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Introduction
Optimization is ubiquitous in nature and society.
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Introduction
Optimization is ubiquitous in nature and society.

Optimization arises in a wide variety of scientific
problems.

Optimization is an important tool for design,
planning, control, operation, and management of
engineering systems.
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Problem Formulation
Consider a general optimization problem:

OP1 : Minimize f(x)

subject to c(x) ≤ 0,

d(x) = 0,

wherex ∈ ℜn is the vector of decision variables,f(x)

is an objective function,c(x) = [c1(x), . . . , cm(x)]T is
a vector-valued function, and
d(x) = [d1(x), . . . , dp(x)]T a vector-valued function.
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Problem Formulation
Consider a general optimization problem:

OP1 : Minimize f(x)

subject to c(x) ≤ 0,

d(x) = 0,

wherex ∈ ℜn is the vector of decision variables,f(x)

is an objective function,c(x) = [c1(x), . . . , cm(x)]T is
a vector-valued function, and
d(x) = [d1(x), . . . , dp(x)]T a vector-valued function.
If f(x) andc(x) are convex andd(x) is affine, then
OP is a convex programming problem CP. Otherwise,
it is a nonconvex program.
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Quadratic Programs

QP1 : minimize
1

2
xTQx + qTx

subject to Ax = b,

l ≤ Cx ≤ h,

whereQ ∈ ℜn×n , q ∈ ℜn, A ∈ ℜm×n,
b ∈ ℜm, C ∈ ℜn×n, l ∈ ℜn, h ∈ ℜn.
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Quadratic Programs

QP1 : minimize
1

2
xTQx + qTx

subject to Ax = b,

l ≤ Cx ≤ h,

whereQ ∈ ℜn×n , q ∈ ℜn, A ∈ ℜm×n,
b ∈ ℜm, C ∈ ℜn×n, l ∈ ℜn, h ∈ ℜn.
Whenl = 0, h = ∞, C = I, QP1 becomes a standard
QP:

QP2 : minimize
1

2
xTQx + qTx

subject to Ax = b, x ≥ 0
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Linear Programs
WhenQ = 0, andC = I, QP1 becomes a linear
program with bound constraints:

LP1 : minimize qTx

subject to Ax = b,

l ≤ x ≤ h
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Linear Programs
WhenQ = 0, andC = I, QP1 becomes a linear
program with bound constraints:

LP1 : minimize qTx

subject to Ax = b,

l ≤ x ≤ h

In addition, whenl = 0, andh = +∞, LP1 becomes a
standard linear program:

LP2 : minimize qTx

subject to Ax = b,

x ≥ 0

Computational Intelligence Laboratory, CUHK – p. 6/145



Dynamic Optimization
In many applications (e.g., online pattern recognition,
robot motion control, and onboard signal processing),
real-time solutions to optimization problems are
necessary or desirable.
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Dynamic Optimization
In many applications (e.g., online pattern recognition,
robot motion control, and onboard signal processing),
real-time solutions to optimization problems are
necessary or desirable.
For such applications, classical optimization
techniques may not be competent due to the problem
dimensionality and stringent requirement on
computational time.
It is computationally challenging when optimization
procedures have to be performed in real time to
optimize the performance of dynamical systems.
One very promising approach to dynamic
optimization is to apply artificial neural networks.
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Neurodynamic Optimization
Because of the inherent nature of parallel and
distributed information processing in neural networks,
the convergence rate of the solution process is not
decreasing as the size of the problem increases.
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Neurodynamic Optimization
Because of the inherent nature of parallel and
distributed information processing in neural networks,
the convergence rate of the solution process is not
decreasing as the size of the problem increases.

Neural networks can be implemented physically in
designated hardware such as ASICs where
optimization is carried out in a truly parallel and
distributed manner.

This feature is particularly desirable for dynamic
optimization in decentralized decision-making
situations.
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Existing Approaches
In their seminal work, Tank and Hopfield (1985,
1986) applied the Hopfield networks for solving a
linear program and the traveling salesman problem.
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Existing Approaches
In their seminal work, Tank and Hopfield (1985,
1986) applied the Hopfield networks for solving a
linear program and the traveling salesman problem.

Kennedy and Chua (1988) developed a neural network
for nonlinear programming, which contains finite
penalty parameters and thus its equilibrium points
correspond to approximate optimal solutions only.

The two-phase optimization networks by Maa and
Shanblatt (1992).

The Lagrangian networks for quadratic programming
by Zhang and Constantinides (1992) and Zhang, et al.
(1992).
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Existing Approaches (cont’d)
A recurrent neural network for quadratic optimization
with bounded variables only by Bouzerdoum and
Pattison (1993).
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A recurrent neural network for quadratic optimization
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The deterministic annealing network for linear and
convex programming by Wang (1993, 1994).
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Existing Approaches (cont’d)
A recurrent neural network for quadratic optimization
with bounded variables only by Bouzerdoum and
Pattison (1993).

The deterministic annealing network for linear and
convex programming by Wang (1993, 1994).

The primal-dual networks for linear and quadratic
programming by Xia (1996, 1997).

The projection networks for solving projection
equations, constrained optimization, etc by Xia and
Wang (1998, 2002, 2004) and Liang and Wang
(2000).
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Existing Approaches (cont’d)
The dual networks for quadratic programming by Xia
and Wang (2001), Zhang and Wang (2002).
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Existing Approaches (cont’d)
The dual networks for quadratic programming by Xia
and Wang (2001), Zhang and Wang (2002).

A two-layer network for convex programming subject
to nonlinear inequality constraints by Xia and Wang
(2004).

A simplified dual network for quadratic programming
by Liu and Wang (2006)

Two one-layer networks with discontinuous activation
functions for linear and quadratic programming by
Liu and Wang (2007).
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General Design Procedure
A design procedure begins with a given objective
function and constraint(s).

The next step involves the derivation of a
neurodynamic equation which prescribes the motion
of the activation states of the neural network.
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General Design Procedure
A design procedure begins with a given objective
function and constraint(s).

The next step involves the derivation of a
neurodynamic equation which prescribes the motion
of the activation states of the neural network.

The derivation of a neurodynamic equation is crucial
for success of the neural network approach to
optimization.

