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min f(x)
subject to g(x)

174
o

x € R”

x € R" — nvariables, i =1 n
R" — R™ —— m constraints, j =1
R" — RP

—  p objective functions, k =1
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x € R"

‘R" — R™
f:R

R" — RP

min f(x)

subject to g(x) =< 0
x € R"

— nvariables, i=1,...,n

— mconstraints, j=1,...,.m

——  p objective functions, k=1, ...,
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min f(x)
subject to g(x) = 0
€ R"

X

x € R" — nvariables, i=1,...,n
g:R"—=R"™ — mconstraints, j=1,...,m
f:R" —RP — pobjective functions, k=1,...,p
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e X={xeR": g(x) 20}
feasible set in decision space

o Y =1F(X)={f(x): xe X}

feasible set in objective space
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e X={xeR": g(x) 20}
feasible set in decision space

o Y=1F(X)={f(x):x e X}
feasible set in objective space
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ISy eyl<yifork=1,...,p

y1<y2¢>y,}<yk2fork:1 ..... p
yl<y? eyt <y?and y! # y?
R? ={y eRP:y >0}

R2 ={y e RP:y >0}

R ={y eRP:y >0}
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ISy eyl<yifork=1,...,p
vi<y’eyl<ylfork=1,...,p
y'<y?*eytSy?and ylt £ y?
RE ={y eRP:y 20}

R2 ={y e RP:y >0}

RE ={y eRP:y >0}
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eylsy?eyl<y2fork=1,...,p

eyl<y?’eyl<ytfork=1,...,p
oyt <y’ oyt <y?and y' #£y?

e RE ={yeRP:y =0}

o RZ ={yeRr:y>0}

o RZ ={y eRP:y >0}
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RE ={y eRP:y 20}
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eylsy?eyl<y2fork=1,...,p

eyl<y?’eyl<ytfork=1,...,p
oyl<y’ eyt Sy?andyl £y°
QR‘é:{yERP:yZO}

e R ={yeRP:y>0}

o RZ ={yeRP:y>0}
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eylsy?eyl<y2fork=1,...,p
eyl<y?’eyl<ytfork=1,...,p
oyl<y’ eyt Sy?andyl £y°

o R ={yeRP:y=>0}

e R ={yeRP:y>0}
ORgz{yeRP:yZO}
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@ Individual minima
(%) < fi(x) for all x € X

@ Lexicographic optimality (1)
f(X) <jex f(x) for all x € X

@ Lexicographic optimality (2)
(%) <jex T(x) for all x € X
and some permutation f™ of
(f,..., f5)




@ Individual minima
(%) < fi(x) for all x € X

@ Lexicographic optimality (1)
f(%) <jex f(x) for all x € X

@ Lexicographic optimality (2)
(%) <jex T(x) for all x € X
and some permutation f™ of

(F,....f)
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@ Individual minima
(%) < fi(x) for all x € X

@ Lexicographic optimality (1)
f(%) <jex f(x) for all x € X

@ Lexicographic optimality (2)
fT(X) <jex f™(x) for all x € X
and some permutation f™ of
(f,...s1p)

«O)» «F)»r « =>»



o Weakly efficient solutions X, g
There is no x with f(x) < f(%)
f(X) is weakly nondominated
Yun == f(XWN)

o Efficient solutions Xg

f(%x) is nondominated
Y/\/ = f(XE)

«40)>» «Fr «=» « =) = Q>



o Weakly efficient solutions X, g
There is no x with f(x) < f(X)
f(X) is weakly nondominated
YwN = f(XWN)

o Efficient solutions Xg
There is no x with f(x) < f(X)
(%) is nondominated
YN = f(XE)
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@ Properly efficient solutions X,
e X is efficient
e There is M > 0 such that for
each k and x with
fi(x) < f(X) there is | with
(%) < fi(x) and

(%) is properly nondominated
Yp/\/ = f(XpE)
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@ Properly efficient solutions X,

o X is efficient

o There is M > 0 such that for

each k and x with

fi(x) < fi(X) there is | with

fi(%) < fi(x) and

fk()?) — fk(X)
i) =A%)

II/\

(%) is properly nondominated

Yp/\/ = f(XpE)




@ Properly efficient solutions X,
e X is efficient
o There is M > 0 such that for
each k and x with
fi(x) < fi(X) there is | with
fi(%) < fi(x) and

fk()?) — fk(X)
i) =A%)

II/\

f(X) is properly nondominated
YpN = f(XpE)




e Yy # 0 if for some y® € Y the
section (yo — Rg) NY #0is

@ Xg # 0 if X is compact and f is
(R>-semi-)continuous
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e Yy # 0 if for some y® € Y the
section (yo — Rg) NY #0is

