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Optimization is ubiquitous in nature and society.
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Introduction
Optimization is ubiquitous in nature and society.

Optimization arises in a wide variety of scientific
problems.

Optimization is an important tool for design,

planning, control, operation, and management of
engineering systems.
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Problem Formulation
Consider a general optimization problem:

OP; : Minimize  f(x)
subject to  c¢(x) <0,
= 0,

d(z)

wherex € R" is the vector of decision variableg(x)
is an objective function;(z) = [c1(x), ..., cn(2)] is
a vector-valued function, and

d(z) = [di(z),...,d,(z)]" avector-valued function.
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Problem Formulation
Consider a general optimization problem:

OP; : Minimize  f(x)
subject to  c¢(x) <

0,
d(z) = 0,

wherex € R" is the vector of decision variableg(x)

is an objective function;(z) = [c1(x), ..., cn(2)] is
a vector-valued function, and
d(z) = [di(z),...,d,(z)]" avector-valued function.

If f(x)andc(z) are convex and(x) is affine, then

OP Is a convex programming problem CP. Otherw
It IS @ nonconvex program.
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Quadratic Programs

1
QP : minimize §£IZTQ£IZ' +q'x

subject to  Ax = b,
[ < Cx < h,

where() € R™*" ,q € R", A € ™",
be R C e R"™" [ e R" heR".
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Quadratic Programs

|

QP : minimize 5:13TQ$ +q'x
subject to  Ax = b,
[ < Cx < h,

where() € R™*" ,q € R", A € ™",

be R C e R"™" [ e R" heR".

When! =0,h = oo, C' = I, QP, becomes a standar
QP:

|
QP, : minimize §£L’TQ$ +q'x

subject to Ax =0b,x >0
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Linear Programs

When() = 0, andC' = I, QP, becomes a linear
program with bound constraints:

LP; : minimize ¢’z
subject to  Ax =0,
[<x<h
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Linear Programs

When() = 0, andC' = I, QP, becomes a linear
program with bound constraints:

LP; : minimize ¢’z
subject to  Ax =0,
[<x<h

In addition, whenl = 0, andh = 400, LP; becomes
standard linear program:

LP, : minimize ¢’z
subject to  Ax = b,
x>0
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Dynamic Optimization

In many applications (e.g., online pattern recogniti
robot motion control, and onboard signal processit
real-time solutions to optimization problems are
necessary or desirable.
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Dynamic Optimization

In many applications (e.g., online pattern recogniti
robot motion control, and onboard signal processi
real-time solutions to optimization problems are
necessary or desirable.

For such applications, classical optimization
techniques may not be competent due to the probl
dimensionality and stringent requirement on
computational time.

It Is computationally challenging when optimizatior
procedures have to be performed in real time to
optimize the performance of dynamical systems.
One very promising approach to dynamic
optimization is to apply artificial neural networks.
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Neurodynamic Optimization

Because of the inherent nature of parallel and
distributed information processing in neural netwo
the convergence rate of the solution process Is not
decreasing as the size of the problem increases.
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Neurodynamic Optimization

Because of the inherent nature of parallel and

C

Istributed information processing in neural netwo

the convergence rate of the solution process Is not

C

ecreasing as the size of the problem increases.

Neural networks can be implemented physically in
designated hardware such as ASICs where
optimization is carried out in a truly parallel and
distributed manner.

This feature Is particularly desirable for dynamic
optimization in decentralized decision-making
situations.
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Existing Approaches

In their seminal work, Tank and Hopfield (1985,
1986) applied the Hopfield networks for solving a
linear program and the traveling salesman probler
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Existing Approaches

In their seminal work, Tank and Hopfield (1985,
1986) applied the Hopfield networks for solving a
linear program and the traveling salesman probler

Kennedy and Chua (1988) developed a neural net
for nonlinear programming, which contains finite

penalty parameters and thus its equilibrium points
correspond to approximate optimal solutions only.

The two-phase optimization networks by Maa and
Shanblatt (1992).

The Lagrangian networks for quadratic programmi
by Zhang and Constantinides (1992) and Zhang, €
(1992).
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Existing Approaches (cont’d)

A recurrent neural network for quadratic optimizati
with bounded variables only by Bouzerdoum and
Pattison (1993).
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Existing Approaches (cont’d)

A recurrent neural network for quadratic optimizati
with bounded variables only by Bouzerdoum and
Pattison (1993).

The deterministic annealing network for linear and
convex programming by Wang (1993, 1994).

The primal-dual networks for linear and quadratic
programming by Xia (1996, 1997).

The projection networks for solving projection
equations, constrained optimization, etc by Xia an
Wang (1998, 2002, 2004) and Liang and Wang
(2000).
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Existing Approaches (cont’d)

The dual networks for quadratic programming by >
and Wang (2001), Zhang and Wang (2002).
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Existing Approaches (cont’d)

The dual networks for quadratic programming by >
and Wang (2001), Zhang and Wang (2002).

A two-layer network for convex programming subje
to nonlinear inequality constraints by Xia and Wan
(2004).

A simplified dual network for quadratic programmi
by Liu and Wang (2006)

Two one-layer networks with discontinuous activat
functions for linear and quadratic programming by
Liu and Wang (2007).
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General Design Procedure

A design procedure begins with a given objective
function and constraint(s).

The next step involves the derivation of a

neurodynamic equation which prescribes the moti
of the activation states of the neural network.
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General Design Procedure

A design procedure begins with a given objective
function and constraint(s).

The next step involves the derivation of a
neurodynamic equation which prescribes the moti
of the activation states of the neural network.