A properly derived neurodynamic equation can ensure
that the state of neural network reaches an equilibrium
and the equilibrium satisfies the constraints and
optimizes the objective function.
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General Design Procedure
(cont’d)
In general, there are two approaches to design
neurodynamic equations.
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General Design Procedure
(cont’d)
In general, there are two approaches to design
neurodynamic equations.

The first approach is based on an defined energy
function.

The second approach is based on the existing
optimality conditions.
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General Design Procedure
The first approach starts with the formulation of an
energy function based on a given objective function
and constraints
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General Design Procedure
The first approach starts with the formulation of an
energy function based on a given objective function
and constraints

It plays an important role in neurodynamic
optimization.

Ideally, the minimum of a formulated energy function
corresponds to the optimal solution of the original
optimization problem.

For constrained optimization, the minimum of the
energy function has to satisfy a set of constraints.
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General Design Procedure
(cont’d)
The majority of the existing approaches formulates an
energy function by incorporating objective function
and constraints through functional transformation and
numerical weighting.
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General Design Procedure
(cont’d)
The majority of the existing approaches formulates an
energy function by incorporating objective function
and constraints through functional transformation and
numerical weighting.

Functional transformation is usually used to convert
constraints to a penalty function to penalize the
violation of constraints; e.g.,
p(x) =

∑m
i=1{[−ci(x)]+}2 +

∑p
j=1[dj(x)]2, where

[y]+ = max{0, y}.

Computational Intelligence Laboratory, CUHK – p. 15/145



General Design Procedure
(cont’d)
The majority of the existing approaches formulates an
energy function by incorporating objective function
and constraints through functional transformation and
numerical weighting.

Functional transformation is usually used to convert
constraints to a penalty function to penalize the
violation of constraints; e.g.,
p(x) =

∑m
i=1{[−ci(x)]+}2 +

∑p
j=1[dj(x)]2, where

[y]+ = max{0, y}.

Numerical weighting is often used to balance
constraint satisfaction and objective optimization;
e.g.,E(x) = f(x) + wp(x) wherew is a positive
weight. Computational Intelligence Laboratory, CUHK – p. 15/145



General Design Procedure
(cont’d)
The majority of the existing approaches formulates an
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General Design Procedure
(cont’d)
Neurodynamic equations are usually derived as the
negative gradient of the energy function:

dx(t)

dt
∝ −∇E(x(t)).
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General Design Procedure
(cont’d)
Neurodynamic equations are usually derived as the
negative gradient of the energy function:

dx(t)

dt
∝ −∇E(x(t)).

If the enegery function is bounded blow, the stability
of the neurodynamics can be ensured.
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General Design Procedure
(cont’d)
Second approach: Neurodynamic equations of some
recent neural networks for optimization are derived
based on optimality conditions (e.g.,
Karush-Kuhn-Tucker condition) and projection
equations.
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General Design Procedure
(cont’d)
Second approach: Neurodynamic equations of some
recent neural networks for optimization are derived
based on optimality conditions (e.g.,
Karush-Kuhn-Tucker condition) and projection
equations.

Stability analysis is needed explicitly to ensure the
that resulting neural network is stable.

All equilibria of a stable neural network satisfy the
optimality condition.

If the problem is a convex program, an equilibrium
point represents an optimal solution.
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General Design Procedure
(cont’d)
The next step is to determine the architecture of the
neural network in terms of the neurons and
connections based on the derived dynamical equation.
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General Design Procedure
(cont’d)
The next step is to determine the architecture of the
neural network in terms of the neurons and
connections based on the derived dynamical equation.

An activation function models important
characteristics of a neuron.

The range of an activation function usually prescribes
the the state space of the neural network.

The activation function depends on the feasible region
delimited by the constraints.

Specifically, it is necessary for the state space to
include the feasible region.
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General Design Procedure
(cont’d)
Any explicit bounds on decision variables can be
realized by properly selecting the range of activation
functions.
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function results in an increasing activation function.
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General Design Procedure
(cont’d)
Any explicit bounds on decision variables can be
realized by properly selecting the range of activation
functions.

If the gradient-based method is adopted in deriving
the dynamical equation, then the convex energy
function results in an increasing activation function.

Precisely, if the steepest descent method is used, the
activation function is equal to the derivative of the
energy function.
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General Design Procedure
(cont’d)
Any explicit bounds on decision variables can be
realized by properly selecting the range of activation
functions.

If the gradient-based method is adopted in deriving
the dynamical equation, then the convex energy
function results in an increasing activation function.

Precisely, if the steepest descent method is used, the
activation function is equal to the derivative of the
energy function.

The last step is usually devoted to simulation to test
the performance of the neural network numerically or
physically.

Computational Intelligence Laboratory, CUHK – p. 19/145



Kennedy-Chua Network
The Kennedy-Chua network for solving OPa:

ǫ
dx

dt
= −∇f(x)−s ·h(c(x))T∇c(x)−s ·d(x)T∇d(x),

whereǫ > 0 is a scaling parameter,x ∈ ℜn is the state
vector,s > 0 is a penalty parameter,
h(r) = (h(r1), ..., h(rn))T , andh(ri) = max{0, ri}.

aM. P. Kennedy and L. O. Chua, “Neural networks for nonlinear programming,”IEEE Trans-

actions on Circuits and Systems, vol. 35, no. 5, pp. 554–562, May 1988.
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Kennedy-Chua Network
The Kennedy-Chua network for solving OPa:

ǫ
dx

dt
= −∇f(x)−s ·h(c(x))T∇c(x)−s ·d(x)T∇d(x),

whereǫ > 0 is a scaling parameter,x ∈ ℜn is the state
vector,s > 0 is a penalty parameter,
h(r) = (h(r1), ..., h(rn))T , andh(ri) = max{0, ri}.

