymptotically convergent
to the optimal solution.

aS. Liu and J. Wang, “A simplified dual neural network for quadratic programming with its

KWTA application,” IEEE Trans. Neural Networks, vol. 17, no. 6, pp. 1500-1510, 2006.

Computational Intelligence Laboratory, CUHK – p. 38/145

Illustrative Example

minimize 3x2
1 + 3x2

2 + 4x2
3 + 5x2

4 + 3x1x2 + 5x1x3+

x2x4 − 11x1 − 5x4

subject to 3x1 − 3x2 − 2x3 + x4 = 0,

4x1 + x2 − x3 − 2x4 = 0,

−x1 + x2 ≤ −1,

−2 ≤ 3x1 + x3 ≤ 4.

Computational Intelligence Laboratory, CUHK – p. 39/145

Illustrative Example (cont’d)

Q =















6 3 5 0

3 6 0 1

5 0 8 0

0 1 0 10















, q =















−11

0

0

−5















,

A =





3 −3 −2 1

4 1 −1 −2



 , b =





0

0



 ,

C =





−1 1 0 0

3 0 1 0



 , l =





−∞

−2



 , h =





−1

4



 .

The simplified dual neural network for solving this
quadratic programming problem needs only two
neurons, whereas the Lagrange neural network needs
twelve neurons, the primal-dual neural network needs
nine neurons, the dual neural network needs four
neurons.

Computational Intelligence Laboratory, CUHK – p. 40/145

Illustrative Example (cont’d)

0 0.2 0.4 0.6 0.8 1

x 10
−5

−80

−70

−60

−50

−40

−30

−20

−10

0

10

t (sec)

u

u
1

u
2

Transient
behaviors of the state vectoru.

Computational Intelligence Laboratory, CUHK – p. 41/145

Illustrative Example (cont’d)

0 0.2 0.4 0.6 0.8 1

x 10
−5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t (sec)

x

x
1

x
2

x
3

x
4

Transient
behaviors of the output vectorx.

Computational Intelligence Laboratory, CUHK – p. 42/145

Illustrative Example (cont’d)

−5 −4 −3 −2 −1 0 1 2 3
−6

−5

−4

−3

−2

−1

0

1

2

x∗

x1

x
2

Trajectories ofx1 andx2 from different initial states.

Computational Intelligence Laboratory, CUHK – p. 43/145

Illustrative Example (cont’d)

−3 −2 −1 0 1 2 3 4 5
−6

−5

−4

−3

−2

−1

0

1

2

x∗

x3

x
4

Trajectories ofx3 andx4 from different initial states.

Computational Intelligence Laboratory, CUHK – p. 44/145

A New Model for LP
A new recurrent neural network model with a
discontinuous activation function was recently
developed for linear programming LP1.

Computational Intelligence Laboratory, CUHK – p. 45/145

A New Model for LP
A new recurrent neural network model with a
discontinuous activation function was recently
developed for linear programming LP1.

The dynamic equation of the new model is described
as follows:

ǫ
dx

dt
= −Px − σ(I − P)g(x) + s, (3)

whereg(x) = (g1(x1), g2(x2), . . . , gn(xn))
T is the

vector-valued activation function,ǫ is a positive
scaling constant,σ is a nonnegative gain parameter,
P = AT (AAT)−1A, and
s = −(I − P)q + AT (AAT)−1b.

Computational Intelligence Laboratory, CUHK – p. 45/145

Activation Function
The following activation function is defineda: For
i = 1, 2, . . . , n;

gi(xi) =



























1, if xi > hi,

[0, 1], if xi = hi,

0, if xi ∈ (li, hi),

[−1, 0], if xi = li,

−1, if xi < li.

aQ. Liu, and J. Wang, ”A one-layer recurrent neural network with a discontinuous activation

function for linear programming,” Neural Computation, in press, 2007.

Computational Intelligence Laboratory, CUHK – p. 46/145

Activation Function (cont’d)

-

6

0 xi

gi(xi)

1

−1

li hi

Computational Intelligence Laboratory, CUHK – p. 47/145

Convergence Results
The neural network is globally convergent to an
optimal solution of LP1 with C = I, if Ω̄ ⊂ Ω, where
Ω̄ is the equilibrium point set andΩ = {x|l ≤ x ≤ h}.
The neural network is globally convergent to an
optimal solution of LP1 with C = I, if it has a unique
equilibrium point andσ ≥ 0 when(I − P)c = 0 or
one of the following conditions holds when
(I − P)c 6= 0:

(i) σ ≥ ‖(I − P)c‖p/min+
γ∈X ‖(I − P)γ‖p for

p = 1, 2,∞, or

(ii) σ ≥ cT (I − P)c/min+
γ∈X{|c

T (I − P)γ|},

whereX = {−1, 0, 1}n

Computational Intelligence Laboratory, CUHK – p. 48/145

Simulation Results
Consider the following LP problem:

minimize 4x1 + x2 + 2x3,

subject to x1 − 2x2 + x3 = 2,

−x1 + 2x2 + x3 = 1,

−5 ≤ x1, x2, x3 ≤ 5.

According to the above condition, the lower bound of
σ is 9

Computational Intelligence Laboratory, CUHK – p. 49/145

Simulation Results (cont’d)

0 0.2 0.4 0.6 0.8 1

x 10
−5

−10

−5

0

5

time (sec)

state trajectories

x
1

x
2

x
3

0 0.2 0.4 0.6 0.8 1

x 10
−5

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

time (sec)

state trajectories

x
1

x
2

x
3

0 0.2 0.4 0.6 0.8 1

x 10
−5

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

time (sec)

state trajectories

x
1

x
2

x
3

0 0.2 0.4 0.6 0.8 1

x 10
−5

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

time (sec)

state trajectories

x
1

x
2

x
3

Transient behaviors of the states with four different values of
σ ∈ {3, 5, 9, 15}. Computational Intelligence Laboratory, CUHK – p. 50/145

k Winners Take All Operation
Thek-winners-take-all (kWTA) operation is to select
thek largest inputs out ofn inputs (1 ≤ k ≤ n).

Computational Intelligence Laboratory, CUHK – p. 51/145

k Winners Take All Operation
Thek-winners-take-all (kWTA) operation is to select
thek largest inputs out ofn inputs (1 ≤ k ≤ n).

ThekWTA operation has important applications in
machine learning, such ask-neighborhood
classification,k-means clustering, etc.