The derivation of a neurodynamic equation is cruc
for success of the neural network approach to
optimization.

A properly derived neurodynamic equation can en
that the state of neural network reaches an equilib
and the equilibrium satisfies the constraints and

optimizes the objective function.
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oclicial veEsigllt Froceduic
(cont’d)

In general, there are two approaches to design
neurodynamic equations.
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oclicial veEsigllt Froceduic
(cont’d)

In general, there are two approaches to design
neurodynamic equations.

The first approach is based on an defined energy
function.

The second approach Is based on the existing
optimality conditions.
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General Design Procedure

The first approach starts with the formulation of an
energy function based on a given objective functio
and constraints
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General Design Procedure

The first approach starts with the formulation of an
energy function based on a given objective functio
and constraints

It plays an important role in neurodynamic
optimization.

ldeally, the minimum of a formulated energy functi
corresponds to the optimal solution of the original
optimization problem.

For constrained optimization, the minimum of the
energy function has to satisfy a set of constraints.
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oclicial veEsigllt Froceduic
(cont’d)

The majority of the existing approaches formulates

energy function by incorporating objective function
and constraints through functional transformation
numerical weighting.
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oclicial veEsigllt Froceduic
(cont’d)

Neurodynamic equations are usually derived as th
negative gradient of the energy function:

dx(t)
dt

x —VE(x(t)).
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oclicial veEsigllt Froceduic
(cont’d)

Neurodynamic equations are usually derived as th
negative gradient of the energy function:

dx(t)
dt

x —VE(x(t)).

If the enegery function is bounded blow, the stabili
of the neurodynamics can be ensured.
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oclicial veEsigllt Froceduic
(cont’d)

Second approach: Neurodynamic equations of so
recent neural networks for optimization are derivec
based on optimality conditions (e.g.,
Karush-Kuhn-Tucker condition) and projection
equations.
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oclicial veEsigllt Froceduic
(cont’d)

Second approach: Neurodynamic equations of so
recent neural networks for optimization are derivec
based on optimality conditions (e.g.,
Karush-Kuhn-Tucker condition) and projection
equations.

Stability analysis is needed explicitly to ensure the
that resulting neural network is stable.

All equilibria of a stable neural network satisfy the
optimality condition.

If the problem is a convex program, an equilibrium
point represents an optimal solution.
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oclicial veEsigllt Froceduic
(cont’d)

The next step Is to determine the architecture of th
neural network in terms of the neurons and
connections based on the derived dynamical equa
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oclicial veEsigllt Froceduic
(cont’d)

The next step Is to determine the architecture of th
neural network in terms of the neurons and
connections based on the derived dynamical equa

An activation function models important
characteristics of a neuron.

The range of an activation function usually prescril
the the state space of the neural network.

The activation function depends on the feasible re:
delimited by the constraints.

Specifically, it iIs necessary for the state space to
Include the feasible region.
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oclicial veEsigllt Froceduic
(cont’d)

Any explicit bounds on decision variables can be
realized by properly selecting the range of activati
functions.
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Any explicit bounds on decision variables can be

realized by properly selecting the range of activati
functions.

If the gradient-based method is adopted In deriving
the dynamical equation, then the convex energy
function results Iin an increasing activation functior

Precisely, if the steepest descent method Is used,

activation function is equal to the derivative of the
energy function.

Computational Intelligence Laboratory, CUHK — p. 19/1



oclicial veEsigllt Froceduic
(cont’d)

Any explicit bounds on decision variables can be
realized by properly selecting the range of activati
functions.

If the gradient-based method is adopted In deriving
the dynamical equation, then the convex energy
function results Iin an increasing activation functior

Precisely, if the steepest descent method Is used,
activation function is equal to the derivative of the
energy function.

The last step is usually devoted to simulation to te:
the performance of the neural network numerically
physically.
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Kennedy-Chua Network

The Kennedy-Chua network for solving &P

e‘é—f YV (z)—s-h(c(2)) Ve(z) —s - d(z) V()

wheree > 0 Is a scaling parameter,c R” Is the statc
vector,s > 0 Is a penalty parameter,

h(r) = (h(r1), ..., h(r,))T, andh(r;) = max{0, r;}.

M. P. Kennedy and L. O. Chua, “Neural networks for nonlingagpamming,”’|EEE Trans-
actions on Circuits and Systems, vol. 35, no. 5, pp. 554-562, May 1988.
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Kennedy-Chua Network

The Kennedy-Chua network for solving &P

e‘é—f YV (z)—s-h(c(2)) Ve(z) —s - d(z) V()
wheree > 0 Is a scaling parameter,c R” Is the statc

vector,s > 0 Is a penalty parameter,
h(r) = (h(r1), ..., h(r,))T, andh(r;) = max{0, r;}.

With a finite penalty parameter the network is
globally convergent to a near-optimal solution to al
OP even though CP.

M. P. Kennedy and L. O. Chua, “Neural networks for nonlingagpamming,”’|EEE Trans-
actions on Circuits and Systems, vol. 35, no. 5, pp. 554-562, May 1988.
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peterministic Annealing Net-
work
The deterministic annealing network for solving Ol

d
ed—f — TV Ff(z)—h(c(x) Ve(z)—d(z) ' Vd(z),
wheree > 0 Is a scaling parameter,c R” Is the statc

vector,7'(t) > 0 is a temperature parameter,
h(r) = (h(r1), ..., h(r,))t, andh(r;) = max{0,r;}.