With a finite penalty parameters, the network is
globally convergent to a near-optimal solution to an
OP even though CP.

aM. P. Kennedy and L. O. Chua, “Neural networks for nonlinear programming,”IEEE Trans-

actions on Circuits and Systems, vol. 35, no. 5, pp. 554–562, May 1988.
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Deterministic Annealing Net-
work
The deterministic annealing network for solving OPa:

ǫ
dx

dt
= −T (t)∇f(x)−h(c(x))T∇c(x)−d(x)T∇d(x),

whereǫ > 0 is a scaling parameter,x ∈ ℜn is the state
vector,T (t) ≥ 0 is a temperature parameter,
h(r) = (h(r1), ..., h(rn))T , andh(ri) = max{0, ri}.

aJ. Wang, “A deterministic annealing neural network for convex programming,”Neural Net-

works, vol. 7, no. 4, pp. 629-641, 1994.
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ǫ
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dt
= −T (t)∇f(x)−h(c(x))T∇c(x)−d(x)T∇d(x),

whereǫ > 0 is a scaling parameter,x ∈ ℜn is the state
vector,T (t) ≥ 0 is a temperature parameter,
h(r) = (h(r1), ..., h(rn))T , andh(ri) = max{0, ri}.
If limt→∞ T (t) = 0, then the network is globally
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Deterministic Annealing Net-
work
The deterministic annealing network for solving OPa:

ǫ
dx

dt
= −T (t)∇f(x)−h(c(x))T∇c(x)−d(x)T∇d(x),

whereǫ > 0 is a scaling parameter,x ∈ ℜn is the state
vector,T (t) ≥ 0 is a temperature parameter,
h(r) = (h(r1), ..., h(rn))T , andh(ri) = max{0, ri}.
If limt→∞ T (t) = 0, then the network is globally
convergent to a feasible near-optimal solution to CP.
If T (t) decreases gradually to 0, then the network is
globally convergent to an optimal solution to CP.

aJ. Wang, “A deterministic annealing neural network for convex programming,”Neural Net-

works, vol. 7, no. 4, pp. 629-641, 1994.
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Primal-Dual Network
The primal-dual network for solving LP2a:

ǫ
dx

dt
= −(qTx − bTy)q − AT (Ax − b) + x+,

ǫ
dy

dt
= −(qTx − bTy)b,

whereǫ > 0 is a scaling parameter,x ∈ ℜn is the
primal state vector,y ∈ ℜm is the dual (hidden) state
vector,x+ = (x+

1 ), ..., x+
n )T , andx+

i = max{0, xi}.

aY. Xia, “A new neural network for solving linear and quadratic programming problems,”

IEEE Transactions on Neural Networks, vol. 7, no. 6, 1544-1548, 1996.
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Primal-Dual Network
The primal-dual network for solving LP2a:

ǫ
dx

dt
= −(qTx − bTy)q − AT (Ax − b) + x+,

ǫ
dy

dt
= −(qTx − bTy)b,

whereǫ > 0 is a scaling parameter,x ∈ ℜn is the
primal state vector,y ∈ ℜm is the dual (hidden) state
vector,x+ = (x+

1 ), ..., x+
n )T , andx+

i = max{0, xi}.
The network is globally convergent to an optimal
solution to LP1.

aY. Xia, “A new neural network for solving linear and quadratic programming problems,”

IEEE Transactions on Neural Networks, vol. 7, no. 6, 1544-1548, 1996.
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Lagrangian Network for QP
If C = 0 in QP1:

ǫ
d

dt

(

x

y

)

=

(

−Qx(t) − ATy(t) − q,

Ax − b

)

.

whereǫ > 0, x ∈ ℜn, y ∈ ℜm.

It is globally exponentially convergent to the optimal
solutiona.

aJ. Wang, Q. Hu, and D. Jiang, “A Lagrangian network for kinematic control of redundant

robot manipulators,”IEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 1123-1132, 1999.
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Projection Network
A recurrent neural network called the projection
network was developed for optimization with bound
constraints onlya b

ǫ
dx

dt
= −x + g(x −∇f(x)).

aY.S. Xia and J. Wang, “On the stability of globally projecteddynamic systems,”J. of Opti-

mization Theory and Applications, vol. 106, no. 1, pp. 129-150, 2000.
bY.S. Xia, H. Leung, and J. Wang, “A projection neural networkand its application to con-

strained optimization problems,”IEEE Trans. Circuits and Systems I, vol. 49, no. 4, pp. 447-458,

2002.
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Convex Program
Consider a convex programming problem without
equality constraints:

CP2 : minimize f(x)

subject to c(x) ≤ 0, x ≥ 0

wheref(x) andc(x) = (c1(x), ..., cm(x))T are
convex,m ≤ n.
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Equivalent Reformulation
The Karush-Kuhn-Tucker (KKT) conditions for CP:

y ≥ 0, c(x) ≤ 0, x ≥ 0

∇f(x) + ∇c(x)y ≥ 0, yT c(x) = 0

According to the projection method, the KKT
condition is equivalent to:

{

h(x − α(∇f(x) + ∇c(x)y)) − x = 0

h(y + αc(x)) − y = 0,
(1)

whereh(r) = (h(r1), ..., h(rn))
T ,

h(ri) = max{0, ri}, andα is any positive constant.
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Two-layer network
Based on an equivalent formulation, a two-layer
neural network was developed for OPa is then given
by

ǫ
d

dt

(

x

y

)

=

(

−x + g(x − (∇f(x) + ∇c(x)y))

−y + h(y + c(x))

)

,

wherex ∈ ℜn andy ∈ ℜm.
aY.S. Xia and J. Wang, “A recurrent neural network for nonlinear convex optimization subject

to nonlinear inequality constraints,”IEEE Trans. Circuits and Systems I, vol. 51, no. 7, pp. 1385-

1394, 2004.
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Model Architecture
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Convergence Results
For anyx(t0) andy(t0), x(t) andy(t) are continuous
and unique.u(t) ≥ 0 if u(t0) ≥ 0. The equilibrium
point solves CP2.

If ∇2f(x) +
∑n

i=1 yi∇
2ci(x) is positive definite on

ℜn+m
+ , then the two-layer neural network is globally

convergent to the KKT point(x∗, y∗), wherex∗ is the
optimal solution to CP2.
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Two-layer Neural Network for
QP
If C = I in QP1, let α = 1 in the two-layer neural
network for CP:

ǫ
d

dt

(

x

y

)

=

(

−x + g((I − Q)x + ATy − q)

−Ax + b

)

.

whereǫ > 0, x ∈ ℜn, y ∈ ℜm,
g(x) = [g(x1), ..., g(xn)]T

g(xi) =







li xi < li
ui li ≤ xi ≤ hi

hi xi > hi.

It is globally asymptotically convergent to the optimal
solution. Computational Intelligence Laboratory, CUHK – p. 30/145



Illustrative Example

minimize
1

4
x4

1 + 0.5x2
1 +

1

4
x4

2 + 0.5x2
2 − 0.9x1x2

subject to Ax ≤ b, x ≥ 0

where

A =





1 1

−1 1

1 −3



 and b =





2

2

−2



 .