Computational Intelligence Laboratory, CUHK – p. 51/145

k Winners Take All Operation
Thek-winners-take-all (kWTA) operation is to select
thek largest inputs out ofn inputs (1 ≤ k ≤ n).

ThekWTA operation has important applications in
machine learning, such ask-neighborhood
classification,k-means clustering, etc.

As the number of inputs increases and/or the selection
process should be operated in real time, parallel
algorithms and hardware implementation are
desirable.

Computational Intelligence Laboratory, CUHK – p. 51/145

kWTA Problem Formulations
ThekWTA function can be defined as:

xi = f(ui) =

{

1, if ui ∈ {k largest elements ofu},
0, otherwise,

whereu ∈ R
n andx ∈ R

n is the input vector and
output vector, respectively.

Computational Intelligence Laboratory, CUHK – p. 52/145

kWTA Problem Formulations
ThekWTA function can be defined as:

xi = f(ui) =

{

1, if ui ∈ {k largest elements ofu},
0, otherwise,

whereu ∈ R
n andx ∈ R

n is the input vector and
output vector, respectively.
ThekWTA solution can be determined by solving the
following linear integer program:

minimize −
n
∑

i=1

uixi,

subject to
n
∑

i=1

xi = k,

xi ∈ {0, 1}, i = 1, 2, . . . , n.Computational Intelligence Laboratory, CUHK – p. 52/145

kWTA Problem Formulations
(cont’d)
If the kth and(k + 1)th largest elements ofu are
different (denoted as̄uk andūk+1 respectively), the
kWTA problem is equivalent to the following LP or
QP problems:

minimize −uTx or a
2x

Tx − uTx,

subject to
n
∑

i=1

xi = k,

0 ≤ xi ≤ 1, i = 1, 2, . . . , n,

wherea ≤ ūk − ūk+1 is a positive constant.

Computational Intelligence Laboratory, CUHK – p. 53/145

The Primal-Dual Network for
kWTA
The primal-dual network based on the QP formulation
needs3n + 1 neurons and6n + 2 connections, and its
dynamic equations can be written as:










































dx
dt

= −(1 + a)(x − (x + ve + w − ax + u)+)

−(eTx − k)e − x − y + e
dy
dt

= −y + (y + w)+ − x − y + e
dv
dt

= −eT (x − (x + ve + w − ax + u)+)

+eTx − k
dw
dt

= −x + (x + ve + w − ax + u)+

−y + (y + w)+ + x + y − e

wherex, y, w ∈ R
n, v ∈ R, e = (1, 1, . . . , 1)T ∈ R

n,
x+ = (x+

1 , . . . , x+
n)T , andx+

i = max{0, xi}
(i = 1, . . . , n).

Computational Intelligence Laboratory, CUHK – p. 54/145

The Projection Network for
kWTA
The projection neural network forkWTA operation
based on the QP formulation needsn + 1 neurons and
2n + 2 connections, which dynamic equations can be
written as:

{

dx
dt

= λ [−x + f(x − η(ax − u − ve))]
dv
dt

= λ(−eTx + k).

wherex ∈ R
n, v ∈ R, λ andη are positive constants,

f(x) = (f(x1), . . . , f(xn))
T and

f(xi) =







0, if xi < 0,

xi, if 0 ≤ xi ≤ 1,

1, if xi > 1.
Computational Intelligence Laboratory, CUHK – p. 55/145

The Simplified Dual Network
for kWTA
The simplified dual neural network forkWTA
operation based on the QP formulationa needsn
neurons and3n connections, and its dynamic equation
can be written as:

{

dy
dt

= λ [−My + f((M − I)y − s) − s]

x = My + s,

wherex, y ∈ R
n, M = 2(I − eeT/n)/a,

s = Mu + ke/n, I is an identity matrix,λ andf are
defined as before.

aS. Liu and J. Wang, “A simplified dual neural network for quadratic programming with its

KWTA application,” IEEE Trans. Neural Networks, vol. 17, no. 6, pp. 1500-1510, 2006.

Computational Intelligence Laboratory, CUHK – p. 56/145

The Simplified Dual Network
for kWTA

1/a

1/a

1/a

v1

v2

· · · · · ·

vn

1/a

1/a

1/a

u1

u2

· · · · · ·

un

v

u

xn

1/ǫ
∫ u̇u

+

+

+

−

−
+

−

−

−

−

−

−

s

Mu

Computational Intelligence Laboratory, CUHK – p. 57/145

A Static Example
Let the inputs arevi = i (i = 1, 2, · · · , n),
n = 10, k = 2, ǫ = 10−8, anda = 0.25.

0 0.5 1 1.5 2

x 10
−7

−5

−4

−3

−2

−1

0

1

2

3

4

5

t (sec)

u

Computational Intelligence Laboratory, CUHK – p. 58/145

A Static Example (cont’d)
Let the inputs arevi = i (i = 1, 2, · · · , n),
n = 10, k = 2, ǫ = 10−8, anda = 0.25.

0 0.5 1 1.5 2

x 10
−7

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t (sec)

x

Computational Intelligence Laboratory, CUHK – p. 59/145

A Static Example (cont’d)

10
−11

10
−10

10
−9

10
−8

0

0.5

1

1.5

2

2.5

t (sec)

u1

a = 0.05
a = 0.1
a = 0.2
a = 0.4

Computational Intelligence Laboratory, CUHK – p. 60/145

A Static Example (cont’d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−8

0

2

4

6

8

10

12

14

16

18

20

t (sec)

u1

n = 5, a = 0.05
n = 10, a = 0.05
n = 20, a = 0.05
n = 40, a = 0.05

Computational Intelligence Laboratory, CUHK – p. 61/145

A Dynamic Example
Let inputs be 4 sinusoidal input signals (i.e.,n = 4)
vi(t) = 10 sin[2π(1000t + 0.2(i − 1)], andk = 2.

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

v

v
1

v
2

v
3

v
4

0 0.2 0.4 0.6 0.8 1

0

0.5

1

x
1

0 0.2 0.4 0.6 0.8 1

0

0.5

1

x
2

0 0.2 0.4 0.6 0.8 1

0

0.5

1

x
3

0 0.2 0.4 0.6 0.8 1

0

0.5

1

x
4

Computational Intelligence Laboratory, CUHK – p. 62/145

A One-layer kWTA Network
The dynamic equation of a new LP-basedkWTA
network model is described as follows:

ǫ
dx

dt
= −Px − σ(I − P)g(x) + s, (4)

whereP = eeT/n, s = u − Pu + ke/n, ǫ is a positive
scaling constant,σ is a nonnegative gain parameter,
andg(x) = (g(x1), g(x2), . . . , g(xn))

T is a
discontinuous vector-valued activation function.

