BIO-INSPIRED AND COGNITIVE NEURAL NETWORKS for data mining, tracking, fusion, prediction, evolution of languages and cultures

IJCNN 2007 Tutorial Orlando FL 1:30 – 3:45 pm, Aug. 12

- 1. Cognition, Complexity, and Logic
- 2. The Knowledge Instinct -Neural Modeling Fields and Dynamic Logic
- **3. Higher Cognitive Functions**
- **4. Integration of cognition and language**
- **5. Evolution of cultures (future directions)**

DETAILED OUTLINE

1. Cognition – integration of real-time signals and a priori knowledge

- 1.1. cognition
- 1.2. combinatorial complexity (CC) a fundamental problem?
- 1.5. CC since 1950s
- 1.6. CC vs. logic
- 1.6.1. formal, multivalued and fuzzy logics
- 1.6.2. dynamic logic
- 1.6.3. Aristotle vs. Godel + Alexander the Great
- 1.7. mathematics vs. mind
- 1.8. structure of the mind: concepts, instincts, emotions, behavior
- 1.9. the knowledge instinct
- 1.9.1. need for learning
- 1.9.2. "knowledge emotion" = aesthetic emotion

2. Modeling Field Theory (NMF) of cognition

- 2.1. the knowledge instinct = max similarity
- 2.2. Similarity as likelihood, as information
- 2.3. Dynamic Logic (DL)
- 2.4. applications, examples
- 2.4.2 tracking
- 2.4.3 recognition
- 2.4.4 fusion
- 2.4.5 prediction, financial prediction

- **3.** Higher cognitive functions
- 3.1. hierarchy of the mind
- 3.2. beautiful and sublime

4. Integration of cognition and language

- 4.1. language vs. cognition
- 4.2. integrated models
- 4.3. Symbols: integrated hierarchies

5. Evolution of Culture

- 6.1. Emotionality of languages and cultures
- 6.2. Evolution of cultures
- 6.5. English vs. Arabic
- 6.5. Terrorist's consciousness
- 6.6. Models of cultural evolution
- 6.6.1. Dynamic cultures
- 6.6.2 Traditional cultures
- 6.6.3 Interacting cultures
- 6.7 Role of music in evolution of the mind and culture
- 6.8 Science vs. religion

6. Future direction, predictions, testing, publications

COGNITION

Understanding the world around

- Perception
- Simple objects
- Complex situations

Integration of real-time signals and existing (a priori) knowledge

- From signals to concepts
- From less knowledge to more knowledge

- Cognition and language involve evaluating large numbers of combinations
 - Pixels -> objects -> scenes
- Combinatorial Complexity (CC)
 - A general problem (since the 1950s)
 - Detection, recognition, tracking, fusion, situational awareness, language...
 - Pattern recognition, neural networks, rule systems...

Combinations of 100 elements are 100¹⁰⁰

- This number ~ the size of the Universe
 - > all the events in the Universe during its entire life

- CC was encountered for over 50 years
- Statistical pattern recognition and neural networks: CC of learning requirements
- Rule systems and AI, in the presence of variability : CC of rules
 - Minsky 1960s: Artificial Intelligence
 - Chomsky 1957: language mechanisms are rule systems
- Model-based systems, with adaptive models: CC of computations
 - Chomsky 1981: language mechanisms are model-based (rules and parameters)
- Current ontologies, "semantic web" are rule-systems
 - Evolvable ontologies : present challenge

CC is related to formal logic

- -Law of excluded middle (or excluded third)
- Gödel proved that logic is "illogical," "inconsistent" (1930s)
- -CC is Gödel's "incompleteness" in a finite system

Fuzzy logic eliminated the "law of excluded third"

- -Fuzzy logic systems are either too fuzzy or too crisp
- The mind fits fuzziness for every statement at every step => CC

Logic pervades all algorithms and neural networks

 - rule systems, fuzzy systems (degree of fuzziness), pattern recognition, neural networks (training uses logical statements)

Dynamic Logic unifies formal and fuzzy logic

- initial "vague or fuzzy concepts" dynamically evolve into "formal-logic or crisp concepts"
- Dynamic logic
 - based on a similarity between models and signals
- Overcomes CC of model-based recognition
 - fast algorithms

ARISTOTLE VS. GÖDEL logic, forms, and language

Aristotle

- Logic: a supreme way of argument
- Forms: representations in the mind
 - Form-as-potentiality evolves into form-as-actuality
 - Logic is valid for actualities, not for potentialities (Dynamic Logic)
- Language and thinking are closely linked

From Boole to Russell: formalization of logic

- Logicians eliminated from logic uncertainty of language
- Hilbert: formalize rules of mathematical proofs forever

Gödel (the 1930s)

Logic is not consistent

Aristotle and Alexander the Great

- Cognition, complexity, and logic
 - Logic does not work, but the mind does
- The Mind and Knowledge Instinct
 - Neural Modeling Fields and Dynamic Logic
- Higher Cognitive Functions
- Integration of cognition and language
- Evolution of Cultures
- Future directions

STRUCTURE OF THE MIND

- Concepts
 - Models of objects, their relations, and situations
 - Evolved to satisfy instincts
- Instincts
 - Internal sensors (e.g. sugar level in blood)
- Emotions
 - Neural signals connecting instincts and concepts
 - e.g. a hungry person sees food all around
- Behavior
 - Models of goals (desires) and muscle-movement...