This problem has an optimal solution
x∗ = [0.427, 0.809]T .
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Simulation Results
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Illustrative Example

minimize x2
1 + 2x1x2 + x2

2 + (x1 − 1)4 + (x2 − 3)4

subject to x ≥ 0, ci(x) ≤ 0 (i = 1, 2, 3),

where






c1(x) = x2
1 + x2

2 − 64,

c2(x) = (x1 + 3)2 + (x2 + 4)2 − 36,

c3(x) = (x1 − 3)2 + (x2 + 4)2 − 36.

This problem has an optimal solutionx∗ = (0, 1.96)T .
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Simulation Results
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Illustrative Example

minimize (x1 − x2)
2 + (x2 − x3)

2 + (x3 − x4)
4

subject to x ≥ 0, ci(x) ≤ 0 (i = 1, 2),

where

c1(x) = x2
1 + x2

2 + x2
3 + x2

4 − 9

c1(x) = (x1 − 4)2 + (x2 + 4)2 + (x3 − 1)2 + (x4 + 1)4

This problem has an optimal solution
x∗ = (3.013, 0, 0.766, 0)T .
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Simulation Results
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Dual Network for QP 2

For strictly convex QP2, Q is invertible. The dynamic
equation of the dual network:

ǫ
dy(t)

dt
= −CQ−1CTy + g

(

CQ−1CTy − y − Cq
)

+Cq + b,

x(t) = Q−1CTy − q,

whereǫ > 0.
It is also globally exponentially convergent to the
optimal solutiona b.

aY. Xia and J. Wang, “A dual neural network for kinematic control of redundant robot manip-

ulators,”IEEE Trans. on Systems, Man, and Cybernetics, vol. 31, no. 1, pp. 147-154, 2001.
bY. Zhang and J. Wang, “A dual neural network for convex quadratic programming subject to

linear equality and inequality constraints,”Physics Letters A, pp. 271-278, 2002.
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Simplified Dual Network for
QP1

For strictly convex QP1, Q is invertible. The dynamic
equation of the simplified dual networka:

ǫ
du

dt
= −Cx + g(Cx − u),

x = Q−1(ATy + CTu − q),

y = (AQ−1AT )−1
[

−AQ−1CTu + AQ−1q + b
]

,

whereu ∈ R
n is the state vector,ǫ > 0.

It is proven to be globally asymptotically convergent
to the optimal solution.

aS. Liu and J. Wang, “A simplified dual neural network for quadratic programming with its

KWTA application,” IEEE Trans. Neural Networks, vol. 17, no. 6, pp. 1500-1510, 2006.
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Illustrative Example

minimize 3x2
1 + 3x2

2 + 4x2
3 + 5x2

4 + 3x1x2 + 5x1x3+

x2x4 − 11x1 − 5x4

subject to 3x1 − 3x2 − 2x3 + x4 = 0,

4x1 + x2 − x3 − 2x4 = 0,

−x1 + x2 ≤ −1,

−2 ≤ 3x1 + x3 ≤ 4.
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Illustrative Example (cont’d)
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




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
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

,
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



3 −3 −2 1

4 1 −1 −2



 , b =





0

0



 ,

C =





−1 1 0 0

3 0 1 0



 , l =





−∞

−2



 , h =





−1

4



 .

The simplified dual neural network for solving this
quadratic programming problem needs only two
neurons, whereas the Lagrange neural network needs
twelve neurons, the primal-dual neural network needs
nine neurons, the dual neural network needs four
neurons.
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Illustrative Example (cont’d)
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Illustrative Example (cont’d)
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Illustrative Example (cont’d)
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Illustrative Example (cont’d)
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A New Model for LP
A new recurrent neural network model with a
discontinuous activation function was recently
developed for linear programming LP1.
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A New Model for LP
A new recurrent neural network model with a
discontinuous activation function was recently
developed for linear programming LP1.

The dynamic equation of the new model is described
as follows:

ǫ
dx

dt
= −Px − σ(I − P )g(x) + s, (3)

whereg(x) = (g1(x1), g2(x2), . . . , gn(xn))
T is the

vector-valued activation function,ǫ is a positive
scaling constant,σ is a nonnegative gain parameter,
P = AT (AAT )−1A, and
s = −(I − P )q + AT (AAT )−1b.
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Activation Function
The following activation function is defineda: For
i = 1, 2, . . . , n;

gi(xi) =



























1, if xi > hi,

[0, 1], if xi = hi,

0, if xi ∈ (li, hi),

[−1, 0], if xi = li,

−1, if xi < li.

aQ. Liu, and J. Wang, ”A one-layer recurrent neural network with a discontinuous activation

function for linear programming,” Neural Computation, in press, 2007.
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Activation Function (cont’d)
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Convergence Results
The neural network is globally convergent to an
optimal solution of LP1 with C = I, if Ω̄ ⊂ Ω, where
Ω̄ is the equilibrium point set andΩ = {x|l ≤ x ≤ h}.
The neural network is globally convergent to an
optimal solution of LP1 with C = I, if it has a unique
equilibrium point andσ ≥ 0 when(I − P )c = 0 or
one of the following conditions holds when
(I − P )c 6= 0:

(i) σ ≥ ‖(I − P )c‖p/min+
γ∈X ‖(I − P )γ‖p for

p = 1, 2,∞, or

(ii) σ ≥ cT (I − P )c/min+
γ∈X{|c

T (I − P )γ|},

whereX = {−1, 0, 1}n
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Simulation Results
Consider the following LP problem:

minimize 4x1 + x2 + 2x3,

subject to x1 − 2x2 + x3 = 2,

−x1 + 2x2 + x3 = 1,

−5 ≤ x1, x2, x3 ≤ 5.

According to the above condition, the lower bound of
σ is 9
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Simulation Results (cont’d)
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k Winners Take All Operation
Thek-winners-take-all (kWTA) operation is to select
thek largest inputs out ofn inputs (1 ≤ k ≤ n).
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k Winners Take All Operation
Thek-winners-take-all (kWTA) operation is to select
thek largest inputs out ofn inputs (1 ≤ k ≤ n).

ThekWTA operation has important applications in
machine learning, such ask-neighborhood
classification,k-means clustering, etc.
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k Winners Take All Operation
Thek-winners-take-all (kWTA) operation is to select
thek largest inputs out ofn inputs (1 ≤ k ≤ n).