@ Xg # (0 if X is compact and f is
(R>-semi-)continuous
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XpE & XE & Kue
Yow Vv

. {(h.yz) L2 = %-)/1 < 0}




XpE C Xg C XuE
Yon © Y € Yon

Y = {()/1-Y2):y2 R o}




XpE C Xg C XuE
Yon © Y € Yon
It is possible that
Y =Y but YpN:@

Y = {(n.yz):y2 1< o}




XpE C Xg C XuE
Yon © Y € Yon
It is possible that
Y =Y but YpN:@

Y=q0mwy2):y= %vh g 0}
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Ideal point y/

Nadir point yV

) y;i\/:min{yk o
Anti-ideal point y”!

- )/l . maX{yk Ly € Y}
Utopia point yY

Uf I —~
o yU—yl e,




Ideal POint yI

Nadir point yV

° }/;iv =min{yx:y € Yy}
Anti-ideal point y*!

- )/l . maX{yk Ly € Y}
Utopia point yY

Uf I —
o yU—yl e,




Ideal point yl

° y;ﬁ =min{yc:y € Y}
Nadir pOint yN

° yLV = min{yk ye YN}
Anti-ideal point yAI

° Y;i = max{yk ye Y}
Utopia point yU

U __ A
o yU=yl— ¢




Ideal point yl

° y;ﬁ =min{yc:y € Y}
Nadir pOint yN

° yLV = min{yk ye YN}
Anti-ideal point yAI

° Y;i = max{yk ye Y}

/
° VK =vi—ex




@ Xg is non-empty
oy #yN
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Convert multiobjective problem to (parameterized) single objective
problem and solve repeatedly with different parameter values

Desirable properties of scalarizations

@ Correctness: Optimal solutions are (weakly, properly) efficient
found

e Completeness: All (weakly, properly) efficient solutions can be
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Convert multiobjective problem to (parameterized) single objective
problem and solve repeatedly with different parameter values

Desirable properties of scalarizations

@ Correctness: Optimal solutions are (weakly, properly) efficient
found

e Completeness: All (weakly, properly) efficient solutions can be
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Convert multiobjective problem to (parameterized) single objective
problem and solve repeatedly with different parameter values

Desirable properties of scalarizations

o Correctness: Optimal solutions are (weakly, properly) efficient
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Principle of Scalarization

Convert multiobjective problem to (parameterized) single objective
problem and solve repeatedly with different parameter values

Desirable properties of scalarizations
@ Correctness: Optimal solutions are (weakly, properly) efficient

e Completeness: All (weakly, properly) efficient solutions can be
found

Matthias Ehrgott Multiobjective Optimization



o Aggregate objectives

@ Convert objectives to constraints

@ Minimize distance to ideal point
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Let A >0

min {Z Mefe(x) 1 x € X} "
k=1

f
o E |
T T CR a— —
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Let A>0

min {Z Aefi(x) : x € X} o
k=1




Let A >0

min {Z Mefe(x) 1 x € X} "
k=1




Let A>0

min {Z Aefi(x) : x € X} o
k=1

o E E
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Let X be an optimal solution of (1).
Q@ /IfA>0 then X € XyE.
@ /f X\ >0 and f(X) is unique then X € Xg.
© If A >0 then % € X

@ By contradiction

© By contradiction
© Construct M so that larger tradeoff would contradict
optimality of X

OJrac




Let X be an optimal solution of (1).
Q@ /IfA>0 then X € XyE.
@ If A >0 and f(X) is unique then X € Xg.
© IfA> 0 then X € X

@ By contradiction

@ By contradiction
© Construct M so that larger tradeoff would contradict
optimality of X

OJrac
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The Weighted Sum Method: Results

Theorem

Let X be an optimal solution of (1).
Q@ /f A >0 then x € Xyk.
@ If X\ >0 and f(X) is unique then X € Xg.
© /fA>0 then X € X,e.

Proof.
© By contradiction
© By contradiction

© Construct M so that larger tradeoff would contradict
optimality of X
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The Weighted Sum Method: Results

Theorem (Geoffrion 1968)
Let X and f be such that Y = f(X) is convex.

@ I/f X € Xye then there is A > 0 such that X is an optimal
solution to (1).

Proof.
© Apply separation theorem to (Y 4+ RZ — y) and —R2

Matthias Ehrgott Multiobjective Optimization
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The Weighted Sum Method: Results

Theorem (Geoffrion 1968)
Let X and f be such that Y = f(X) is convex.