Hierarchy

 Concept-models and behavior-models are organized in a "loose" hierarchy

Model-concepts always have to be adapted

- lighting, surrounding, new objects and situations
- even when there is no concrete "bodily" needs

Instinct for knowledge and understanding

- Increase similarity between models and the world

Emotions related to the knowledge instinct

- Satisfaction or dissatisfaction
 - change in similarity between models and world
- Related not to bodily instincts
 - harmony or disharmony (knowledge-world): aesthetic emotion

A mathematical construct modeling the mind

- Neural synaptic fields represent model-concepts
- A loose hierarchy of more and more general concepts
- At every level:
 - > bottom-up signals, top-down signals (models)
 - ≻KI, concepts-models, emotions, behavior
- Concepts become input signals to the next level

Bottom-up signals

- Pixels or samples (from sensor or retina) $\mathbf{x}(n), n = 1,...,N$
- Top-down signals: concept-models
 M_m(S_m,n), parameters S_m, m = 1, ...;
 Models predict expected signals from objects
- Goal: learn models and understand signals (knowledge instinct)

- The knowledge instinct = maximization of similarity between signals and models
- Similarity between signals and models, L
 - $L = \ell(\{\mathbf{x}\}) = \prod_{n} \ell(\mathbf{x}(n))$
 - $\ell(\mathbf{x}(n)) = \sum_{m} r(m) \ell(\mathbf{x}(n) | \mathbf{M}_{m}(\mathbf{S}_{m}, n))$
 - $l(\mathbf{x}(n) | \mathbf{M}_m(\mathbf{S}_m, n))$ is a conditional similarity for x(n) given m
 - {n} are not independent, M(n) may depend on n'
- CC: L contains M^N items: all associations of pixels and models (LOGIC)

Start with a set of signals and unknown object-models

- any parameter values \boldsymbol{S}_{m}
- associate object-model with its contents (signal composition)
- (1) $f(m|n) = r(m) \ell(n|m) / \sum_{m'} r(m') \ell(n|m')$

Improve parameter estimation

- (2) $\mathbf{S}_{m} = \mathbf{S}_{m} + \alpha \sum_{n} f(m|n) \left[\partial \ln \ell(n|m) / \partial \mathbf{M}_{m}\right]^{*} \left[\partial \mathbf{M}_{m} / \partial \mathbf{S}_{m}\right]$
 - (α determines speed of convergence)
- learn signal-contents of objects

Continue iterations (1)-(2). Theorem: MF is a converging system

- similarity increases on each iteration
- aesthetic emotion is positive during learning

OUTLINE

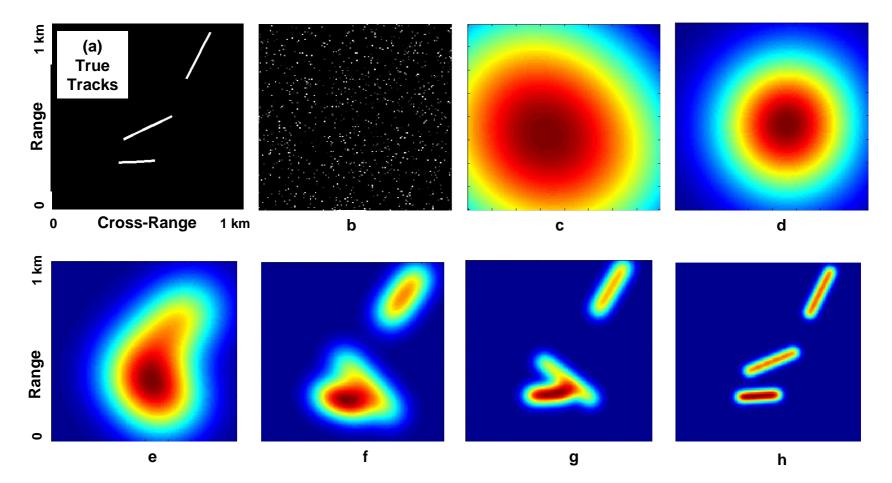
- Cognition, complexity, and logic
 - Logic does not work, but the mind does
- The Mind and Knowledge Instinct
 - Neural Modeling Fields and Dynamic Logic
 - Application examples
- Higher Cognitive Functions
- Integration of cognition and language
- Evolution of Cultures
- Future directions

APPLICATIONS


- Many applications have been developed
 - Government
 - Medical
 - Commercial (about 25 companies use this technology)
- Sensor signals processing
- Financial market predictions
 - Market crash on 9/11 predicted a week ahead
- Internet search engines
 - Based on text understanding
- Evolving ontologies for Semantic Web

TRACKING AND DETECTION BELOW CLUTTER

DL starts with uncertain knowledge, and similar to human mind does not sort through all possibilities, but converges rapidly on exact solution



3 targets, 6 scans, signal-to-clutter, S/C ~ -3.0dB

TRACKING AND DETECTION BELOW CLUTTER

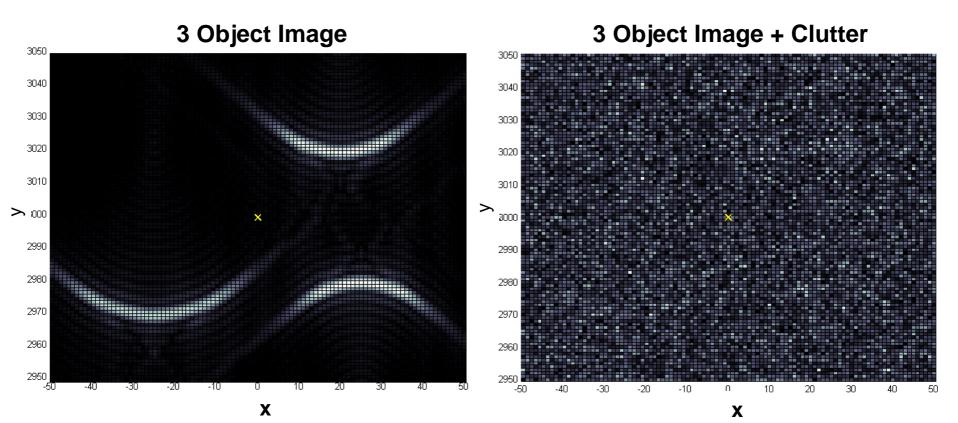

3 targets, 6 scans, 3000 data points, signal-to-clutter, S/C \sim -3.0dB Complexity: MHT~M^N ~10¹⁷⁰⁰; DL ~ 10⁶, Improvement in S/C about 100 times