ThekWTA operation has important applications in
machine learning, such ask-neighborhood
classification,k-means clustering, etc.

As the number of inputs increases and/or the selection
process should be operated in real time, parallel
algorithms and hardware implementation are
desirable.
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kWTA Problem Formulations
ThekWTA function can be defined as:

xi = f(ui) =

{

1, if ui ∈ {k largest elements ofu},
0, otherwise,

whereu ∈ R
n andx ∈ R

n is the input vector and
output vector, respectively.
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kWTA Problem Formulations
ThekWTA function can be defined as:

xi = f(ui) =

{

1, if ui ∈ {k largest elements ofu},
0, otherwise,

whereu ∈ R
n andx ∈ R

n is the input vector and
output vector, respectively.
ThekWTA solution can be determined by solving the
following linear integer program:

minimize −
n
∑

i=1

uixi,

subject to
n
∑

i=1

xi = k,

xi ∈ {0, 1}, i = 1, 2, . . . , n.Computational Intelligence Laboratory, CUHK – p. 52/145



kWTA Problem Formulations
(cont’d)
If the kth and(k + 1)th largest elements ofu are
different (denoted as̄uk andūk+1 respectively), the
kWTA problem is equivalent to the following LP or
QP problems:

minimize −uTx or a
2x

Tx − uTx,

subject to
n
∑

i=1

xi = k,

0 ≤ xi ≤ 1, i = 1, 2, . . . , n,

wherea ≤ ūk − ūk+1 is a positive constant.
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The Primal-Dual Network for
kWTA
The primal-dual network based on the QP formulation
needs3n + 1 neurons and6n + 2 connections, and its
dynamic equations can be written as:










































dx
dt

= −(1 + a)(x − (x + ve + w − ax + u)+)

−(eTx − k)e − x − y + e
dy
dt

= −y + (y + w)+ − x − y + e
dv
dt

= −eT (x − (x + ve + w − ax + u)+)

+eTx − k
dw
dt

= −x + (x + ve + w − ax + u)+

−y + (y + w)+ + x + y − e

wherex, y, w ∈ R
n, v ∈ R, e = (1, 1, . . . , 1)T ∈ R

n,
x+ = (x+

1 , . . . , x+
n )T , andx+

i = max{0, xi}
(i = 1, . . . , n).
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The Projection Network for
kWTA
The projection neural network forkWTA operation
based on the QP formulation needsn + 1 neurons and
2n + 2 connections, which dynamic equations can be
written as:

{

dx
dt

= λ [−x + f(x − η(ax − u − ve))]
dv
dt

= λ(−eTx + k).

wherex ∈ R
n, v ∈ R, λ andη are positive constants,

f(x) = (f(x1), . . . , f(xn))
T and

f(xi) =







0, if xi < 0,

xi, if 0 ≤ xi ≤ 1,

1, if xi > 1.
Computational Intelligence Laboratory, CUHK – p. 55/145



The Simplified Dual Network
for kWTA
The simplified dual neural network forkWTA
operation based on the QP formulationa needsn
neurons and3n connections, and its dynamic equation
can be written as:

{

dy
dt

= λ [−My + f((M − I)y − s) − s]

x = My + s,

wherex, y ∈ R
n, M = 2(I − eeT/n)/a,

s = Mu + ke/n, I is an identity matrix,λ andf are
defined as before.

aS. Liu and J. Wang, “A simplified dual neural network for quadratic programming with its

KWTA application,” IEEE Trans. Neural Networks, vol. 17, no. 6, pp. 1500-1510, 2006.
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The Simplified Dual Network
for kWTA
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A Static Example
Let the inputs arevi = i (i = 1, 2, · · · , n),
n = 10, k = 2, ǫ = 10−8, anda = 0.25.
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A Static Example (cont’d)
Let the inputs arevi = i (i = 1, 2, · · · , n),
n = 10, k = 2, ǫ = 10−8, anda = 0.25.
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A Static Example (cont’d)
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A Static Example (cont’d)
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A Dynamic Example
Let inputs be 4 sinusoidal input signals (i.e.,n = 4)
vi(t) = 10 sin[2π(1000t + 0.2(i − 1)], andk = 2.
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A One-layer kWTA Network
The dynamic equation of a new LP-basedkWTA
network model is described as follows:

ǫ
dx

dt
= −Px − σ(I − P )g(x) + s, (4)

whereP = eeT/n, s = u − Pu + ke/n, ǫ is a positive
scaling constant,σ is a nonnegative gain parameter,
andg(x) = (g(x1), g(x2), . . . , g(xn))

T is a
discontinuous vector-valued activation function.
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Activation Function
A discontinuous activation function is defined as
follows:

g(xi) =



























1, if xi > 1,

[0, 1], if xi = 1,

0, if 0 < xi < 1,

[−1, 0], if xi = 0,

−1, if xi < 0.
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Activation Function (cont’d)
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Convergence Results
The network (4) can perform thekWTA operation if
Ω̄ ⊂ {x ∈ R

n : 0 ≤ x ≤ 1}, whereΩ̄ is the set of
equilibrium point(s).
The network (4) can perform thekWTA operation if it
has a unique equilibrium point andσ ≥ 0 when
(I − eeT/n)u = 0 or one of the following conditions
holds when(I − eeT/n)u 6= 0:

(i) σ ≥
∑ n

i=1 |ui−
∑ n

j=1 uj/n|

2n−2
, or

(ii) σ ≥ n

√

∑

n
i=1

(ui−
∑

n
j=1

uj/n)2

n(n−1)
, or

(iii) σ ≥ 2maxi |ui −
∑n

j=1 uj/n|, or,

(iv) σ ≥

√

∑

n
i=1

(ui−
∑

n
j=1

uj/n)2

min+

γi∈{−1,0,1}

{

|
∑

n
i=1

(ui−
∑

n
j=1

uj/n)γi|
} .
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Model Comparisons

model type Eqn(s). neurons connections
Primal-dual neural network(??) 3n + 1 6n +