Computational Intelligence Laboratory, CUHK – p. 63/145

Activation Function
A discontinuous activation function is defined as
follows:

g(xi) =



























1, if xi > 1,

[0, 1], if xi = 1,

0, if 0 < xi < 1,

[−1, 0], if xi = 0,

−1, if xi < 0.

Computational Intelligence Laboratory, CUHK – p. 64/145

Activation Function (cont’d)

-

6

0 xi

g(xi)

1

−1

1

Computational Intelligence Laboratory, CUHK – p. 65/145

Convergence Results
The network (4) can perform thekWTA operation if
Ω̄ ⊂ {x ∈ R

n : 0 ≤ x ≤ 1}, whereΩ̄ is the set of
equilibrium point(s).
The network (4) can perform thekWTA operation if it
has a unique equilibrium point andσ ≥ 0 when
(I − eeT/n)u = 0 or one of the following conditions
holds when(I − eeT/n)u 6= 0:

(i) σ ≥
∑ n

i=1 |ui−
∑ n

j=1 uj/n|

2n−2
, or

(ii) σ ≥ n

√

∑

n
i=1

(ui−
∑

n
j=1

uj/n)2

n(n−1)
, or

(iii) σ ≥ 2maxi |ui −
∑n

j=1 uj/n|, or,

(iv) σ ≥

√

∑

n
i=1

(ui−
∑

n
j=1

uj/n)2

min+

γi∈{−1,0,1}

{

|
∑

n
i=1

(ui−
∑

n
j=1

uj/n)γi|
} .

Computational Intelligence Laboratory, CUHK – p. 66/145

Model Comparisons

model type Eqn(s). neurons connections
Primal-dual neural network(??) 3n + 1 6n +

Projection neural network (??) n + 1 2n +

Simplified dual network (??) n 3n

Neural network herein (4) n 2n

Neural network herein (??)(??) n 3n

Table 1: Comparison of related neural networks in

terms of model complexity.

Computational Intelligence Laboratory, CUHK – p. 67/145

Simulation Results
Consider akWTA problem with input vector
ui = i (i = 1, 2, . . . , n), n = 5, k = 3.

0 0.2 0.4 0.6 0.8 1

x 10
−5

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time (sec)

x
1
,x

2

x
3
,x

4
,x

5

state trajectories

Transient behaviors of thekWTA networkσ = 6.
Computational Intelligence Laboratory, CUHK – p. 68/145

Convergence Results (cont’d)

0 0.2 0.4 0.6 0.8 1

x 10
−5

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time (sec)

state trajectories

Transient behaviors of thekWTA network withσ = 2.
Computational Intelligence Laboratory, CUHK – p. 69/145

Convergence Results (cont’d)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−7

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time (sec)

x 1

n=5,σ=4
n=10,σ=9
n=15,σ=14
n=20,σ=19

Convergence behavior of thekWTA network with
respect to different values ofn. Computational Intelligence Laboratory, CUHK – p. 70/145

Linear Assignment Problem
The linear assignment problem is to find an optimal
solution to the following linear integer programming
problem:

minimize
n
∑

i=1

n
∑

j=1

cijxij,

subject to
n
∑

j=1

xij = 1, i = 1, 2, . . . , n,

n
∑

i=1

xij = 1, j = 1, 2, . . . , n,

xij ∈ {0, 1}, i, j = 1, 2, . . . , n.

Computational Intelligence Laboratory, CUHK – p. 71/145

Linear Assignment Problem
(cont’d)
If the optimal solution to problem (71) is unique, then
it is equivalent to the following linear programming
problem:

minimize
n
∑

i=1

n
∑

j=1

cijxij,

subject to
n
∑

j=1

xij = 1, i = 1, 2, . . . , n,

n
∑

i=1

xij = 1, j = 1, 2, . . . , n,

0 ≤ xij ≤ 1, i, j = 1, 2, . . . , n.

Computational Intelligence Laboratory, CUHK – p. 72/145

Simulation Results
Consider a linear assignment problem with

C =





4 2 5

3 1.5 2

4 2.5 1



 .

A lower bound ofσ is 13.

Computational Intelligence Laboratory, CUHK – p. 73/145

Simulation Results (cont’d)
Let ǫ = 10−6 andσ = 15.

0 0.2 0.4 0.6 0.8 1

x 10
−5

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (sec)

state trajectories

x
11

,x
13

,x
22

,x
23

,x
31

,x
32

x
12

,x
21

,x
33

Computational Intelligence Laboratory, CUHK – p. 74/145

Support Vector Machine
Consider a set of training examples

{(x1, y1), (x2, y2), ..., (xN , yN)}

where thei-th examplexi ∈ Rn belongs to one of two
separate classes labeled byyi ∈ {−1, 1}.

A support vector machine provides an optimal
partition with maximum possible margin for pattern
classification.

Computational Intelligence Laboratory, CUHK – p. 75/145

SVM Primal Problem

min
1

2
wTw + c

N
∑

i=1

ξi

s.t.

{

yi[w
Tφ(xi) + b] ≥ 1 − ξi, i = 1, · · · , N

ξi ≥ 0, i = 1, · · · , N.

wherec > 0 is a regularization parameter for the
tradeoff between model complexity and training error,
andξi measures the (absolute) difference between
wTz + b andyi.

Computational Intelligence Laboratory, CUHK – p. 76/145

SVM Dual Problem

max −
1

2

N
∑

i=1

N
∑

j=1

yiyjφ(xi)
Tφ(xj)αiαj +

N
∑

i=1

αi

s.t.

{
∑N

i=1 αiyi = 0

0 ≤ αi ≤ c, i = 1, · · · , N.

Computational Intelligence Laboratory, CUHK – p. 77/145

SVM Dual Problem
For convenient computation here, letai = αiyi. Then
the SVM dual problem can be equivalently written as

min
1

2

N
∑

i=1

N
∑

j=1

aiajK(xi, xj) −
N

∑

i=1

aiyi

s.t.

{
∑N

i=1 ai = 0

c−i ≤ ai ≤ c+
i , i = 1, · · · , N.

wherec−i = c · sgn(1 − yi) andc+
i = c · sgn(1 + yi)

for i = 1, ..., N .