J. Wang, “A deterministic annealing neural network for aanprogramming,’Neural Net-

works, vol. 7, no. 4, pp. 629-641, 1994.
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peterministic Annealing Net-
work
The deterministic annealing network for solving Ol

e‘é—f _ ()Y f(2) = h(e(@)) Ve(z) — d(z) V()
wheree > 0 Is a scaling parameter,c R” Is the statc
vector,7'(t) > 0 is a temperature parameter,

h(r) = (h(r1), ..., h(r,))t, andh(r;) = max{0,r;}.

If lim; .. T'(¢) = 0, then the network is globally
convergent to a feasible near-optimal solution to C
If T'(¢t) decreases gradually to O, then the network
globally convergent to an optimal solution to CP.

J. Wang, “A deterministic annealing neural network for aanprogramming,’Neural Net-

works, vol. 7, no. 4, pp. 629-641, 1994.
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Primal-Dual Network
The primal-dual network for solving LP:

e = —(¢'z —by)g — AT (Ax — b) + 2™,
dy T T
— = — — b y)b

wheree > 0 Is a scaling parameter,c R" Is the
primal state vectory € R is the dual (hidden) state

vector,z™ = (x7),...,z"), andz] = max{0, z;}.

Y. Xia, “A new neural network for solving linear and quadcafirogramming problems

|EEE Transactions on Neural Networks, vol. 7, no. 6, 1544-1548, 1996.

Computational Intelligence Laboratory, CUHK — p. 22/1



Primal-Dual Network
The primal-dual network for solving LP:

d
ed—f = —(¢'z —bly)g— AT (Az — b) + =™,
dy T T

— = — — b y)b

wheree > 0 Is a scaling parameter,c R" Is the
primal state vectory € R is the dual (hidden) state
vector,z™ = (x7),...,z"), andz] = max{0, z;}.
The network is globally convergent to an optimal
solution to LR.

Y. Xia, “A new neural network for solving linear and quadcafirogramming problems

|EEE Transactions on Neural Networks, vol. 7, no. 6, 1544-1548, 1996.
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Lagrangian Network for QP
If C =0In QPl:

6% ( f;:‘ ) _ ( —in(t);;fz(t) —q, ) |

wheree > 0, x € R",y € R,

It Is globally exponentially convergent to the optime
solutiort.
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Projection Network

A recurrent neural network called the projection
network was developed for optimization with bounc

constraints onl§P

dx

Y.S. Xia and J. Wang, “On the stability of globally projectgghamic systems/J. of Opti-
mization Theory and Applicationsol. 106, no. 1, pp. 129-150, 2000.

Y.S. Xia, H. Leung, and J. Wang, “A projection neural netwarid its application to con
strained optimization problemsEEE Trans. Circuits and Systems/bl. 49, no. 4, pp. 447-458
2002.
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Convex Program

Consider a convex programming problem without
equality constraints:

CPy;: minimize f(x)
subject to c(z) <0,z > 0

wheref(z) ande(z) = (ci(x), ...,cm(2))! are
convex,m < n.
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Equivalent Reformulation

The Karush-Kuhn-Tucker (KKT) conditions for CP:
y>0, clx)<0,x>0
Vf(z)+Ve(z)y >0, yle(z) =0

According to the projection method, the KKT
condition Is equivalent to:

{ h(z —a(Vf(x)+ Ve(r)y)) —xz =0
hy + ac(z)) —y =0,

whereh(r) = (h(ry), ..., h(r,))?!,
h(r;) = max{0, r;}, anda is any positive constant.
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Two-layer network

Based on an equivalent formulation, a two-layer
neural network was developed for Os then given

()< (el (VI ¢ Velo) )

—y + h(y + c(x))

wherez € R" andy € R™.

Y.S. Xia and J. Wang, “A recurrent neural network for norndineonvex optimization subjec
to nonlinear inequality constraintdEEE Trans. Circuits and Systems/bl. 51, no. 7, pp. 1385

1394, 2004.
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Model Architecture
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Convergence Results

For anyz(ty) andy(ty), z(t) andy(t) are continuous
and uniquewu(t) > 0if u(ty) > 0. The equilibrium
point solves CP.

If V2f(z) + S, 4 V2c(x) is positive definite on
™, then the two-layer neural network is globally

convergent to the KKT pointz*, y*), wherex* is the
optimal solution to CP.

Computational Intelligence Laboratory, CUHK — p. 29/1



I WO-layEl INEulal INSWOIK 101

QP

If C' =11inQP, leta =1 inthe two-layer neural
network for CP:

%<y) _ ( _Hg((lfﬁ)ﬂﬂyw) )

wheree > 0,z € R",y € R,

g(z) = [g(z1), .- 9(z0)]"
L x;, <l
gxi)) =< w <z <My
h; x; > h;.

It Is globally asymptotically convergent to the optirr
SO I utl O n . Computational Intelligence Laboratory, CUHK — p. 30/1



lllustrative Example

minimize inl + 0.52% + Zaz% + 0.525 — 0.921 2>

subject to Ax <b, x >0

where
1 1 2
A = —1 1 and b = 2
1 -3 —9

This problem has an optimal solution
r* = [0.427,0.809] .
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Simulation Results
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lllustrative Example

2

2

minimize  xj

20129 + T4

(21— 1)" + (22 — 3)

subjectto x>0, ¢i(x) <0(i=1,2,3),

- 4)2 — 36,

where
c1(z) = x4 + x5 — 64,
co(x) = (w1 + 3)? + (2 -
c3(x) = (1 — 3)* + (w9 + 4)° — 36.