@ I/f X € Xye then there is A > 0 such that X is an optimal
solution to (1).

@ If X € X, then there is A > 0 such that X is an optimal
solution to (1).
Proof.
@ Apply separation theorem to (Y + R% —§) and —RE
@ Apply separation theorem to (cl cone Y + R; —§) and —RE
to show that weights are positive -

© If X and f are convex use properties of convex functions

Matthias Ehrgott Multiobjective Optimization
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Xse := {x € X : x is optimal solution to (1) for some A > 0}

Theorem

Assume that Y + TR’: is closed and convex. Then

Yon = f(Xse) € Yy € closure f(Xsg) = closure Yy

- B - - DA
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Xse == {x € X : x is optimal solution to (1) for some A > 0}

Assume that Y + R is closed and convex. Then

Yon = f(Xse) € Yy € closure f(Xsg) = closure Yy

. B . - DA
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Xse == {x € X : x is optimal solution to (1) for some A > 0}

Assume that Y + R; is closed and convex. Then

Yon = f(Xse) € Yn C closure f(Xsg) = closure Ypn
= - - e SNG4




Supported efficient solutions are efficient solutions with f(x) on

the convex hull of Y

...... conv(f(X)) + Ri conv(f(X)) + RZZ




Let € € RP

min f;(x)
s.t. fk(X)
g;(x)

A IIA

ek kI

0 j=1,..

.,m

()
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The e-constraint Method

Let ¢ € RP |
PR 55
min f;(x) s
st. fu(x) £ e k#I (2) )
gJ(X) § 0 jzl,...,m 3f1(1')§3.7 <

Matthias Ehrgott Multiobjective Optimization




@ If X is an optimal solution to (2) and f(X) is unique then
X e XE.

@ If X is an optimal solution to (2) then X € XyE.

© X € Xg if and only if there is £ € RP such that X is an optimal
solution to (2) forall I =1,...,p
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@ If X is an optimal solution to (2) then X € XyE.

@ If % is an optimal solution to (2) and f(X) is unique then
X € Xg.

© X € Xg if and only if there is £ € RP such that X is an optimal
solution to (2) for all | =1,...,p.
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The e-constraint Method

Theorem (Chankong and Haimes 1983)
@ If X is an optimal solution to (2) then X € X,Eg.
@ If X is an optimal solution to (2) and f(X) is unique then
X e Xg.
© X € Xg if and only if there is £ € RP such that X is an optimal
solution to (2) for all | =1,...,p.
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The e-constraint Method

Theorem (Chankong and Haimes 1983)
@ If X is an optimal solution to (2) then X € X,Eg.
@ If X is an optimal solution to (2) and f(X) is unique then
X e Xg.
© X € Xg if and only if there is £ € RP such that X is an optimal
solution to (2) for all | =1,...,p.

Proof.
By contradiction and using ¢/ = (%) O

Matthias Ehrgott Multiobjective Optimization




Let)\eRgandeeRp

p
min Z)\kfk(x) (3)
k=1
st. fil(x) £ e k=1,...,p
gJ(X) g 0 J= 1’ s, m

Theorem (Guddat et al. 1985)
X is efficient if and only if there are A\ > 0 and € such that X is an

optimal solution to (3).
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The Hybrid Method

Let)\ERgandseRp

p
minzx\kfk X
k=1
s.t. fr(x
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The Hybrid Method
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Theorem (Guddat et al. 1985)

X is efficient if and only if there are A\ > 0 and € such that X is an
optimal solution to (3).
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LetAeRgand1Sq<oo
min

Let A € R

Mo (f o
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LetAeRgand1Sq<oo
min
Let X € R2

. o
X ke W(F(x) = v

o E E
T T CR a— B S N
«0>» «Fr «=>» - .

xeX (Z )\k(fk(X) _ y/i)q) q
k=1

=

(5)

(4)




LetAeRgand1Sq<oo
min
Let X € R2

. o
X ke W(F(x) = v

; )
u}
@ B
v
Tl
it .
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»
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xeX (Z )\k(fk(X) _ y/i)q) q
k=1

=

(5)

(4)




@ If X is a unique optimal solution to (4) or if X\ > 0 then X is
efficient.

@ If X is an optimal solution to (5) and A\ > 0 then X is weakly
efficient.

© If X is a unique optimal solution to (5) and A\ > 0 then X is
efficient.
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@ If X is a unique optimal solution to (4) or if X\ > 0 then X is
efficient.

@ If X is an optimal solution to (5) and A > 0 then X is weakly
efficient.

© If X is a unique optimal solution to (5) and A\ > 0 then X is
efficient.