Computational Intelligence Laboratory, CUHK – p. 78/145

SVM Learning Network

ǫ
d

dt

(

a

µ

)

=

(

−a + h(a − (Qa + eµ − y))

−eTa

)

whereǫ > 0, a ∈ ℜN , andµ ∈ ℜ, e = (1, . . . , 1)T .

ǫ
dai

dt
= −ai + h(

N
∑

k=1

wikak − µ + yi), i = 1, ..., N ;

ǫ
dµ

dt
= −

N
∑

k=1

ak,

whereQ = [qij] = [K(x(i), y(j))], wik = δik − qik.a

aY. Xia and J. Wang, “A one-layer recurrent neural network forsupport vector machine learn-

ing,” IEEE Transactions on Systems, Man and Cybernetics, vol. 34, no. 2, pp. 1261-1269, 2004.

Computational Intelligence Laboratory, CUHK – p. 79/145

Network Architecture

Computational Intelligence Laboratory, CUHK – p. 80/145

Iris Benchmark Problem
The data of the iris problem are characterized with
four attributes (i.e., the petal length and width, setal
length and width).

The dataset consists of 150 samples belonging to
three classes (i.e., viginica, versilcolor, setosa), each
class has 50 samples.

120 samples for training and the remaining 30 for
testing.

We usec = 0.25 and the polynomial kernel function
K(x, y) = (xTy + 1)p, with p = 2 andp = 4.

Computational Intelligence Laboratory, CUHK – p. 81/145

Simulation Results

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

Figure 1: Convergence of the SVM Learning neural

network withǫ = 1/150 andp = 2Computational Intelligence Laboratory, CUHK – p. 82/145

Simulation Results

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time (sec)

Figure 2: Convergence of the proposed neural network

with ǫ = 1/150 andp = 4
Computational Intelligence Laboratory, CUHK – p. 83/145

Simulation Results

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

pe
ta

l w
id

th

petal length

Class III
Class II
Support point of class III
Support point of class II

Figure 3: Support vectors of SVC using the proposed

neural network with a polynomial kernelp = 2
Computational Intelligence Laboratory, CUHK – p. 84/145

Simulation Results

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

petal length

pe
ta

l w
id

th

Class III
Class II
Support point of class III
Support point of class II

Figure 4: Support vectors of SVC using the proposed

neural network with a polynomial kernel andp = 4
Computational Intelligence Laboratory, CUHK – p. 85/145

Adult Benchmark Problem
The UCI adult benchmark task is to predict whether a
household has an income greater than $50,000 based
on 14 other fields in a census form.

Eight of those fields are categorical, while six are
continuous. The six fields are quantized into quintile,
which yields a total of 123 sparse binary features.

1605 training samples and 2000 testing samples.

Gaussian RBF kernel with width of10 andc = 0.5.

Let ǫ = 0.1, and the initial pointz0 ∈1606 with the
element being1.

Computational Intelligence Laboratory, CUHK – p. 86/145

Adult Benchmark Problem

Method iterations SVs Testing accuracy
SOR 924 635 84.06

SMO 3230 633 84.06

SVM-light 294 634 84.25

NN 567 633 84.15

Table 2: Comparisons of results of the SOR, SMO,

SVM-light, and proposed neural network algorithm

Computational Intelligence Laboratory, CUHK – p. 87/145

Support Vector Regression
(SVR)
Consider the regression problem of approximating a
set of data

{(x1, y1), (x2, y2), . . . , (xN , yN)}

with a regression function as

φ(x) =
N

∑

i=1

αiΦi(x) + ς,

whereΦi(x)(i = 1, 2, . . . , n) are the feature functions
defined in a high-dimensional space,
αi(i = 1, 2, . . . , n) andς are parameters of the model
to be estimated.

Computational Intelligence Laboratory, CUHK – p. 88/145

SVR (cont’d)
By utilizing Huber loss function, the above regression
function can be represented as

φ(x) =
N

∑

i=1

θiK(x, xi) + ς, (5)

whereK(x, y) is a kernel function satisfying
K(x, y) = Φ(x)TΦ(x).

Computational Intelligence Laboratory, CUHK – p. 89/145

SVR (cont’d)
θi (i = 1, 2, . . . , N) can be obtained from the
following quadratic program:

min
1

2

N
∑

i=1

N
∑

j=1

θiθjK(xi, xj) −
N

∑

i=1

θiyi +
ε

2µ

N
∑

i=1

θ2
i ,

s.t.
N

∑

i=1

θi = 0,

−µ ≤ θi ≤ µ, i = 1, 2, . . . , N ;

whereε > 0 is an accuracy parameter required for the
approximation,µ > 0 is a pre-specified parameter.

Computational Intelligence Laboratory, CUHK – p. 90/145

SVR (cont’d)
The neural network with a discontinuous activation
function for solving the above quadratic program:

ǫ
dz

dt
= −Pz + [PQ +

α

N
eeT]g(z) + q,

θ = (PQ +
α

N
eeT)−1(Pz − q),

wheree = [1, 1, . . . , 1]T ,
P = I − eeT/N,Q = {K(xi, xj)}N×N + εI/µ,
q = (I − eeT/N)y with y = −(y1, y2, . . . , yn), and
h = −l = µe in the activation function.

Computational Intelligence Laboratory, CUHK – p. 91/145

SVR (cont’d)
Moreover,ς can be obtained from

ς = −
1

N
(eT (Q − I)θ∗ + eT c − eTz∗),

wherez∗ is an equilibrium point andθ∗ is an output
vector corresponding toz∗.

Compared with existing neural networks for SVM
learning, the existing neural networks need either
two-layer structure andn + 1 neurons.

In contrast, the neural network herein has one-layer
structure andn neurons only.

Computational Intelligence Laboratory, CUHK – p. 92/145

SVR (cont’d)
For the SVR learning by using the proposed neural
network based on titanium regression dataa. Let the
kernel be a Gaussian function:

K(x, y) = exp

(

−
‖x − y‖2

2σ2

)

ε = 0.01, µ = 100 andσ = 6.
aP. Dierckx,Curve and Surface Fitting with Splines, Clarendon

Press, Oxford, 1993.