This problem has an optimal solutiati = (0, 1.96)".
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Simulation Results
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lllustrative Example

minimize
subject to

where

(.CIZ’l — 5132)2 (1‘2 — 1‘3)2

(w5 — x4)"*

>0, ¢(zr) <0((=1,2),

ca(r) =xf+a5+xi+25—9
c1(z) = (z1 —4)° + (22 +4)° + (23 = 1)* + (24 + 1)

This problem has an optimal solution

z* = (3.013,0,0.766,0)7
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Simulation Results

X,(0), (0
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Dual Network for QP

For strictly convex QPR, () is invertible. The dynamic
equation of the dual network:

edZ—g) = —CQ 'C'y+g(CQ'C"y —y — Cq)
+C'q + 0,
z(t) = Q'Cly—q,
wheree > 0.

It Is also globally exponentially convergent to the
optimal solutiod °.
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SlTiphnned  vual NEtWOIrk 101
QP

For strictly convex QPR @ is invertible. The dynamic
equation of the simplified dual netwotk

du
€ = —Cz+ g(Cx — u),

r=Q '(AMy + CTu—q),
y = (AQ AT [-AQ'CTu+ AQ ¢ +b],

whereu € R” Is the state vectok, > 0.
It Is proven to be globally asymptotically converger
to the optimal solution.

S. Liu and J. Wang, “A simplified dual neural network for quettr programming with its

KWTA application,” [EEE Trans. Neural Networksol. 17, no. 6, pp. 1500-1510, 2006.
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lllustrative Example

minimize 3x% + 373 + 43 + 524 + w120 + Sx1 w3+
Loy — 11%1 — 55134
subject to 3x; — 3x9 — 223 + x4 = 0,
dxy + x9 — x3 — 204 = 0,
—x1 + 29 < —1,
—2 < 3x1 + 23 < 4.

Computational Intelligence Laboratory, CUHK — p. 39/1



lllustrative Example (cont’d)

6 3 5 0 | 11 |

3 6 0 1 0
= , q =

5 0 8 0 0

0 1 0 10 =5

3 -3 —2 1 0
A: 7b: 9

4 1 —1 -2 0

e |

3 0 1 O —2 4
The simplified dual neural network for solving this
guadratic programming problem needs only two
neurons, whereas the Lagrange neural network ne
twelve neurons, the primal-dual neural network ne

nine neurons, the dual neural network needs four
neurons.
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lllustrative Example (cont’d)

Transient

behaviors of the state vector
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lllustrative Example (cont’d)

Transient
behaviors of the output vectat
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lllustrative Example (cont’d)

Trajectories ofr; andz, from different initial states.



lllustrative Example (cont’d)

Trajectories ofrs andz, from different initial states.



A New Model for LP

A new recurrent neural network model with a
discontinuous activation function was recently
developed for linear programming P
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A New Model for LP

A new recurrent neural network model with a
discontinuous activation function was recently
developed for linear programming P

The dynamic equation of the new model is describ
as follows:

ez—f = —Px—o(l — P)g(x) + s, ®)

whereg(z) = (g1(71), ga(22), - - -, gn(zn))" IS the
vector-valued activation functiom,is a positive
scaling constanty iIs a nonnegative gain parameter

P = AT(AAT)"' A, and
s=—(I — P)g+ AT(AAT)"1.
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Activation Function

The followmg activation function is definédFor
1= 1,2,.

1, If xr;, > hi,

0, 1], if x; = h;,
gZ(ZIZ‘Z) = O, If €T, € (lz, hz),

[—1, O], If r; — li,

—1, If x; < ;.
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Activation Function (cont’d)

4 gi(ﬂfi)
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Convergence Results

The neural network is globally convergent to an
optimal solution of LR with C = I, if Q c Q, where
Q) is the equilibrium point set and = {z|l < x < h}.
The neural network is globally convergent to an
optimal solution of LR with C' = I, if it has a unique
equilibrium point ands > 0 when(l — P)c =0 or
one of the following conditions holds when

(I — P)c # 0:
() o= [[(I = P)cllp/ minJ_y [[(I — P)yl|, for
p=1,2 00,0r

(i) o>cl(I— P)c/ min;reX{|cT(I — P)y
whereX = {—1,0,1}"

2
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Simulation Results
Consider the following LP problem:

minimize 4oy + x9 + 213,

subject to T, — 2T + T3 = 2,
—T1 + 2513‘2 -+ X3 — 1,
—9 < L1, L9, X3 < D.

According to the above condition, the lower bound
o1S9
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Simulation Results (cont’d)

state trajectories state trajectories

. . 0.6
time (sec) time (sec)

state trajectories state trajectories

0.4 0.6 . . 0.4 0.6
time (sec) time (sec)

Transient behaviors of the states with four different valak
0O E { 3 5 9 15} Computational Intelligence Laboratory, CUHK — p. 50/1



k Winners Take All Operation

The k-winners-take-all {(WTA) operation is to selec
the £k largest inputs out of inputs (1 < k < n).
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k Winners Take All Operation

The k-winners-take-all {(WTA) operation is to selec
the £k largest inputs out of inputs (1 < k < n).

The KkWTA operation has important applications in
machine learning, such asneighborhood
classificationk-means clustering, etc.
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k Winners Take All Operation

The k-winners-take-all {(WTA) operation is to selec
the £k largest inputs out of inputs (1 < k < n).

The KkWTA operation has important applications in
machine learning, such asneighborhood
classificationk-means clustering, etc.

As the number of inputs increases and/or the sele
process should be operated in real time, parallel
algorithms and hardware implementation are
desirable.
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EWTA Problem Formulations
The KkWTA function can be defined as:

ﬂfiZf(Ui):{

1, if u; € {k largest elements af},
0, otherwise

whereu € R” andz € R" is the input vector and
output vector, respectively.
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EWTA Problem Formulations
The KkWTA function can be defined as:

x@-:f(u@-):{

1, if u; € {k largest elements af},
0, otherwise

whereu € R” andz € R" is the input vector and
output vector, respectively.