«O0)>» «F» «=)» 4«

it
-
it



@ If X is a unique optimal solution to (4) or if X\ > 0 then X is
efficient.

@ If X is an optimal solution to (5) and A > 0 then X is weakly
efficient.

@ If X is a unique optimal solution to (5) and A\ > 0 then X is
efficient.
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@ For g =1 (4) is the weighted sum scalarization
o If y! is replaced by yY in (4) stronger results follow

Solutions obtained are properly efficient, and Y}y is contained

in the closure of the set of all solutions obtained (Sawaragi et
al. 1985)

@ True

, value of g indicates
“degree of non-convexity”
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@ For g =1 (4) is the weighted sum scalarization

o If y' is replaced by yY in (4) stronger results follow
Solutions obtained are properly efficient, and Y} is contained
in the closure of the set of all solutions obtained (Sawaragi et
al. 1985)
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Compromise Solutions

e For g =1 (4) is the weighted sum scalarization

o If y! is replaced by yY in (4) stronger results follow
Solutions obtained are properly efficient, and Yy is contained
in the closure of the set of all solutions obtained (Sawaragi et
al. 1985)

@ True without convexity assumption, value of g indicates
“degree of non-convexity”

Matthias Ehrgott Multiobjective Optimization



@ /; norms can be replaced by more general distance functions
@ l|deal point can be replaced by a

and the
distance function by a ((strictly, strongly) increasing)

RP — R (Wierzbicki 1986)

min{sg(f(x)) : x € X}

oMk =YY+ 020 vk — v )
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@ /; norms can be replaced by more general distance functions

@ ldeal point can be replaced by a reference point and the

distance function by a ((strictly, strongly) increasing)
achievement function RP — R (Wierzbicki 1986)

min{sg(f(x)) : x € X}

..... p{M ik — Y)Y+ o b (v — ¥E)
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@ /; norms can be replaced by more general distance functions
@ ldeal point can be replaced by a reference point and the
distance function by a ((strictly, strongly) increasing)
achievement function RP — R (Wierzbicki 1986)

min{sg(f(x)) : x € X}

sr(y) = maxk1,_p{ Mk — Y)Y + 030 (v — ¥F)
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e f(x) = Cx where C € RP*"?

o Constraints Ax = b where A € R™*"
@ Nonnegativity x = 0

min{Cx : Ax = b,x = 0}

@ X and Y are convex

@ Weakly and properly efficient solutions are found by weighted
sum method

«0>» «Fr «E» < > Q>



e f(x) = Cx where C € RP*"?

o Constraints Ax = b where A € R™*"
@ Nonnegativity x = 0

min {Cx : Ax = b, x = 0}

@ X and Y are convex

@ Weakly and properly efficient solutions are found by weighted
sum method

«0>» «Fr «E» < > Q>
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@ Nonnegativity x = 0

min {Cx : Ax = b, x = 0}

@ X and Y are convex
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sum method

«0>» «Fr «E» < > Q>



e f(x) = Cx where C € RP*"?

o Constraints Ax = b where A € R™*"
@ Nonnegativity x = 0

min {Cx : Ax = b, x = 0}

@ X and Y are convex

o Weakly and properly efficient solutions are found by weighted
sum method
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A feasible solution X € X is efficient if and only if there is A > 0
such that AT Cx < AT x for all x € X.

o If X is efficient, max{e’z : Ax = b, Cx + Iz = CX; x,z = 0}
has optimal solution Z = 0

o By duality min{u"b+w'Cx:uTA=wTC>20:w>e}
has optimal solution (&, W) with &"b = —Ww ' Cx
e 0 is optimal solution of min{u"b: u"TA= —wTC}

By duality an optimal solution of
max{—w' Cx : Ax = b, x > 0} exists

@ X is an optimal solution of this LP
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A feasible solution X € X is efficient if and only if there is A > 0
such that AT Cx < AT x for all x € X.

o If X is efficient, max{e”z: Ax = b, Cx + Iz = CX;x,z = 0}
has optimal solution Z = 0

By duality min{uTb+w' Cx:uTA=wTC20:w=>e}
has optimal solution (&, W) with 27b = —Ww ' Cx

()

e 0 is optimal solution of min{u"b: u"TA= W' C}

()

By duality an optimal solution of
max{—w' Cx : Ax = b, x > 0} exists

@ X is an optimal solution of this LP
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Theorem (Isermann 1974)

A feasible solution x € X is efficient if and only if there is A\ > 0
such that \TCx < \Tx for all x € X.