Computational Intelligence Laboratory, CUHK – p. 93/145

Regression Result

500 600 700 800 900 1000 1100
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

x

y

Computational Intelligence Laboratory, CUHK – p. 94/145

Inverse Kinematics Problem
Becausėθ is underdetermined in a kinematically
redundant manipulator, one way to determineθ̇(t)
without the need for computing the pseudoinverse is
to solve:

minimize
1

2
θ̇(t)TWθ̇(t) + cT θ̇(t),

subject to J(θ(t))θ̇(t) = ẋd(t),

η−
6 θ̇ 6 η+

whereW is a positive-definite weighting matrix,c is
an column vector, andη± are upper and lower bounds
of the joint velocity vector.

Computational Intelligence Laboratory, CUHK – p. 95/145

Lagrangian Network Dynamics
Let the state vectors of output neurons and hidden
neurons be denoted byv(t) andu(t), representing
estimatedθ̇(t) and estimatedλ(t), respectively.

The dynamic equation of the two-layer Lagrangian
network can be expressed as:

ǫ1
dv(t)

dt
= −Wv(t) − J(θ(t))Tu(t) − c,

ǫ2
du(t)

dt
= J(θ(t))v(t) − ẋd(t),

whereǫ1 > 0 andǫ2 > 0.

Computational Intelligence Laboratory, CUHK – p. 96/145

Lagrangian Network Architec-
ture

Computational Intelligence Laboratory, CUHK – p. 97/145

7-DOF PA10 Manipulator

Computational Intelligence Laboratory, CUHK – p. 98/145

Coordinate system of PA10 ma-
nipulator

Computational Intelligence Laboratory, CUHK – p. 99/145

Circular Motion of the PA10
Manipulator

−0.4 −0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

x

y

−0.4 −0.2 0 0.2 0.4

0.6

0.8

1

1.2

x

z

−0.2
0

0.2
−0.2
0

0.2

0.5

1

−0.4 −0.2 0 0.2 0.4

0.6

0.8

1

1.2

y
z

x
y

z

Computational Intelligence Laboratory, CUHK – p. 100/145

Simulation Results

0 1 2 3 4
−0.5

0

0.5

1

0 1 2 3 4

−0.5

0

0.5

0 1 2 3 4

−1

−0.5

0

0.5

1

0 1 2 3 4
0

0.5

1

1.5

2

0 1 2 3 4
−2

−1

0

1

2

0 1 2 3 4
0.5

1

1.5

2

2.5

0 1 2 3 4
−0.01

−0.005

0

0.005

0.01

Time(second)
0 1 2 3 4

−4

−2

0

2

4

6
x 10

−3

Time(second)

x y

z

xω yω zω
x
.

y
.

z
.

x
.ω y

.ω z
.ω

θ1
.

θ2
.

θ3
.

θ4
.

θ5
.

θ6
.

θ7
.

IIθ
.
(t)II2

θ1

θ2

θ3
θ4

θ5

θ6

θ7

IIθ(t)II2

xerr

yerr

zerr

xerr
ω

yerr
ω

zerr
ω

xerr
.

yerr
.

zerr
.

xerr
.ω

yerr
.ω

zerr
.ω

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Computational Intelligence Laboratory, CUHK – p. 101/145

Dual Network Dynamics
To reduce the number of neurons to minimum, next
we propose a dual neural network with its dynamic
equation and output equation defined as

ǫ
du(t)

dt
= −J(θ(t))W−1JT (θ))u + ẋd(t),

v(t) = JT (θ(t))u(t);

whereu is the dual state variable,v is the output
variable.
The Lagrangian network containsn + m neurons. But
the dual network contains onlym neurons, wheren is
the number of joints andm is the dimension of the
cartesian space (i.e., 6).

Computational Intelligence Laboratory, CUHK – p. 102/145

Dual Network

Computational Intelligence Laboratory, CUHK – p. 103/145

Simulation Results

−0.4 −0.3 −0.2 −0.1 0 0.1

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

−0.4
−0.2

0

−0.2

0

0.2

0

0.2

0.4

0.6

0.8

−0.4 −0.3 −0.2 −0.1 0 0.1

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−0.3 −0.2 −0.1 0 0.1 0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

xx

y

y

y

zz

z

Computational Intelligence Laboratory, CUHK – p. 104/145

Simulation Results

0 2 4 6 8 10
−0.5

0

0.5

1

0 2 4 6 8 10
−0.2

−0.1

0

0.1

0.2

0 2 4 6 8 10

−0.2

0

0.2

0.4

0 2 4 6 8 10
0

0.2

0.4

0.6

0 2 4 6 8 10
−2

−1

0

1

2

0 2 4 6 8 10

8

10

12

14

0 2 4 6 8 10
−4

−2

0

2

4

6
x 10

−8

0 2 4 6 8 10

−1

−0.5

0

0.5

1

1.5
x 10

−4

ẋ

ẏ

ż

θ̇1 θ̇2
θ̇3

θ̇4
θ̇5

θ̇6

θ̇7

θ1

θ2

θ3

θ4 θ5

θ6θ7

‖θ̇
‖ 2
‖e‖2

ex

ey

‖ė‖2ėx

ėy

ėz

x

y
z

ez

co
nd

(J
)

t (sec)t (sec)
Computational Intelligence Laboratory, CUHK – p. 105/145

Bounded Inverse Kinematics
The dual neural network with the following dynamic
equation and output equation

ǫ1
dx

dt
= −JW−1JTx + ẋd

ǫ2
dy

dt
= −W−1y + g((W−1 − I)y)

v = JTx + y

where the piecewise linear activation function

gi(ui) =







η−
i , if ui < η−

i

ui, if η−
i 6 ui 6 η+

i

η+
i , if ui > η+

i
Computational Intelligence Laboratory, CUHK – p. 106/145

Piecewise Linear Activation
Function

Computational Intelligence Laboratory, CUHK – p. 107/145

PA10 Drift-free Circular Motion

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

−0.2

−0.1

0

0.1

0.2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
y

z

Computational Intelligence Laboratory, CUHK – p. 108/145

PA10 Joint Variables

0 1 2 3.84 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

2

2.68

θ1

θ2

θ3

θ4

θ5

θ6

θ7

t (second)

Computational Intelligence Laboratory, CUHK – p. 109/145

Joint Velocities and Dual State
Variables

0 1 2 3 4 5 6 7 8 9 10

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

θ̇1θ̇2
θ̇3

θ̇4θ̇5

θ̇6

θ̇7

t (second)
(a) Joint rate variables in rad/sec

0 1 2 3 4 5 6 7 8 9 10
−80

−60

−40

−20

0

20

40

60

80

u1

u2

u3

u7

t (second)
(b) Nonzero dual decision vari-

ables

Computational Intelligence Laboratory, CUHK – p. 110/145

Euclidean Norm vs. Infinity
Norm
The Euclidean norm (or 2-norm) is widely used often
because of its analytical tractability.