The kWTA solution can be determined by solving t
following linear integer program:

n
minimize — > w;x;,
1=1

subjectto ) z; =k,
=1

xi S {07 1 } 9 Z %mpllaworglmteﬂigen(fb L}abZthOry, CUHK — p. 52/1



RVV IA FTopielllt  FOrmulatdoris
(cont’d)

If the kth and(k + 1)th largest elements af are
different (denoted ag, anduy_; respectively), the
KWTA problem is equivalent to the following LP or
QP problems:

minimize —u'z or %LIZTQZ—UTLE,

subjectto ) z; =k,
1=1
0<z;<1, i=1,2,...,n,

wherea < u; — 4.1 IS @ positive constant.
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1ne Primal-Dual Network for
EWTA

The primal-dual network based on the QP formula
needs3n + 1 neurons an®n + 2 connections, and it:
dynamic equations can be written as:

dx
dt

—(14+a)(x— (z+ve+w—ar+u)")
—(ele—kle—z—y+e

% = —y+y+wt—z—y+e
W = —ef(z—(z+vet+tw—azx+u)h)
+el'r — k
W — g+ (x+vetw—ar+u)’
—y+(y+w) T +zr+y—e
wherez,y,w € R, v € R,e = (1,1,...,1)! € R",
ot = (z7,..., %), andz;” = 1 ey pree sy cons—p. san



Ine Projection Network for
EWTA

The projection neural network féa\WTA operation
based on the QP formulation needs- 1 neurons anc
2n + 2 connections, which dynamic equations can
written as:

{Cfl—f = A=z + f(z — nlaz — u — ve))]

W = AN—eTz+k).

wherex € R”, v € R, XA andn are positive constants

f(@) = (f(z1),..., f(za))" and

0, If x; < 0,

1, if z; > 1.
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Ine Simplitied Dual Network
for EWTA

The simplified dual neural network fa&iVTA
operation based on the QP formulatoneeds:
neurons andn connections, and its dynamic equat
can be written as:

{— = A[=My+ (M =)y —s) -5
x = My-+ s,

wherez,y € R", M = 2(I — ee! /n)/a,
s = Mu + ke/n, I is an identity matrixA and f are
defined as before.

S. Liu and J. Wang, “A simplified dual neural network for quatdr programming with its

KWTA application,” [EEE Trans. Neural Networksol. 17, no. 6, pp. 1500-1510, 2006.
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Ine Simplitied Dual Network
for EWTA



A Static Example

Letthe inputs are; =i (i =1,2,--- ,n),
n=10k=2,e=10"°% anda = 0.25.
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A Static Example (cont’'d)

Letthe inputs are; =i (i =1,2,--- ,n),
n=10k=2,e=10"°% anda = 0.25.
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A Static Example (cont’'d)
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A Static Example (cont’'d)

n=10,a=0.05

n=20,a=0.05
n =40, a=0.05
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A Dynamic Example

Let Inputs be 4 sinusoidal input signals (1.e.—= 4)
v;(t) = 10sin|27(1000t + 0.2(¢ — 1)], andk = 2.
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A One-layer K WTA Network

The dynamic equation of a new LP-basaif TA
network model is described as follows:

Ed_m = —Px—o(l — P)g(x) + s, (4)

dt
whereP = eel /n, s = u — Pu + ke/n, € is a positive
scaling constanty is a nonnegative gain parameter,

andg(z) = (g(z1), g(x2), ..., g(z,)) isa
discontinuous vector-valued activation function.
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Activation Function

A discontinuous activation function is defined as
follows:

1, If z; > 1,
[ ,1], If X; = 1,
g(x;) = ¢ 0, if 0 <ux; <1,

[—1,0], If X :O,
—1, If z; <O.
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Activation Function (cont’d)
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Convergence Results

The network (4) can perform theNTA operation if
QC{xreR":0<z< 1}, wheref is the set of

equilibrium point(s).

The network (4) can perform tHAVTA operation if it
has a unique equilibrium point ad> 0 when

(I — ee! /n)u = 0 or one of the following conditions

holds when(I — eel /n)u # 0:

> i1 |Ui_2?:1 uj/m|
2n—2

. Zyzl(ui_znzl uj/n)2
(i) o> n\/ ’I’L(’I’L—Jl)

i) o=

, OF

, OF

n

(i) o > 2max; |u; — > ;_; uj/nl,or,

\/Zf’:l(ui—zyz1 uj/m)?
T 1oy U i (i ey ug /)l |

(v) o>

m
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Model Comparisons

model type Eqn(s). | neurons con
Primal-dual neural network(??) n+1 | 6n-
Projection neural network| (??) n+1 |2n-
Simplified dual network | (?7?) n 3n
Neural network herein (4) n 2n
Neural network herein (?)(??) | n 3n

Table 1: Comparison of related neural networks

terms of model complexity.
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Simulation Results

Consider &WTA problem with input vector
w;,=1(i=1,2,...,n),n=>5k=3.

i

1 /A.:é‘:-//
vf'/' /A

Transient behaviors of tHieNTA networko = 6.
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Convergence Results (cont’d)

state trajectories

K
)

X \
I\
I‘r‘
o7
&\\“‘{\WA 7
XA
/‘?'v
\W
\
\
A, (A
'
/
/
ol v/

//h

Transient behaviors of theNTA network witho = 2.
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Convergence Results (cont’d)

time (sec)

Convergence behavior of th&VTA network with
respect to different values af
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Linear Assignment Problem