IMAGE PATTERNS BELOW CLUTTER

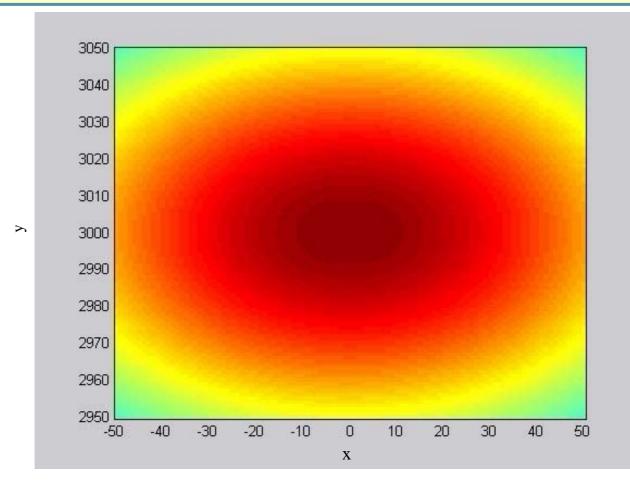
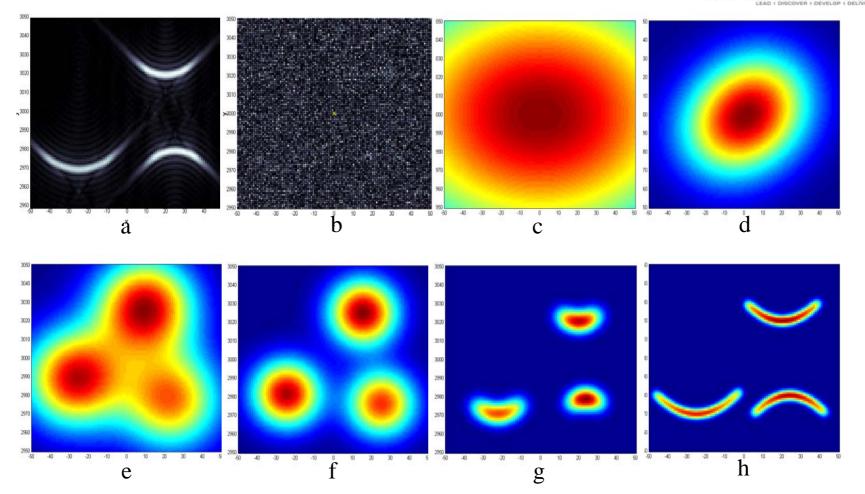


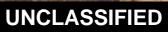
IMAGE PATTERNS BELOW CLUTTER



DL starts with uncertain knowledge, and similar to human mind does not sort through all possibilities like an MHT, but converges rapidly on exact solution

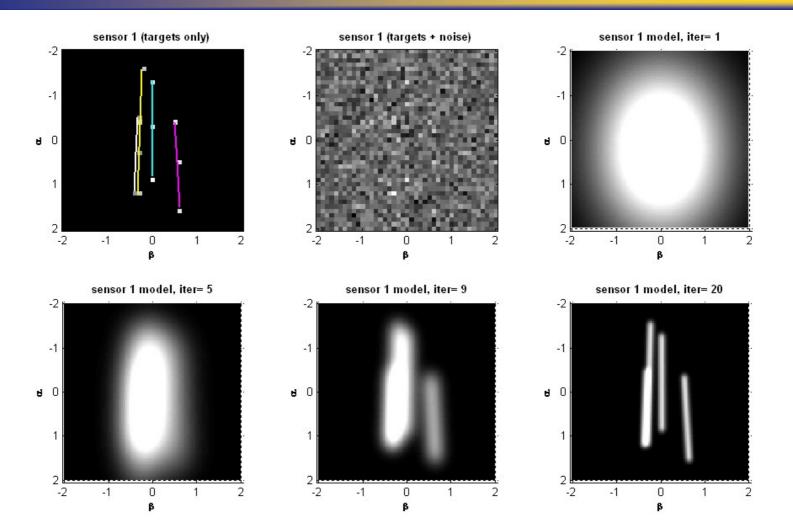
IMAGE PATTERNS BELOW CLUTTER (dynamic logic iterations see note-text)

3 targets, 10,000 data points, signal-to-clutter, S/C ~ 0.5 Complexity: MHT~M^N ~10⁵⁰⁰⁰; DL ~ 10⁶, Improvement in S/C about 100 times