Minimizing the 2-norm of the joint velocities does not
necessarily minimize the magnitudes of the individual
joint velocities.

This is undesirable in situations where the individual
joint velocities are of primary interest.

Minimizing the infinity norm of velocity variables can
minimize the maximum velocity.

Computational Intelligence Laboratory, CUHK – p. 111/145

Inverse Kinematics Problem
Minimizing the infinity norm ofθ̇ subject to the
kinematic constraint:

min
θ̇

∥

∥

∥θ̇
∥

∥

∥

∞
= min

θ̇

max
1≤j≤n

|eT
j θ̇|,

s.t. J(θ(t))θ̇(t) = ẋd(t),

whereej is thej-th column of the identity matrix.

Computational Intelligence Laboratory, CUHK – p. 112/145

Inverse Kinematics Problem
Let

s = max
1≤j≤n

|eT
j θ̇|.

The inverse kinamatic problem can be written as

min
θ̇n

s

s.t. |eT
j θ̇| ≤ s, j = 1, 2, . . . , n

J(θ(t))θ̇(t) = ẋd(t).

Computational Intelligence Laboratory, CUHK – p. 113/145

Inverse Kinematics Problem Re-
formulation
The inverse kinematics problem can be summarized in
a matrix form:

min s

s.t.

[

−I In

I In

] [

θ̇

s

]

≥

[

0

0

]

J(θ)θ̇ = ẋd(t),

whereIn = (1, 1, . . . , 1)T ∈ Rn andI is the identity
matrix.

Computational Intelligence Laboratory, CUHK – p. 114/145

Primal Inverse Kinematics
Problem Formulation
Let y = (yT

1 , y2)
T , y1 = θ̇, y2 = s, then a final form of

the problem can be derived as

min cTy

s.t. A1y ≥ 0,

A2y = b(t),

where

A1 =

[

−I In

I In

]

, A2(t) = [J(θ(t), 0],

b(t) = ẋd(t), c
T = [0, 0, . . . , 1].

Computational Intelligence Laboratory, CUHK – p. 115/145

Dual Inverse Kinematics Prob-
lem Formulation
The dual problem of the preceding linear program is
defined as follows:

max bTz2

s.t. AT
1 z1 + AT

2 z2 = c,

z1 ≥ 0,

wherez = (zT
1 , zT

2)T is the dual decision variable.

Computational Intelligence Laboratory, CUHK – p. 116/145

Energy Function
An energy function to be minimized can be defined
based on the primal and dual formulation:

E(y, z) =
1

2
(cTy − bz2)

2 +
1

2
‖A2y − b‖2

2 +

1

2
‖AT

1 z1 + AT
2 z2 − c‖2

2 +

1

4
(A1y)T (A1y − |A1y|) +

1

4
zT
1 (z1 − |z1|).

Computational Intelligence Laboratory, CUHK – p. 117/145

Primal-Dual Network
The dynamic equation of the primal-dual network:

ǫ1ẏ = −c(cTy − bTz2) + AT
1 h(−A1y) +

AT
2 (A2y − b),

ǫ2ż1 = −h(−z1) + A1(A
T
1 z1 + AT

2 z2 − c),

ǫ3ż2 = −b(cTy − bTz2) + A2(A
T
1 z1 + AT

2 z2 − c),

wherey, z1, z2, are state vectors;h(x) = max{0, x};
andǫi are positive scaling constants.

Computational Intelligence Laboratory, CUHK – p. 118/145

Primal-Dual Network Architec-
ture

Computational Intelligence Laboratory, CUHK – p. 119/145

Desired Position of PA10 End-
Effector

0 1 2 3 4 5 6 7 8 9 10
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time (second)

D
es

ire
d

en
d−

ef
fe

ct
or

 v
el

oc
ity

 (
ra

d/
s)

PSfrag repla
ements

_x_y_z

Computational Intelligence Laboratory, CUHK – p. 120/145

PA10 Circular Motion

−0.5
−0.4

−0.3
−0.2

−0.1
0

0.1
0.2

−0.2

−0.1

0

0.1

0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x (m)y (m)

z
(m

)

Computational Intelligence Laboratory, CUHK – p. 121/145

Joint Velocities from the La-
grangian Network

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (second)

Jo
in

t V
el

oc
ity

 (
ra

d/
s)

PSfrag repla
ements
�1�2_�3_�4_�5_�6_�7

Computational Intelligence Laboratory, CUHK – p. 122/145

Joint Velocities from the Primal-
Dual Network

0 1 2 3 4 5 6 7 8 9 10
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time (second)

Jo
in

t V
el

oc
ity

 (
ra

d/
s)

PSfrag repla
ements
�1�2_�3_�4_�5_�6_�7

Computational Intelligence Laboratory, CUHK – p. 123/145

Infinity Norm of Joint Velocities

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (second)

M
ax

im
um

 jo
in

t v
el

oc
ity

 (
ra

d/
s)

2−norm minimization
∞−norm minimization

Computational Intelligence Laboratory, CUHK – p. 124/145

Transients of Energy Function

0 0.2 0.4 0.6 0.8 1 1.2 1.4

x 10
−6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (second)

E
ne

rg
y

Computational Intelligence Laboratory, CUHK – p. 125/145

Bi-criteria Kinematic Control
The bi-criteria redundancy resolution scheme subject
to joint limits:

minimize
1

2

{

α‖θ̇‖2
2 + (1 − α)‖θ̇‖2

∞

}

subject to J(θ)θ̇ = ẋd

η−
6 θ̇ 6 η+

whereη± denote upper and lower limits of joint
velocities respectively.

Computational Intelligence Laboratory, CUHK – p. 126/145

Problem Reformulation
With ej denoting thejth column of identity matrixI,

‖θ̇‖∞ = max{|θ̇1|, |θ̇2|, · · · , |θ̇n|} = max
16j6n

|eT
j θ̇|.

With s(t) := ‖θ̇(t)‖∞, the term(1 − α)‖θ̇(t)‖2
∞/2

equals
{

min. 1−α
2 s2(t)

s.t. |eT
j θ̇| 6 s(t)

=⇒







min. 1−α
2 s2(t)

s.t.