The linear assignment problem is to find an optime
solution to the following linear integer programming
problem:

non
minimize Z ZC@j%Z‘j,
i—1 j=1

subjectto > z;; =1, =12 ...,n,
j=1

ZQEUZL j:1,2,...,n,
1=1
ZIZ‘ijE{O,l}, 1,7 =1,2,....n.
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Lirical AssIgrirmerit - Fropielt
(cont’d)

If the optimal solution to problem (71) is unique, th
It Is equivalent to the following linear programming
problem:

n o n
minimize Z Z Cij T4,
i—1 j=1

subjectto > x;; =1, ¢=1,2,...,n,
j=1

SNay=1, j=1,2,...,n,
=
Oéxijgl, i,j:1,2,...,n.
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Simulation Results
Consider a linear assignment problem with

4 2 95
C=1| 3 15 2
4 2.5 1

A lower bound ofo Is 13.
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Simulation Results (cont’d)
Lete = 107 ando = 15.

state trajectories

Xll’X13’X22’X23’X31’X32

time (sec)
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Support Vector Machine

Consider a set of training examples

{(£17 yl)v (£27 y2)7 e (£N7 yN)}

where the-th exampler, € R" belongs to one of twi
separate classes labeledipy= {—1,1}.

A support vector machine provides an optimal
partition with maximum possible margin for pattern
classification.
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SVM Primal Problem

N
.1 7
ming w—l—ci_zlfZ

L ulTew) 4 21— i= 1 N
.U €Z>O’ ,[;:1’...7N.

wherec > 0 Is a regularization parameter for the
tradeoff between model complexity and training er
and¢&; measures the (absolute) difference between

w2 +0b andyz-.
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SVM Dual Problem

N N N
1
max — 2> yo(z) dlz;)aiy + Yo
1=1

i=1 j=1

N
3.t. { 2 im1 i =0

0<;<e¢, 2=1,---,N.
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SVM Dual Problem

For convenient computation here, tet= «o;y;. Then
the SVM dual problem can be equivalently written

N
min —S S aza] _Z,_] E aiYi
21] 1 1=1

N
.T. — n -
¢, <a¢;<c¢/, i1=1,---,N.

Wherec; =cC- sgn(l — yf,,) c?lﬂdC;F = C- 59”(1 + yz)
fort =1,...,NN.
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SVM Learning Network

E%GL) (—a+h(a—_(§c;+eu—y))>

wheree > 0,a €¢ R, andp € R,e = (1,...,1)".

N

dCLZ' :

Edt — —&z+h(k§_1:wikak—ﬂ+yz')ﬂ:17.--7N;
N

dp

“a —Zk_l i

=
>
@
=S
9
Q
|
=)
il
|

— [K(f(i)y ?J(j))], Wity = Ol — it
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Network Architecture
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Iris Benchmark Problem

The data of the iris problem are characterized with
four attributes (i.e., the petal length and width, sete
length and width).

The dataset consists of 150 samples belonging to
three classes (i.e., viginica, versilcolor, setosa), ea
class has 50 samples.

120 samples for training and the remaining 30 for
testing.

We usec = 0.25 and the polynomial kernel function
K(z,y) = (zly + 1), withp = 2 andp = 4.
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Simulation Results

0.05

Time (sec)

Figure 1: Convergence of the SVM Learning net
network withe = 1/150 anNdp = 2 cumpuaions insigcetasoraory cumc -p 21



Simulation Results

Figure 2. Convergence of the proposed neural nety
with e = 1/150 andp = 4
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Simulation Results

Figure 3: Support vectors of SVC using the propo
neural network with a polynomial kerngl= 2
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Simulation Results

Figure 4. Support vectors of SVC using the propo
neural network with a polynomial kernel apd= 4
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Adult Benchmark Problem

The UCI adult benchmark task is to predict whethe
household has an income greater than $50,000 ba
on 14 other fields in a census form.

Eight of those fields are categorical, while six are
continuous. The six fields are quantized into quinti
which yields a total of 123 sparse binary features.

1605 training samples and 2000 testing samples.
Gaussian RBF kernel with width @b andc = 0.5.

Lete = 0.1, and the initial point, €'9%° with the
element being.
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Adult Benchmark Problem

Method | iterations SVs| Testing accuracy
SOR 924 035 84.06
SMO 3230 033 84.06
SVM-light| 204 | 634 34,95
NN 567 0633 84.15

Table 2: Comparisons of results of the SOR, SN
SVM-light, and proposed neural network algorithm
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ouppoOIt  veClolh Regicssiolfn
(SVR)

Consider the regression problem of approximating
set of data

{(z1,11), (T2, 92), - -, (TN, yn) }
with a regression function as

Zozz T) + ¢,

where®,;(x)(v = 1,2,...,n) are the feature function
defined in a high-dimensional space,

a;(1 = 1,2,...,n)ands are parameters of the mode
to be estimated.
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SVR (cont'd)

By utilizing Huber loss function, the above regress
function can be represented as

N
o(x) = Z 0;K(x,x;) + ¢, (5)

1=1

whereK (z,y) is a kernel function satisfying
K(z,y) = ®(z)" ®(z).
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SVR (cont’d)

0; (1 =1,2,...,N) can be obtained from the
following quadratic program:

N N
min S‘Y@@K%x] ZezyﬁiZef,
1=1 g=1 1=1 1=1

N

> 60 =0,

i=1

—u<60;<upu 1=12,...,N;

wheree > 0 IS an accuracy parameter required for |
approximationy: > 0 Is a pre-specified parameter.
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SVR (cont’d)

The neural network with a discontinuous activation
function for solving the above quadratic program:

dz Q
o _p P —eel
€ z+ | Q+N€€ lg(z) + g,
0 = (PQ+ —ee”) (P2 —q),
N
wheree = [1,1,...,1]7,

P=1—ee [N,Q={K(ziz;)}nxn +el/p,

q= (I —ee" /N)ywithy = —(y1,¥2, .-, Yn), and
h = —[ = pe In the activation function.
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SVR (cont’d)

Moreover,c can be obtained from

|

G = —N(GT(Q —DNo* +elc—elz),

wherez* is an equilibrium point and* is an output
vector corresponding te'.