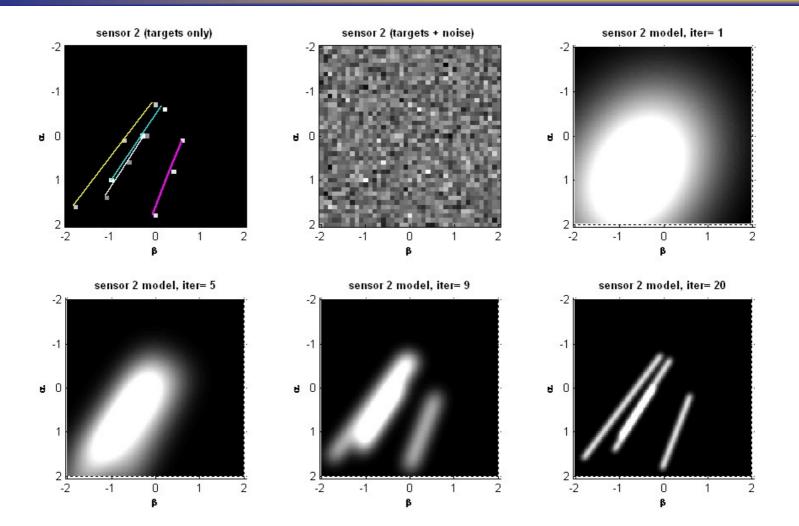


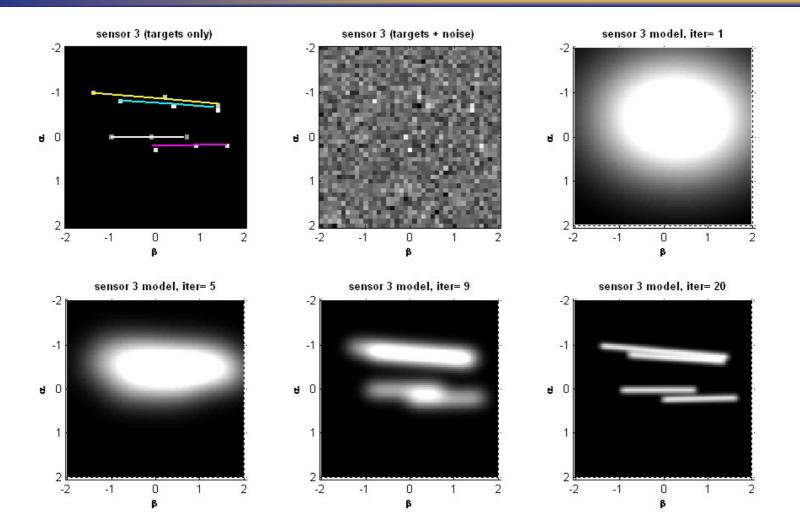
The difficult part of sensor fusion is association of data among sensors

- Which sample in one sensor corresponds to which sample in another sensor?
 - The most difficult: concurrent detection, tacking, and fusion