[

I −1

−I −1

] [

θ̇(t)

s(t)

]

6

[

0

0

]

Computational Intelligence Laboratory, CUHK – p. 127/145

Problem Formulation
With y := [θ̇T , s]T , the bi-criteria problem becomes:

minimize
1

2
yTQy

subject to Ay 6 b

Cy = d

y− 6 y 6 y+

where Q :=





αI

(1 − α)



 , A :=





I −1

−I −1



 , b := 0 ∈ R2n,

C :=
[

J(θ) 0

]

, d := ẋd(t), y− :=





η−

0



 , y+ :=





η+

max{η±}





Computational Intelligence Laboratory, CUHK – p. 128/145

Problem Formulation
Treat equality and inequality constraints as bound
constraints:

ξ− =





b−

d

y−



 , ξ+ =





b

d

y+



 , E =





A

C

I





with b− sufficiently negative to represent−∞. Then
the bicriteria kinematic control problem can be
rewritten as

minimize
1

2
yTQy

subject to ξ− 6 Ey 6 ξ+.

Computational Intelligence Laboratory, CUHK – p. 129/145

Dual Network Dynamics

ǫ
du(t)

dt
= −EQ−1ETu(t) + g((EQ−1ET − I)u(t)),

y(t) = Q−1ETu(t).

Computational Intelligence Laboratory, CUHK – p. 130/145

Simulation Results

−0.4
−0.3

−0.2
−0.1

0
0.1

−0.3

−0.2

−0.1

0

0.1

0.2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
y

z

Computational Intelligence Laboratory, CUHK – p. 131/145

Joint Velocity

0

0.2

0.4

−0.5

0

0.5

−0.2

0

0.2

−0.5

0

0.5

−0.1

0

0.1

0 1.48 3.45 4.75 6.87 8 9 10
−0.2

0

0.2

θ̇1

θ̇2

θ̇3

θ̇4

θ̇5

θ̇6

time (sec)
Computational Intelligence Laboratory, CUHK – p. 132/145

Norm Comparison

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

‖θ̇‖∞

‖θ̇‖2

time (sec)
Computational Intelligence Laboratory, CUHK – p. 133/145

Grasping Force Optimization
Consider a multifingered robot hand grasping a single
object in a3-dimensional workspace withm point
contacts between the grasped object and the fingers.

The problem of the grasp force optimization is to find
a set of contact forces such that the object is held at
the desired position and external forces are
compensated.

A grasping forcexi is applied by each finger to hold
the object without slippage and to balance any
external forces.

Computational Intelligence Laboratory, CUHK – p. 134/145

Grasping Force Optimization
To ensure non-slipping at a contact point, the grasping
forcexi should satisfyx2

i1 + x2
i2 ≤ µix

2
i3, where

µi > 0 is the friction coefficient at fingeri, and
xi1, xi2, andxi3 are components of contact forcexi in
the contact coordinate frame.

Besides the form-closure constraints, to balance any
external wrenchfext to maintain a stable grasp, each
finger must apply a grasping forcexi = [xi1, xi2, xi3]
to the object such thatGx = −fext, whereG ∈ R6×3m

is the grasp transformation matrix and
x = [x1, ..., xm]T ∈ R3m is the grasping force vector.

Computational Intelligence Laboratory, CUHK – p. 135/145

Grasping Force Optimization
The optimal grasping force optimization can be
formulated as the following quadtatic minimization
problem with linear and quadratic constraints:

minimize f(x) =
1

2
xTQx

subject to ci(x) ≤ 0, i = 1, ...,m;

Gx = −fext

whereq ∈ R3m, Q is a3m × 3m positive definite
matrix, andci(x) =

√

x2
i1 + x2

i2 − µixi3.

Computational Intelligence Laboratory, CUHK – p. 136/145

Neurodynamic Optimization of
Gasping Force
Based on the problem formulation, we develop the
three-layer recurrent neural network for gasping force
optimization

ǫ
d

dt





x

y

z



 =





−Qx −∇c(x)y + GTz

−y + h(c(x) + y)

−Gx − fext



 ,

wherex ∈ R3m, y ∈ Rm, z ∈ R6, andǫ > 0 is a
scaling parameter.
The neural network is globally convergent to the KKT
point (x∗, y∗, z∗), wherex∗ is the optimal gasping
force.

Computational Intelligence Laboratory, CUHK – p. 137/145

Neurodynamic Optimization of
Gasping Force
Consider a minimum norm forcef(x) = 1

2‖x‖
2.

A polyhedral object withM = 0.1kg is grasped by a
three-fingered robotic hand.

Let the robotic hand move along a circular trajectory
of radiusr = 0.5m with a constant velocityv =0.2m/s.

The time-varying external wrench applied to the
center of mass of the object is
fext = [0, fc sin(θ(t)),−Mg + fc cos(θ(t)), 0, 0, 0]T ,
whereg = 9.8(m/s2), θ ∈ [0, 2π], andfc = Mv2/r.

Computational Intelligence Laboratory, CUHK – p. 138/145

Simulation Results

mg
W

r

mv

f
c

2

Figure 5: Three-finger grasp example

Computational Intelligence Laboratory, CUHK – p. 139/145

Simulation Results

Figure 6: Motion of the three-finger grasp

Computational Intelligence Laboratory, CUHK – p. 140/145

Simulation Results

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (sec)

F
or

ce
 (

N
ew

to
n)

x
11

x
12

x
13

x
21

 x
22

 x
23

x
31

x
32

x
33

Computational Intelligence Laboratory, CUHK – p. 141/145

Simulation Results

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−3

0

1

2

3

4

5

6

7

8

9

10

Time (sec)

E
ne

rg
y

Figure 7: Convergence of the energy function withǫ =

0.0001 Computational Intelligence Laboratory, CUHK – p. 142/145

Simulation Results

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

Time (sec)

E
uc

lid
ea

n
N

or
m

Current
Primal Dual
Matlab

Figure 8: Comparison of Euclidean norm of optimal

forces using three different methodsComputational Intelligence Laboratory, CUHK – p. 143/145

Concluding Remarks
Neurodynamic optimization has been demonstrated to
be a powerful alternative approach to many
optimization problems.

For convex optimization, recurrent neural networks
are available with global convergence to the optimal
solution.