Compared with existing neural networks for SVM

learning, the existing neural networks need either
two-layer structure and + 1 neurons.

In contrast, the neural network herein has one-laye
structure anadh neurons only.
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SVR (cont’d)

For the SVR learning by using the proposed neura
network based on titanium regression dataset the
kernel be a Gaussian function:

9
r—1Y
K(x,y):exp( | 52 H>

e = 0.01, u = 100 ando = 6.
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Regression Result

800 900 1000 1100
X
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Inverse Kinematics Problem

Becaus# is underdetermined in a kinematically

redundant manipulator, one way to determiie
without the need for computing the pseudoinverse

to solve:

minimize

1. . .
5e(zt)Twe(t) + o),
subject to  J(0(t))0(t) = &q(t),
n- <0< nt
wherelV Is a positive-definite weighting matrix,is

an column vector, ang= are upper and lower bounc
of the joint velocity vector.
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Lagrangian Network Dynamics

Let the state vectors of output neurons and hidden
neurons be denoted hyt) andu(t), representing

estimated)(¢) and estimated (t), respectively.

The dynamic equation of the two-layer Lagrangian
network can be expressed as:

duv(t)

€ = —Wo(t) — J(O) u(t) — ¢,
du(t) ,
S ) — auth)

wheree; > 0 andey > 0.
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7-DOF PA10 Manipulator
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COOrdiriailc sysiclil Ol rAlU Illla-
nipulator

B (Pivot axis) O
@7 (Rotation axis)

<

Loawer arm } 05(Rotation axis)

84 (Pivot axiu}O

f3 (Rotation axis)
-

B2 (Pivot axis) O

C D O; (Rotation axis)

Shoulder
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dlal YA101810] U
Manipulator
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Simulation Results

Time(second) Time(second)
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Dual Network Dynamics

To reduce the number of neurons to minimum, nex
we propose a dual neural network with its dynamic
equation and output equation defined as

edlg) — JOE))YWLIT(0))u + dg(t),

v(t) = J(0(t)u(t);

whereu Is the dual state variable,is the output
variable.

The Lagrangian network contains+ m neurons. Bu
the dual network contains onht neurons, where Is
the number of joints angh Is the dimension of the
cartesian space (i.e., 6).
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Dual Network
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Bounded Inverse Kinematics

The dual neural network with the following dynami
equation and output equation

El% = —JW g e + iy,
dy _ _

S = —W =y + g(W™' = I)y)
v = Jlz+y

where the piecewise linear activation function

gi(u;) = S u, ifn <y < 77¢+
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Plecewise Linear Aclivation
Function
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PA10 Drift-free Circular Motion




PA10 Joint Variables
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Joint Velocities and bual State
Variables
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(a) Joint rate variables in rad/sec(b) Nonzero dual decision vari-
ables
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Euclidean NoOrm Vvs. INTINILY
Norm

The Euclidean norm (or 2-norm) is widely used oft
because of its analytical tractability.

Minimizing the 2-norm of the joint velocities does n
necessarily minimize the magnitudes of the individ
joint velocities.

This Is undesirable In situations where the individu
joint velocities are of primary interest.

Minimizing the infinity norm of velocity variables ca
minimize the maximum velocity.
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Inverse Kinematics Problem

Minimizing the infinity norm ofé subject to the
Kinematic constraint:

‘HH = min max ]6?9[,
x

min
0 o 1<j<n

st JO@)0(t) = dg(t),

wheree; is thej-th column of the identity matrix.
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Inverse Kinematics Problem

Let

$ = max |6]T<9|
1<j<n

The inverse kinamatic problem can be written as

min S
On

S.t. |e?9|§3, j=1,2....,n
J(O(£)0(t) = da(t).
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Inverse Kinematics Problem Rre-
formulation

The inverse kinematics problem can be summarize
a matrix form:

IR
J(0)6 = (1),

wherel, = (1,1,...,1)! € R* and[ is the identity
matrix.
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Primal lnverse Kinematics
Problem Formulation

Lety = (y7,42)", y1 = 0, y» = s, then a final form of
the problem can be derived as

min  cly
S.T. Aly Z O,
A2y — b(t)a

Computational Intelligence Laboratory, CUHK — p. 115/1



Dual Inverse Kinematics Prop-
lem Formulation

The dual problem of the preceding linear program
defined as follows:

max b’ 29
st.  Alz + Aizm =c,
<1 Z 07

wherez = (2{, 24)! is the dual decision variable.
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Energy Function

An energy function to be minimized can be definec
based on the primal and dual formulation:

1 1
E(y,z) = 5(6Ty — bzy)* + 51 A2y — bl|5 +

1
§HA1T21 + Ay 2o — |5 +
1
Z(Aly)T(Aly — [Ayy|) +

1 T
e (21 — |21])-
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Primal-Dual Network
The dynamic equation of the primal-dual network:

ay = —c(c'y—b"z)+ A h(—Awy) +
Ay (Agy — b),
€221 = —h(—z)+ Ai1(Alz + ALz — ©),
€339 = —b(cly — b)) + Ay(A] 2 + Az 29 — ©),

wherey, z1, 2o, are state vectors;(z) = max{0, z };
ande; are positive scaling constants.
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Primal-Dual Network Architec-
ture