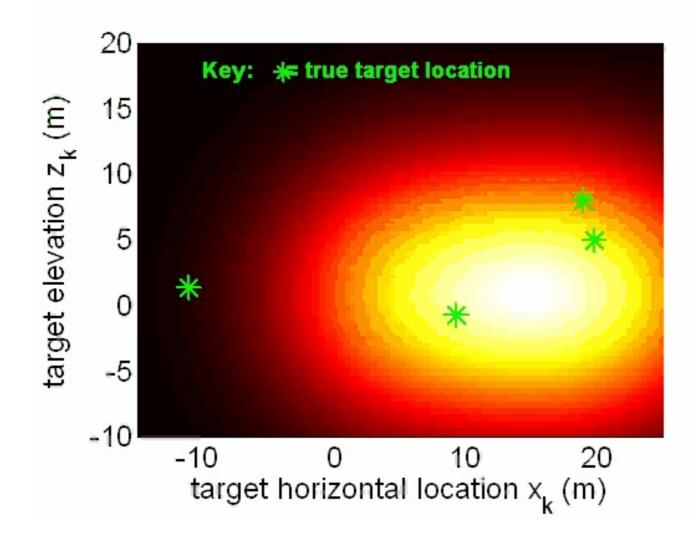


Source: UAS Roadmap 2005-2030


Sensor 1 (of 3): Models Evolve to find targets using all 3 sensors

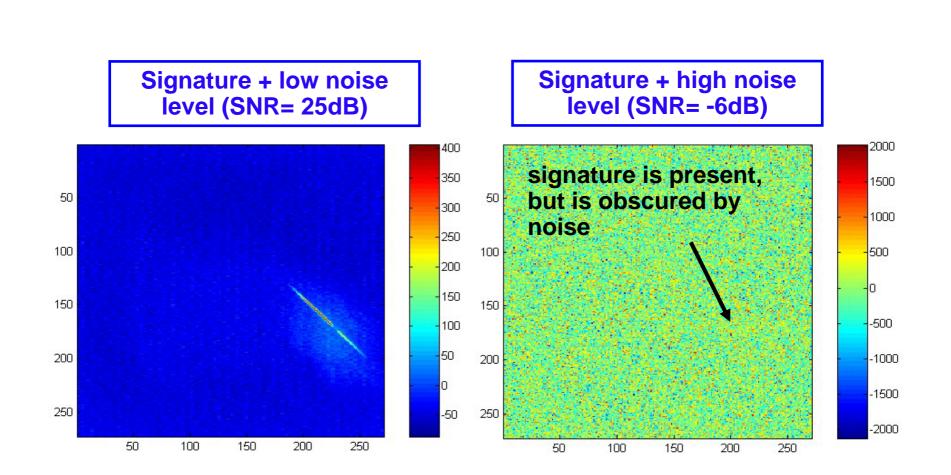

Sensor 2 (of 3): Models Evolve to find targets using all 3 sensors

Sensor 3 (of 3): Models Evolve to find targets using all 3 sensors

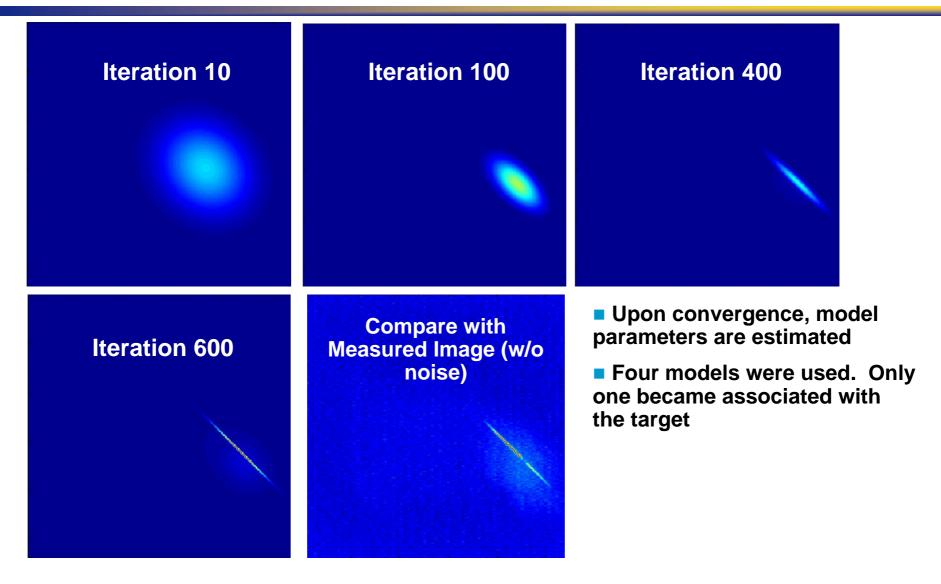


NAVIGATION, FUSION, TRACKING, AND DETECTION

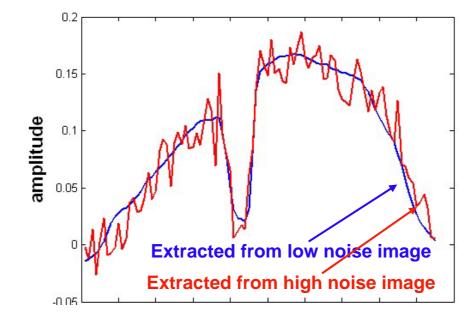
(this is the basis for the previous 3 figures, all fused in x,y,z, coordinates; double-click on the blob to play movie)


RCE RESEARCH LABORATO

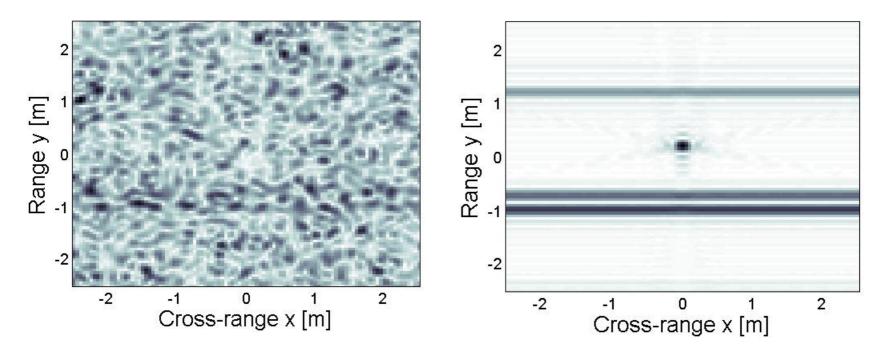
DETECTION IN A SEQUENCE OF IMAGES



DETECTION IN IMAGE SEQUENCE TEN ROTATION FRAMES WERE USED



TARGET SIGNATURE


RADAR IMAGING THROUGH WALLS

RADAR IMAGING THROUGH WALLS

Standard SAR imaging does not work Because of refraction, multi-paths and clutter Estimated model, work in progress Remains:

-increase convergence area

-increase complexity of scenario

-adaptive control of sensors

PREDICTION

- Simple: linear regression
 - y(x) = Ax+b
 - Multi-dimensional regression: y,x,b vectors, A matrix
- Solution to linear regression (well known)
 - Estimate means <y>, <x>, and x-y covariance matrix C

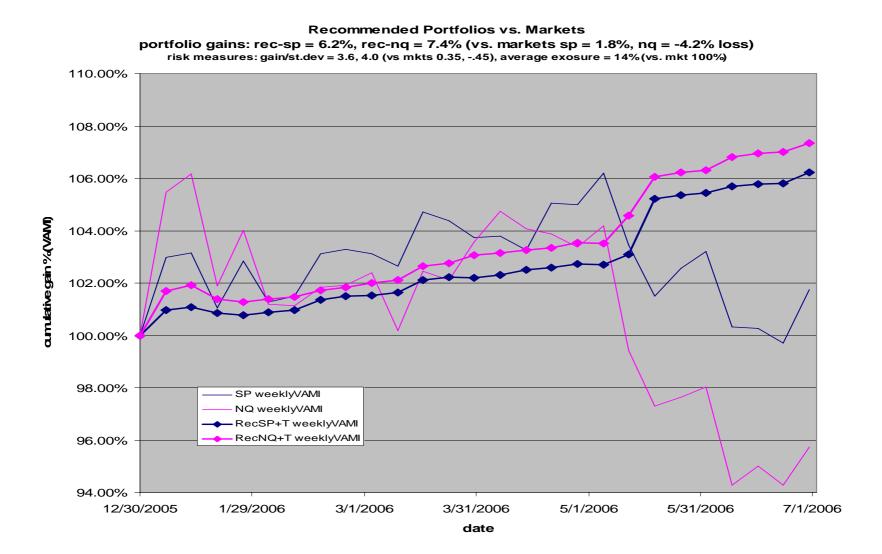
-
$$A = C_{yx} C_{xx}^{-1}; b = \langle y \rangle - A \langle x \rangle$$

Difficulties

- No sufficient data to estimate C
- Non-linear y(x), unknown shape
- y(x) changes regime (from up to down)
 - this is the most important event (financial prediction)

General non-linear regression (GNLR)