Neurodynamic optimization approaches provide
parallel distributed computational models more
suitable for real-time applications.

Computational Intelligence Laboratory, CUHK – p. 144/145

Future Works
The existing neurodynamic optimization model can
still be improved to reduce their model complexity or
increase their convergence rate.

The available neurodynamic optimization model can
be applied to more areas such as control, robotics, and
signal processing.

Neurodynamic approaches to global optimization and
discrete optimization are much more interesting and
challenging.

It is more needed to develop neurodynamic models
for nonconvex optimization and combinatorial
optimization.

Computational Intelligence Laboratory, CUHK – p. 145/145

	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline
	Outline

	Introduction
	Introduction
	Introduction

	Problem Formulation
	Problem Formulation

	Quadratic Programs
	Quadratic Programs

	Linear Programs
	Linear Programs

	Dynamic Optimization
	Dynamic Optimization
	Dynamic Optimization
	Dynamic Optimization

	Neurodynamic Optimization
	Neurodynamic Optimization
	Neurodynamic Optimization

	Existing Approaches
	Existing Approaches
	Existing Approaches
	Existing Approaches

	Existing Approaches (cont'd)
	Existing Approaches (cont'd)
	Existing Approaches (cont'd)
	Existing Approaches (cont'd)

	Existing Approaches (cont'd)
	Existing Approaches (cont'd)
	Existing Approaches (cont'd)
	Existing Approaches (cont'd)

	General Design Procedure
	General Design Procedure
	General Design Procedure

	General Design Procedure (cont'd)
	General Design Procedure (cont'd)

	General Design Procedure (cont'd)

	General Design Procedure
	General Design Procedure
	General Design Procedure
	General Design Procedure

	General Design Procedure (cont'd)
	General Design Procedure (cont'd)
	General Design Procedure (cont'd)
	General Design Procedure (cont'd)

	General Design Procedure (cont'd)
	General Design Procedure (cont'd)

	General Design Procedure (cont'd)
	General Design Procedure (cont'd)
	General Design Procedure (cont'd)
	General Design Procedure (cont'd)

	General Design Procedure (cont'd)
	General Design Procedure (cont'd)
	General Design Procedure (cont'd)
	General Design Procedure (cont'd)
	General Design Procedure (cont'd)

	General Design Procedure (cont'd)
	General Design Procedure (cont'd)
	General Design Procedure (cont'd)
	General Design Procedure (cont'd)

	Kennedy-Chua Network
	Kennedy-Chua Network

	Deterministic Annealing Network
	Deterministic Annealing Network
	Deterministic Annealing Network

	Primal-Dual Network
	Primal-Dual Network

	Lagrangian Network for QP
	Projection Network
	Convex Program
	Equivalent Reformulation
	Two-layer network
	Model Architecture
	Convergence Results
	Two-layer Neural Network for QP
	Illustrative Example
	Simulation Results
	Illustrative Example
	Simulation Results
	Illustrative Example
	Simulation Results
	Dual Network for QP$_2$
	Simplified Dual Network for QP$_1$
	Illustrative Example
	Illustrative Example (cont'd)
	Illustrative Example (cont'd)
	Illustrative Example (cont'd)
	Illustrative Example (cont'd)
	Illustrative Example (cont'd)
	A New Model for LP
	A New Model for LP

	Activation Function
	Activation Function (cont'd)
	Convergence Results
	Simulation Results
	Simulation Results (cont'd)
	k Winners Take All Operation
	k Winners Take All Operation
	k Winners Take All Operation

	kWTA Problem Formulations
	kWTA Problem Formulations

	kWTA Problem Formulations (cont'd)
	The Primal-Dual Network for kWTA
	The Projection Network for kWTA
	The Simplified Dual Network for kWTA
	The Simplified Dual Network for kWTA
	A Static Example
	A Static Example (cont'd)
	A Static Example (cont'd)
	A Static Example (cont'd)
	A Dynamic Example
	A One-layer kWTA Network
	Activation Function
	Activation Function (cont'd)
	Convergence Results
	Model Comparisons
	Simulation Results
	Convergence Results (cont'd)
	Convergence Results (cont'd)
	Linear Assignment Problem
	Linear Assignment Problem (cont'd)
	Simulation Results
	Simulation Results (cont'd)
	Support Vector Machine
	SVM Primal Problem
	SVM Dual Problem
	SVM Dual Problem
	SVM Learning Network
	Network Architecture
	Iris Benchmark Problem
	Simulation Results
	Simulation Results
	Simulation Results
	Simulation Results
	Adult Benchmark Problem
	Adult Benchmark Problem
	Support Vector Regression (SVR)
	SVR (cont'd)
	SVR (cont'd)
	SVR (cont'd)
	SVR (cont'd)
	SVR (cont'd)
	Regression Result
	Inverse Kinematics Problem
	Lagrangian Network Dynamics
	Lagrangian Network Architecture
	7-DOF PA10 Manipulator
	Coordinate system of PA10 manipulator
	Circular Motion of the PA10 Manipulator
	Simulation Results
	Dual Network Dynamics
	Dual Network
	Simulation Results
	Simulation Results
	Bounded Inverse Kinematics
	Piecewise Linear Activation Function
	PA10 Drift-free Circular Motion
	PA10 Joint Variables
	Joint Velocities and Dual State Variables
	Euclidean Norm vs. Infinity Norm
	Inverse Kinematics Problem
	Inverse Kinematics Problem
	Inverse Kinematics Problem Reformulation
	Primal Inverse Kinematics Problem Formulation
	Dual Inverse Kinematics Problem Formulation
	Energy Function
	Primal-Dual Network
	Primal-Dual Network Architecture
	Desired Position of PA10 End-Effector
	PA10 Circular Motion
	Joint Velocities from the Lagrangian Network
	Joint Velocities from the Primal-Dual Network
	Infinity Norm of Joint Velocities
	Transients of Energy Function
	Bi-criteria Kinematic Control
	Problem Reformulation
	Problem Formulation
	Problem Formulation
	Dual Network Dynamics
	Simulation Results
	Joint Velocity
	Norm Comparison
	Grasping Force Optimization
	Grasping Force Optimization
	Grasping Force Optimization
	Neurodynamic Optimization of Gasping Force
	Neurodynamic Optimization of Gasping Force
	Simulation Results
	Simulation Results
	Simulation Results
	Simulation Results
	Simulation Results
	Concluding Remarks
	Future Works