Dual System
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Desired Position or PAl10 ENnA-
Effector
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PA10 Circular Motion
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JUITIL VEeloCllucs Ul uie La-
grangian Network
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Joint veloclities rrom the Primal-
Dual Network
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Infinity Norm of Joint Velocities

2—-norm mi_ni_mi_zati_on
co—NOrm minimization
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Transients of Energy Function

0.6 0.8
Time (second)
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Bi-criteria Kinematic Control

The bi-criteria redundancy resolution scheme subj
to joint limits:

S 1 - '
minimize 2 {alld]3 + (1 - 0)0]1% }

subjectto  J(0)8 = iy
N <6<nt

wheren™ denote upper and lower limits of joint
velocities respectively.
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Problem Reformulation
With e; denoting thejth column of identity matrix,

HHHOO — maX{’91’7 ‘(9.2‘7 len‘} — 1@?} ’6T(9’

With s(t) := [|0(t)]|s, the term(1 — a)||0(¢)|%. /2
equals

{min Lag?(t)

S.t IGTQ\ s(t)

min. 5%s%(t)
= {eel, <
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Problem Formulation
With y := [67, s]T, the bi-criteria problem becomes:

. 1
minimize §yTQy

subjectto Ay <b

Cy=d
y  <y<y’

ol I -1 5
where () := , A= , b:=0€ R™,
(1—a) —I -1
3 N I/ /N

C:= |:J(9) Oi|7 d :I‘d(t), Yy = y Yoo=
0 max{n~}
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Problem Formulation

Treat equality and inequality constraints as bound
constraints:

b~ b A
c~=ld|.ef=|d|.E=|C
Y Yt B

with b~ sufficiently negative to represento. Then
the bicriteria kinematic control problem can be
rewritten as

. 1
minimize §yTQy

subjectto ¢~ < By < €.
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Dual Network Dynamics

) — —EQ'ETu(t) + g(EQ'ET — Iu(t)),
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Simulation Results
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Joint Velocity
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Norm Comparison
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Grasping Force Optimization

Consider a multifingered robot hand grasping a sir
object in a3-dimensional workspace with point
contacts between the grasped object and the finge

The problem of the grasp force optimization is to fi
a set of contact forces such that the object is held :
the desired position and external forces are
compensated.

A grasping forcer; is applied by each finger to hold

the object without slippage and to balance any
external forces.
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Grasping Force Optimization

To ensure non-slipping at a contact point, the gras
forcez; should satisfyr?, + 2%, < p;x%, where

1; > 01s the friction coefficient at finger, and

x;1, Ti2, andx;z are components of contact foreein
the contact coordinate frame.

Besides the form-closure constraints, to balance a
external wrencly,.,; to maintain a stable grasp, eacl

finger must apply a grasping foree = |x;1, 2, ;3]
to the object such thatz = — f.,;, whereG € RO*9™
IS the grasp transformation matrix and

v = |x1,...,2m]F € R’ is the grasping force vector.
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Grasping Force Optimization

The optimal grasping force optimization can be
formulated as the following quadtatic minimization
problem with linear and quadratic constraints:

minimize  f(x) = 5:13TQ$
subject to  ¢i(z) <0, i =1,...,m;
Gr = _feazt

whereq € R*™, Q is a3m x 3m positive definite
matrix, ande;(z) = /2% + 22, — ;T3
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NCSuUurouaylialimic upuinZatoll Ol
Gasping Force

Based on the problem formulation, we develop the

three-layer recurrent neural network for gasping fo
optimization

g7 —Qx — Ve(z)y + G2
Sl B —y + h(c(z) + y) :
< —Gz — fe:z:t

wherexz € R,y € R™, z € RY, ande > 0 is a
scaling parameter.

The neural network is globally convergent to the Kl

point (z*, y*, z*), wherez* is the optimal gasping
force.
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NCSuUurouaylialimic upuinZatoll Ol
Gasping Force

Consider a minimum norm forcg(z) = ||z ||%.

A polyhedral object with\/ = 0.1kg Is grasped by a
three-fingered robotic hand.

Let the robotic hand move along a circular trajecto!
of radiusr = 0.5m with a constant velocity =0.2m/s.

The time-varying external wrench applied to the
center of mass of the object is

fort = [0, f.sin(0(t)), —Mg + f.cos(0(t)),0,0,0]
whereg = 9.8(m/s?), 0 € [0, 2x], andf. = Mv*/r.
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Simulation Results
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Simulation Results
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Simulation Results
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Simulation Results

Figure 7. Convergence of the energy function with
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Simulation Results
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Figure 8. Comparison of Euclidean norm of optin
forces using three different meth@eas ety cu - 1



Concluding Remarks

Neurodynamic optimization has been demonstrate
be a powerful alternative approach to many
optimization problems.

For convex optimization, recurrent neural networks
are available with global convergence to the optim:
solution.

Neurodynamic optimization approaches provide

parallel distributed computational models more
suitable for real-time applications.
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Future Works

The existing neurodynamic optimization model car
still be improved to reduce their model complexity
Increase their convergence rate.

The available neurodynamic optimization model ce
be applied to more areas such as control, robotics,
signal processing.

Neurodynamic approaches to global optimization &
discrete optimization are much more interesting ar
challenging.

It iIs more needed to develop neurodynamic model
for nonconvex optimization and combinatorial
optimization.
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