- $-\mathbf{y}(\mathbf{x}) = \sum_{m} \mathbf{f}(\mathbf{m}|\mathbf{n}) \mathbf{y}_{m}(\mathbf{x}) = \sum_{m} \mathbf{f}(\mathbf{m}|\mathbf{n}) (\mathbf{A}_{m}\mathbf{x}+\mathbf{b}_{m})$
- A_m and b_m are similar to A,b in linear regression with one change: all $\sum_{n} (...)$ are changed into $\sum_{n} f(m|n)(...)$

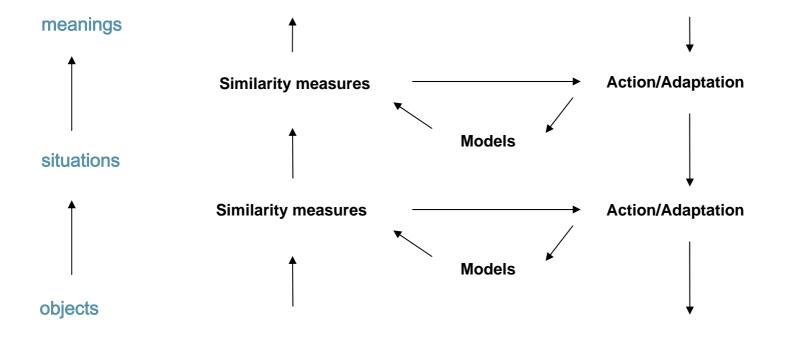

Interpretation

 m are "regimes" or "processes", f(m|x) determines influence of regime m at point x

Applications

Detection of y(x) regime change (e.g. financial prediction or control)

FINANCIAL MARKET PREDICITION



- Cognition, complexity, and logic
- The Mind and Knowledge Instinct
- Higher Cognitive Functions
- Integration of cognition and language
- Evolution of Cultures
- Future directions

- Abstract models are at higher levels of hierarchy
- At every level
 - Bottom-up signals are lower-level-concepts
 - Top-down signals are concept-models
 - Behavior-actions (including adaptation)

CONSCIOUSNESS AND UNCONSCIOUS

- Jung: conscious concepts and unconscious archetypes
- Grossberg: models in a resonant state reach consciousness
- NMF: fuzzy mechanisms (DL) are unconscious, crisp concept-models, adapted and matched to data are conscious
 - Higher, abstract concepts are less conscious

- Not related to bodily satisfaction
- Satisfy instincts for knowledge
 - Improve world understanding
- Not just what artists do
- Guide every perception and cognition process
- Perceived as feeling of harmony-disharmony
 - satisfaction-dissatisfaction
- Maximize similarity between models and world
 - between our understanding of how things ought to be and how they actually are in the surrounding world; Kant: aesthetic emotions

- Harmony is an elementary aesthetic emotion
 - higher aesthetic emotions are involved in the development of more complex "higher" models
- The highest forms of aesthetic emotion, beautiful
 - related to the most general and most important models
 - models of the meaning of our existence, of our purposiveness
 - beautiful object stimulates improvement of the highest models of meaning
- Beautiful "reminds" us of our purposiveness
 - Kant called beauty "aimless purposiveness": not related to bodily purposes
 - he was dissatisfied by not being able to give a positive definition: knowledge instinct
 - absence of positive definition remained a major source of confusion in philosophical aesthetics till this very day
- Beauty is separate from sex, but sex makes use of all our abilities, including beauty

- Cognition, complexity, and logic
- The Mind and Knowledge Instinct
- Higher Cognitive Functions
- Integration of cognition and language
- Evolution of Cultures
- Future directions

LANGUAGE vs. COGNITION

- "Nativists", since the 1950s
 - Language is a separate mind mechanism (Chomsky)
 - Pinker: language instinct
- "Cognitivists", since the 1970s
 - Language depends on cognition
 - Talmy, Elman, Tomasello...
- "Evolutionists", since the 1980s
 - Hurford, Kirby, Cangelosi...
 - Language transmission between generations
- NMF / DL was extended to language ~ 2000
- Co-evolution of language and cognition

WHAT WAS FIRST COGNITION OR LANGUAGE?

- How language and thoughts come together?
- Logical, conscious
 - "final results" ~ logical concepts
- Language seems completely conscious
 - A child at 5 knows about "good" and "bad" guys
 - Are these conscious concepts?
- Unconscious
 - fuzzy mechanisms of language and cognition
- Logic:
 - Same mechanisms for L. & C.
 - Did not work (←CC)
- Sub-conceptual, sub-conscious integration

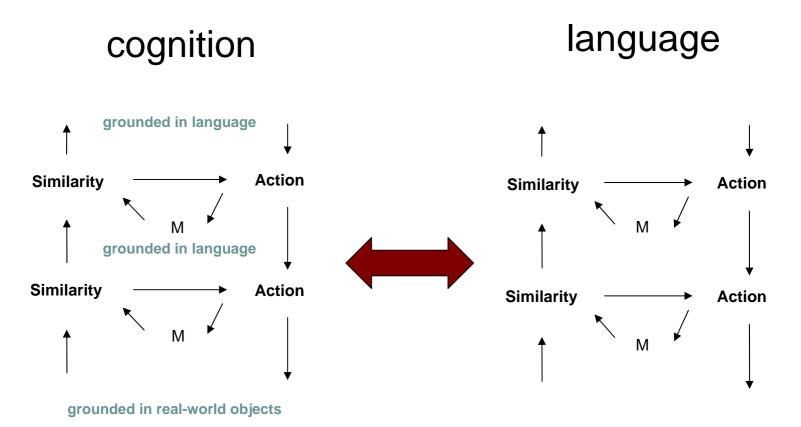
Where language and cognition come together?