Projection neural network (??) n + 1 2n +

Simplified dual network (??) n 3n

Neural network herein (4) n 2n

Neural network herein (??)(??) n 3n

Table 1: Comparison of related neural networks in

terms of model complexity.
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Simulation Results
Consider akWTA problem with input vector
ui = i (i = 1, 2, . . . , n), n = 5, k = 3.
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Convergence Results (cont’d)
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Convergence Results (cont’d)
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Linear Assignment Problem
The linear assignment problem is to find an optimal
solution to the following linear integer programming
problem:

minimize
n
∑

i=1

n
∑

j=1

cijxij,

subject to
n
∑

j=1

xij = 1, i = 1, 2, . . . , n,

n
∑

i=1

xij = 1, j = 1, 2, . . . , n,

xij ∈ {0, 1}, i, j = 1, 2, . . . , n.
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Linear Assignment Problem
(cont’d)
If the optimal solution to problem (71) is unique, then
it is equivalent to the following linear programming
problem:

minimize
n
∑

i=1

n
∑

j=1

cijxij,

subject to
n
∑

j=1

xij = 1, i = 1, 2, . . . , n,

n
∑

i=1

xij = 1, j = 1, 2, . . . , n,

0 ≤ xij ≤ 1, i, j = 1, 2, . . . , n.
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Simulation Results
Consider a linear assignment problem with

C =





4 2 5

3 1.5 2

4 2.5 1



 .

A lower bound ofσ is 13.
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Simulation Results (cont’d)
Let ǫ = 10−6 andσ = 15.
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Support Vector Machine
Consider a set of training examples

{(x1, y1), (x2, y2), ..., (xN , yN )}

where thei-th examplexi ∈ Rn belongs to one of two
separate classes labeled byyi ∈ {−1, 1}.

A support vector machine provides an optimal
partition with maximum possible margin for pattern
classification.
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SVM Primal Problem

min
1

2
wTw + c

N
∑

i=1

ξi

s.t.

{

yi[w
Tφ(xi) + b] ≥ 1 − ξi, i = 1, · · · , N

ξi ≥ 0, i = 1, · · · , N.

wherec > 0 is a regularization parameter for the
tradeoff between model complexity and training error,
andξi measures the (absolute) difference between
wTz + b andyi.
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SVM Dual Problem

max −
1

2

N
∑

i=1

N
∑

j=1

yiyjφ(xi)
Tφ(xj)αiαj +

N
∑

i=1

αi

s.t.

{
∑N

i=1 αiyi = 0

0 ≤ αi ≤ c, i = 1, · · · , N.

Computational Intelligence Laboratory, CUHK – p. 77/145



SVM Dual Problem
For convenient computation here, letai = αiyi. Then
the SVM dual problem can be equivalently written as

min
1

2

N
∑

i=1

N
∑

j=1

aiajK(xi, xj) −
N

∑

i=1

aiyi

s.t.

{
∑N

i=1 ai = 0

c−i ≤ ai ≤ c+
i , i = 1, · · · , N.

wherec−i = c · sgn(1 − yi) andc+
i = c · sgn(1 + yi)

for i = 1, ..., N .
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SVM Learning Network

ǫ
d

dt

(

a

µ

)

=

(

−a + h(a − (Qa + eµ − y))

−eTa

)

whereǫ > 0, a ∈ ℜN , andµ ∈ ℜ, e = (1, . . . , 1)T .

ǫ
dai

dt
= −ai + h(

N
∑

k=1

wikak − µ + yi), i = 1, ..., N ;

ǫ
dµ

dt
= −

N
∑

k=1

ak,

whereQ = [qij] = [K(x(i), y(j))], wik = δik − qik.a

aY. Xia and J. Wang, “A one-layer recurrent neural network forsupport vector machine learn-

ing,” IEEE Transactions on Systems, Man and Cybernetics, vol. 34, no. 2, pp. 1261-1269, 2004.
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Network Architecture
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Iris Benchmark Problem
The data of the iris problem are characterized with
four attributes (i.e., the petal length and width, setal
length and width).

The dataset consists of 150 samples belonging to
three classes (i.e., viginica, versilcolor, setosa), each
class has 50 samples.

120 samples for training and the remaining 30 for
testing.

We usec = 0.25 and the polynomial kernel function
K(x, y) = (xTy + 1)p, with p = 2 andp = 4.
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Simulation Results
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Simulation Results
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Simulation Results
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Simulation Results
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Adult Benchmark Problem
The UCI adult benchmark task is to predict whether a
household has an income greater than $50,000 based
on 14 other fields in a census form.

Eight of those fields are categorical, while six are
continuous. The six fields are quantized into quintile,
which yields a total of 123 sparse binary features.

1605 training samples and 2000 testing samples.

Gaussian RBF kernel with width of10 andc = 0.5.

Let ǫ = 0.1, and the initial pointz0 ∈1606 with the
element being1.
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Adult Benchmark Problem

Method iterations SVs Testing accuracy
SOR 924 635 84.06

SMO 3230 633 84.06

SVM-light 294 634 84.25

NN 567 633 84.15

Table 2: Comparisons of results of the SOR, SMO,

SVM-light, and proposed neural network algorithm
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Support Vector Regression
(SVR)
Consider the regression problem of approximating a
set of data

{(x1, y1), (x2, y2), . . . , (xN , yN )}

with a regression function as

φ(x) =
N

∑

i=1

αiΦi(x) + ς,

whereΦi(x)(i = 1, 2, . . . , n) are the feature functions
defined in a high-dimensional space,
αi(i = 1, 2, . . . , n) andς are parameters of the model
to be estimated.
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SVR (cont’d)
By utilizing Huber loss function, the above regression
function can be represented as

φ(x) =
N

∑

i=1

θiK(x, xi) + ς, (5)

whereK(x, y) is a kernel function satisfying
K(x, y) = Φ(x)TΦ(x).
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SVR (cont’d)
θi (i = 1, 2, . . . , N) can be obtained from the
following quadratic program:

min
1

2

N
∑

i=1

N
∑

j=1

θiθjK(xi, xj) −
N

∑

i=1

θiyi +
ε

2µ

N
∑

i=1

θ2
i ,

s.t.
N

∑

i=1

θi = 0,

−µ ≤ θi ≤ µ, i = 1, 2, . . . , N ;

whereε > 0 is an accuracy parameter required for the
approximation,µ > 0 is a pre-specified parameter.
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SVR (cont’d)
The neural network with a discontinuous activation
function for solving the above quadratic program:

ǫ
dz

dt
= −Pz + [PQ +

α

N
eeT ]g(z) + q,

θ = (PQ +
α

N
eeT )−1(Pz − q),

wheree = [1, 1, . . . , 1]T ,
P = I − eeT/N,Q = {K(xi, xj)}N×N + εI/µ,
q = (I − eeT/N)y with y = −(y1, y2, . . . , yn), and
h = −l = µe in the activation function.
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SVR (cont’d)
Moreover,ς can be obtained from

ς = −
1

N
(eT (Q − I)θ∗ + eT c − eTz∗),

wherez∗ is an equilibrium point andθ∗ is an output
vector corresponding toz∗.