- A fuzzy concept m has linguistic and cognitive-sensory models
 - $\mathbf{M}_{m} = \{ \mathbf{M}_{m}^{\text{cognitive}}, \mathbf{M}_{m}^{\text{language}} \};$
- Language and cognition are fused at fuzzy pre-conceptual level
 - before concepts are learned

Understanding language and sensory data

- Initial models are fuzzy blobs
- Language models have empty "slots" for cognitive model (objects and situations) and v.v.
- Different speed of learning L. and C.
- Language participates in cognition and v.v.

L & C help learning and understanding each other


- Help associating signals, words, models, and behavior

Integrated hierarchies of Cognition and Language

- High level cognition is only possible due to language
- Language is only possible due to cognition

- Cognition, complexity, and logic
- The Mind and Knowledge Instinct
- Higher Cognitive Functions
- Integration of cognition and language
- Evolution of languages and cultures
 - Future directions

EMOTIONS IN LANGUAGE

- Animal vocal tract
 - controlled by old (limbic) emotional system
 - involuntary
- Human vocal tract
 - controlled by two emotional centers: limbic and cortex
 - Involuntary and voluntary

• Human voice determines emotional content of cultures

- Emotionality of language is in its sound: melody of speech

CULTURE AND LANGUAGE

- Animal consciousness
 - Undifferentiated, few vague concepts
 - No mental "space" between thought, emotion, and action
- Evolution of human consciousness and culture
 - More differentiated concepts
 - More mental "space" between thoughts, emotions, and actions
 - Created by evolution of language
- Language, concepts, emotions
 - Language creates concepts
 - Still, colored by emotions

EVOLUTION OF CULTURES

- The knowledge instinct
 - Two mechanisms: differentiation and synthesis
- Differentiation
 - At every level of the hierarchy: more detailed concepts
 - Separate concepts from emotions
- Synthesis
 - Knowledge has to make meaning, otherwise it is useless
 - Diverse knowledge is unified at the higher level in the hierarchy
 - Connect concepts and emotions
 - Connect language and cognition
 - Connect high and low: concepts acquire meaning at the next level

LANGUAGE EMOTIONS AND CUTURES

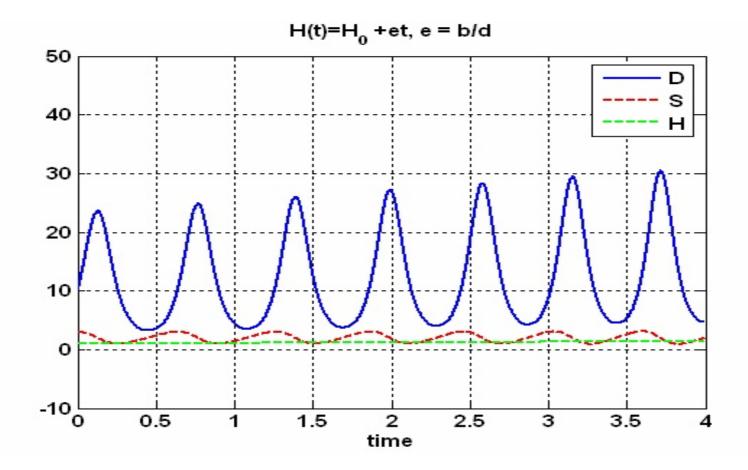
- Conceptual content of culture: words, phrases

 Easily borrowed among cultures
- Emotional content of culture
 - -In voice sound (melody of speech)
 - -Determined by grammar
 - -Cannot be borrowed among cultures
- English language (Diff. > Synthesis)
 - –Weak connection between conceptual and emotional (since 15 c)
 –Pragmatic, high culture, but may lead to identity crisis
- Arabic language (Synthesis > Diff.)
 - -Strong connection between conceptual and emotional
 - -Cultural immobility, but strong feel of identity (synthesis)

- Ancient consciousness was "fused"
 - Concepts, emotions, and actions were one
 - Undifferentiated, fuzzy psychic structures
 - Psychic conflicts were unconscious and projected outside
 - Gods, other tribes, other people
- Complexity of today's world is "too much" for many
 - Evolution of culture and differentiation
 - Internalization of conflicts: too difficult
 - Reaction: relapse into fused consciousness
 - Undifferentiated, fuzzy, but simple and synthetic
- The recent terrorist's consciousness is "fused"
 - European terrorists in the 19th century
 - Fascists and communists in the 20th century
 - Current Moslem terrorists

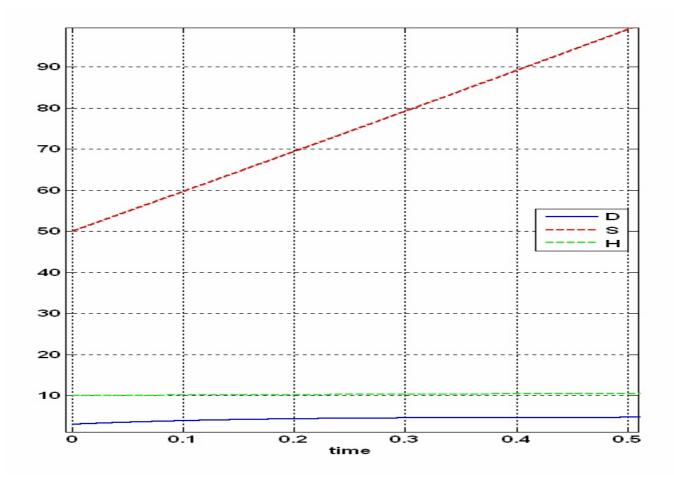
Differentiation, D, synthesis, S, hierarchy, H

dD/dt = a D G(S); G(S) = (S - S0) exp(-(S-S0) / S1)


dS/dt = -bD + dH

 $H = H0 + e^{*}t$

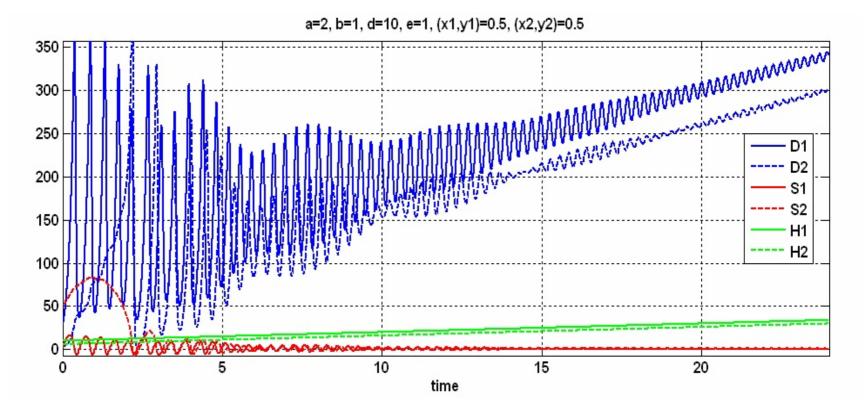
DYNAMIC CULTURE



Average synthesis, high differentiation; oscillating solution Knowledge accumulates; no stability

TRADITIONAL CULTURE

High synthesis, low differentiation; stable solution Stagnation, stability increases


Two cultures

- dynamic and traditional
- slow exchange by D and S

$$dD_{k}/dt = a_{k} D_{k} G(S_{k}) + x_{k}D_{\underline{k}}$$

$$dS_{k}/dt = -b_{k}D_{k} + d_{k}H_{k} + y_{k}S_{\underline{k}}$$

$$H_{k} = H0_{k} + e_{k}^{*}t$$

INTERACTING CULTURES

- 1) Early: Dynamic culture affects traditional culture, no reciprocity
- 2) Later: 2 dynamic cultures stabilize each other

Knowledge accumulation + stability

ROLE OF MUSIC IN EVOLUTION OF THE MIND

- Melody of human voice contains vital information
 - About people's world views and mutual compatibility
 - Exploits mechanical properties of human inner ear
 - Consonances and dissonances
- Tonal system evolved (14th to 19th c.) for
 - Differentiation of emotions
 - Synthesis of conceptual and emotional
 - Bach integrates personal concerns with "the highest"
- Pop-song is a mechanism of synthesis
 - Integrates conceptual (lyric) and emotional (melody)
 - Also, differentiates emotions
 - Bach concerns are too complex for many everyday needs
 - Human consciousness requires synthesis immediately
- Rap is a simplified, but powerful mechanism of synthesis
 - Exactly like ancient Greek dithyrambs of Dionysian cult

- Religion \longleftrightarrow teleology (purpose)

• Wrong!

- In basic physics causality and teleology are equivalent
- The principle of minimal energy is teleological
- More general, min. Lagrangian
- The knowledge instinct
 - Teleological principle in evolution of the mind and culture
 - Dynamic logic is a causal law equivalent to the KI
 - Causality and teleology are equivalent

FUTURE DIRECTIONS

research, predictions and testing of NMF/DL

- Mathematical development
 - DL in Hierarchy, mechanisms of Synthesis
 - Add emotions to computer models of language evolution
- Psycholinguistic tests
 - Measure emotionality of various languages in labs
- Mathematical-simulation tests
 - Joint evolution of language and cognition
- Historical linguistics
 - Concurrent evolution of languages, consciousness, and cultures
- Music
 - Direct effect on emotions, mechanism of synthesis
 - Concurrent evolution of music, consciousness, and cultures
- Improve human condition around the globe
 - Diagnose cultural states (up, down, stagnation), measure D, S, H
 - Develop predictive cultural models, integrate spiritual and material causes
 - Identify language and music effects that can advance consciousness and reduce tensions
- Semantic Web and Cyberspace
 - Adaptive ontologies
 - Learn from human users
 - Acquire cultural knowledge
 - Enable culturally-sensitive communication
 - Help us understand ourselves
 - Help us understand each other

PUBLICATIONS

280 publications - recent: CI Magazine

OXFORD UNIVERSITY PRESS (2001; 3rd printing)

2007:

The Knowledge Instinct Basic Books

Neurodynamics of High Cognitive Functions with Prof. Kozma, Springer

Sapient Systems with Prof. Mayorga, Springer

Neural Networks and Intellect

Using Model-Based Concepts

Leonid I. Perlovsky

Predictions and testing of the theory

Humboldt: Inner linguistic form (~1830s)

PREDICTIONS AND TESTING of NMF/DL theory of the mind

Experimental testing

- Neural, psychological, and psycholinguistic labs
- Simulation of multi-agent evolving systems

Instinctual learning mechanisms

Ongoing and future research:

- similarity measure as a foundation of knowledge and language instincts
- mechanisms of model parameterization and parameter adaptation
- dynamics of fuzziness during perception/cognition/learning
- mechanisms of language and cognition integration
- emotionality of languages and cultures
- mechanisms of differentiation and synthesis
- mechanisms of cultural evolution
- role of music in synthesis and in cultural evolution

- In the 1830s Humboldt discussed two types of linguistic forms
 - words' outer linguistic form (dictionary) a formal designation
 - and inner linguistic form (???) creative, full of potential
- This remained a mystery for rule-based AI, structural linguistics, Chomskyan linguistics
 - rule-based approaches using the mathematics of logic make no difference between formal and creative
- In NMF / DL there is a difference
 - static form of learned (converged) concept-models
 - dynamic form of fuzzy concepts, with creative learning potential, emotional content, and unconscious content