Compared with existing neural networks for SVM
learning, the existing neural networks need either
two-layer structure andn + 1 neurons.

In contrast, the neural network herein has one-layer
structure andn neurons only.
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SVR (cont’d)
For the SVR learning by using the proposed neural
network based on titanium regression dataa. Let the
kernel be a Gaussian function:

K(x, y) = exp

(

−
‖x − y‖2

2σ2

)

ε = 0.01, µ = 100 andσ = 6.
aP. Dierckx,Curve and Surface Fitting with Splines, Clarendon

Press, Oxford, 1993.
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Regression Result
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Inverse Kinematics Problem
Becausėθ is underdetermined in a kinematically
redundant manipulator, one way to determineθ̇(t)
without the need for computing the pseudoinverse is
to solve:

minimize
1

2
θ̇(t)TWθ̇(t) + cT θ̇(t),

subject to J(θ(t))θ̇(t) = ẋd(t),

η−
6 θ̇ 6 η+

whereW is a positive-definite weighting matrix,c is
an column vector, andη± are upper and lower bounds
of the joint velocity vector.
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Lagrangian Network Dynamics
Let the state vectors of output neurons and hidden
neurons be denoted byv(t) andu(t), representing
estimatedθ̇(t) and estimatedλ(t), respectively.

The dynamic equation of the two-layer Lagrangian
network can be expressed as:

ǫ1
dv(t)

dt
= −Wv(t) − J(θ(t))Tu(t) − c,

ǫ2
du(t)

dt
= J(θ(t))v(t) − ẋd(t),

whereǫ1 > 0 andǫ2 > 0.
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Lagrangian Network Architec-
ture
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7-DOF PA10 Manipulator
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Coordinate system of PA10 ma-
nipulator

Computational Intelligence Laboratory, CUHK – p. 99/145



Circular Motion of the PA10
Manipulator
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Simulation Results
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Dual Network Dynamics
To reduce the number of neurons to minimum, next
we propose a dual neural network with its dynamic
equation and output equation defined as

ǫ
du(t)

dt
= −J(θ(t))W−1JT (θ))u + ẋd(t),

v(t) = JT (θ(t))u(t);

whereu is the dual state variable,v is the output
variable.
The Lagrangian network containsn + m neurons. But
the dual network contains onlym neurons, wheren is
the number of joints andm is the dimension of the
cartesian space (i.e., 6).
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Dual Network
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Simulation Results
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Simulation Results
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Bounded Inverse Kinematics
The dual neural network with the following dynamic
equation and output equation

ǫ1
dx

dt
= −JW−1JTx + ẋd

ǫ2
dy

dt
= −W−1y + g((W−1 − I)y)

v = JTx + y

where the piecewise linear activation function

gi(ui) =







η−
i , if ui < η−

i

ui, if η−
i 6 ui 6 η+

i

η+
i , if ui > η+

i
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Piecewise Linear Activation
Function
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PA10 Drift-free Circular Motion

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

−0.2

−0.1

0

0.1

0.2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
y

z

Computational Intelligence Laboratory, CUHK – p. 108/145



PA10 Joint Variables
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Joint Velocities and Dual State
Variables
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Euclidean Norm vs. Infinity
Norm
The Euclidean norm (or 2-norm) is widely used often
because of its analytical tractability.

Minimizing the 2-norm of the joint velocities does not
necessarily minimize the magnitudes of the individual
joint velocities.

This is undesirable in situations where the individual
joint velocities are of primary interest.

Minimizing the infinity norm of velocity variables can
minimize the maximum velocity.
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Inverse Kinematics Problem
Minimizing the infinity norm ofθ̇ subject to the
kinematic constraint:

min
θ̇

∥

∥

∥θ̇
∥

∥

∥

∞
= min

θ̇

max
1≤j≤n

|eT
j θ̇|,

s.t. J(θ(t))θ̇(t) = ẋd(t),

whereej is thej-th column of the identity matrix.
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Inverse Kinematics Problem
Let

s = max
1≤j≤n

|eT
j θ̇|.

The inverse kinamatic problem can be written as

min
θ̇n

s

s.t. |eT
j θ̇| ≤ s, j = 1, 2, . . . , n

J(θ(t))θ̇(t) = ẋd(t).
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Inverse Kinematics Problem Re-
formulation
The inverse kinematics problem can be summarized in
a matrix form:

min s

s.t.

[

−I In

I In

] [

θ̇

s

]

≥

[

0

0

]

J(θ)θ̇ = ẋd(t),

whereIn = (1, 1, . . . , 1)T ∈ Rn andI is the identity
matrix.
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Primal Inverse Kinematics
Problem Formulation
Let y = (yT

1 , y2)
T , y1 = θ̇, y2 = s, then a final form of

the problem can be derived as

min cTy

s.t. A1y ≥ 0,

A2y = b(t),

where

A1 =

[

−I In

I In

]

, A2(t) = [J(θ(t), 0],

b(t) = ẋd(t), c
T = [0, 0, . . . , 1].
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Dual Inverse Kinematics Prob-
lem Formulation
The dual problem of the preceding linear program is
defined as follows:

max bTz2

s.t. AT
1 z1 + AT

2 z2 = c,

z1 ≥ 0,

wherez = (zT
1 , zT

2 )T is the dual decision variable.
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Energy Function
An energy function to be minimized can be defined
based on the primal and dual formulation:

E(y, z) =
1

2
(cTy − bz2)

2 +
1

2
‖A2y − b‖2

2 +

1

2
‖AT

1 z1 + AT
2 z2 − c‖2

2 +

1

4
(A1y)T (A1y − |A1y|) +

1

4
zT
1 (z1 − |z1|).
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Primal-Dual Network
The dynamic equation of the primal-dual network:

ǫ1ẏ = −c(cTy − bTz2) + AT
1 h(−A1y) +

AT
2 (A2y − b),

ǫ2ż1 = −h(−z1) + A1(A
T
1 z1 + AT

2 z2 − c),

ǫ3ż2 = −b(cTy − bTz2) + A2(A
T
1 z1 + AT

2 z2 − c),

wherey, z1, z2, are state vectors;h(x) = max{0, x};
andǫi are positive scaling constants.
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Primal-Dual Network Architec-
ture
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Desired Position of PA10 End-
Effector
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PA10 Circular Motion
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Joint Velocities from the La-
grangian Network
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Joint Velocities from the Primal-
Dual Network
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Infinity Norm of Joint Velocities
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Transients of Energy Function

0 0.2 0.4 0.6 0.8 1 1.2 1.4

x 10
−6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (second)

E
ne

rg
y

Computational Intelligence Laboratory, CUHK – p. 125/145



Bi-criteria Kinematic Control
The bi-criteria redundancy resolution scheme subject
to joint limits:

minimize
1

2

{

α‖θ̇‖2
2 + (1 − α)‖θ̇‖2

∞

}

subject to J(θ)θ̇ = ẋd

η−
6 θ̇ 6 η+

whereη± denote upper and lower limits of joint
velocities respectively.
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Problem Reformulation
With ej denoting thejth column of identity matrixI,

‖θ̇‖∞ = max{|θ̇1|, |θ̇2|, · · · , |θ̇n|} = max
16j6n

|eT
j θ̇|.

With s(t) := ‖θ̇(t)‖∞, the term(1 − α)‖θ̇(t)‖2
∞/2

equals
{

min. 1−α
2 s2(t)

s.t. |eT
j θ̇| 6 s(t)

=⇒







min. 1−α
2 s2(t)

s.t.

[

I −1

−I −1

] [

θ̇(t)

s(t)

]

6

[

0

0

]

Computational Intelligence Laboratory, CUHK – p. 127/145



Problem Formulation
With y := [θ̇T , s]T , the bi-criteria problem becomes:

minimize
1

2
yTQy

subject to Ay 6 b

Cy = d

y− 6 y 6 y+

where Q :=





αI

(1 − α)



 , A :=





I −1

−I −1



 , b := 0 ∈ R2n,

C :=
[

J(θ) 0

]

, d := ẋd(t), y− :=





η−

0



 , y+ :=





η+

max{η±}




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Problem Formulation
Treat equality and inequality constraints as bound
constraints:

ξ− =





b−

d

y−



 , ξ+ =





b

d

y+



 , E =





A

C

I





with b− sufficiently negative to represent−∞. Then
the bicriteria kinematic control problem can be
rewritten as

minimize
1

2
yTQy

subject to ξ− 6 Ey 6 ξ+.
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Dual Network Dynamics

ǫ
du(t)

dt
= −EQ−1ETu(t) + g((EQ−1ET − I)u(t)),

y(t) = Q−1ETu(t).
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Simulation Results
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Joint Velocity
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Norm Comparison
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Grasping Force Optimization
Consider a multifingered robot hand grasping a single
object in a3-dimensional workspace withm point
contacts between the grasped object and the fingers.

The problem of the grasp force optimization is to find
a set of contact forces such that the object is held at
the desired position and external forces are
compensated.

A grasping forcexi is applied by each finger to hold
the object without slippage and to balance any
external forces.

Computational Intelligence Laboratory, CUHK – p. 134/145



Grasping Force Optimization
To ensure non-slipping at a contact point, the grasping
forcexi should satisfyx2

i1 + x2
i2 ≤ µix

2
i3, where

µi > 0 is the friction coefficient at fingeri, and
xi1, xi2, andxi3 are components of contact forcexi in
the contact coordinate frame.

Besides the form-closure constraints, to balance any
external wrenchfext to maintain a stable grasp, each
finger must apply a grasping forcexi = [xi1, xi2, xi3]
to the object such thatGx = −fext, whereG ∈ R6×3m

is the grasp transformation matrix and
x = [x1, ..., xm]T ∈ R3m is the grasping force vector.
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Grasping Force Optimization
The optimal grasping force optimization can be
formulated as the following quadtatic minimization
problem with linear and quadratic constraints:

minimize f(x) =
1

2
xTQx

subject to ci(x) ≤ 0, i = 1, ...,m;

Gx = −fext

whereq ∈ R3m, Q is a3m × 3m positive definite
matrix, andci(x) =

√

x2
i1 + x2

i2 − µixi3.
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Neurodynamic Optimization of
Gasping Force
Based on the problem formulation, we develop the
three-layer recurrent neural network for gasping force
optimization

ǫ
d

dt





x

y

z



 =





−Qx −∇c(x)y + GTz

−y + h(c(x) + y)

−Gx − fext



 ,

wherex ∈ R3m, y ∈ Rm, z ∈ R6, andǫ > 0 is a
scaling parameter.
The neural network is globally convergent to the KKT
point (x∗, y∗, z∗), wherex∗ is the optimal gasping
force.
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Neurodynamic Optimization of
Gasping Force
Consider a minimum norm forcef(x) = 1

2‖x‖
2.

A polyhedral object withM = 0.1kg is grasped by a
three-fingered robotic hand.

Let the robotic hand move along a circular trajectory
of radiusr = 0.5m with a constant velocityv =0.2m/s.

The time-varying external wrench applied to the
center of mass of the object is
fext = [0, fc sin(θ(t)),−Mg + fc cos(θ(t)), 0, 0, 0]T ,
whereg = 9.8(m/s2), θ ∈ [0, 2π], andfc = Mv2/r.
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Simulation Results
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Figure 5: Three-finger grasp example
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Simulation Results

Figure 6: Motion of the three-finger grasp
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Simulation Results
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Simulation Results
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Simulation Results
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Concluding Remarks
Neurodynamic optimization has been demonstrated to
be a powerful alternative approach to many
optimization problems.

For convex optimization, recurrent neural networks
are available with global convergence to the optimal
solution.

Neurodynamic optimization approaches provide
parallel distributed computational models more
suitable for real-time applications.
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Future Works
The existing neurodynamic optimization model can
still be improved to reduce their model complexity or
increase their convergence rate.

The available neurodynamic optimization model can
be applied to more areas such as control, robotics, and
signal processing.

Neurodynamic approaches to global optimization and
discrete optimization are much more interesting and
challenging.

It is more needed to develop neurodynamic models
for nonconvex optimization and combinatorial
optimization.
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