Proof.
o If % is efficient, max{e”z: Ax = b, Cx + Iz = CX; x,z = 0}
has optimal solution Z = 0
o By duality min{u"b+wTCx:u"TA=wTC=20:w 2= e}
has optimal solution (&, W) with 27b = —W ' Cx
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Theorem (Isermann 1974)

A feasible solution x € X is efficient if and only if there is A\ > 0
such that \TCx < \Tx for all x € X.

Proof.
o If % is efficient, max{e”z: Ax = b, Cx + Iz = CX; x,z = 0}
has optimal solution Z = 0
o By duality min{u"b+wTCx:u"TA=wTC=20:w 2= e}
has optimal solution (&, W) with 27b = —W ' Cx

o @i is optimal solution of min{u"b: uTA> —Ww'C}
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Theorem (Isermann 1974)

A feasible solution x € X is efficient if and only if there is A\ > 0
such that \TCx < \Tx for all x € X.

Proof.

o If % is efficient, max{e”z: Ax = b, Cx + Iz = CX; x,z = 0}
has optimal solution Z = 0

o By duality min{u"b+wTCx:u"TA=wTC=20:w 2= e}
has optimal solution (&, W) with 27b = —W ' Cx

o @i is optimal solution of min{u"b: uTA> —Ww'C}

@ By duality an optimal solution of
max{—w" Cx : Ax = b,x = 0} exists
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Theorem (Isermann 1974)

A feasible solution x € X is efficient if and only if there is A\ > 0
such that \TCx < \Tx for all x € X.

Proof.

o If % is efficient, max{e”z: Ax = b, Cx + Iz = CX; x,z = 0}
has optimal solution Z = 0

o By duality min{u"b+wTCx:u"TA=wTC=20:w 2= e}
has optimal solution (&, W) with 27b = —W ' Cx

o @i is optimal solution of min{u"b: uTA> —Ww'C}

@ By duality an optimal solution of

max{—w" Cx : Ax = b,x = 0} exists

@ X is an optimal solution of this LP
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@ Phase I: Feasibility
MOLP is feasible if and only if
min{e”z : Ax + Iz = b; x,z = 0} has optimal value 0
Let (x°, 2) be optimal solution

@ Phase II: First efficient solution
If min{uTb+wT P :uTA=w'CZ>0;w = e}
is infeasible then Xg =0
Let W be optimal solution
Optimal solution % to min{Ww' Cx : Ax = b, x = 0} is efficient
@ Phase Ill: Explore efficient solutions by identifying entering
variables
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Multiobjective Simplex Algorithm

@ Phase |: Feasibility
MOLP is feasible if and only if
min{e’z : Ax + Iz = b; x, z > 0} has optimal value 0
Let (x%, %) be optimal solution
@ Phase II: First efficient solution
If min{u"b+wTCx?:uTA=wTCZ0;w = e}
is infeasible then Xg = ()
Let W be optimal solution
Optimal solution X to min{w " Cx : Ax = b, x = 0} is efficient
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Multiobjective Simplex Algorithm

@ Phase |: Feasibility
MOLP is feasible if and only if
min{e’z : Ax + Iz = b; x, z > 0} has optimal value 0
Let (x%, %) be optimal solution
@ Phase II: First efficient solution
If min{u"b+wTCx?:uTA=wTCZ0;w = e}
is infeasible then Xg = ()
Let W be optimal solution
Optimal solution X to min{w " Cx : Ax = b, x = 0} is efficient
@ Phase lll: Explore efficient solutions by identifying entering
variables
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@ Reduced cost matrix

R:=(C - CsAz'A)n

@ Xjis if there is A > 0 such that
AMTR>20and \TH =0

o At every efficient basis there exists an efficient nonbasic
variable and every feasible pivot leads to another efficient basis

Theorem (Evans and Steuer 1973)

Nonbasic variable x; is efficient if and only if the LP
max{e’v: Rz — 5+ Iv=0,z5v >0}

has an optimal value of 0.
AP N G4



@ Reduced cost matrix

R:=(C - CsAz'A)n

@ x; is efficient nonbasic variable if there is A > 0 such that
AMR>20and ATH =0

o At every efficient basis there exists an efficient nonbasic
variable and every feasible pivot leads to another efficient basis

Nonbasic variable x; is efficient if and only if the LP
max{e’v: Rz —rj+Iv=0,z5,v =0}

has an optimal value of 0.
DA
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Multiobjective Simplex Algorithm

@ Reduced cost matrix
R:=(C — CgAz'A)x

@ Xx; is efficient nonbasic variable if there is A > 0 such that
AMRZ>0and \TH =0

o At every efficient basis there exists an efficient nonbasic
variable and every feasible pivot leads to another efficient basis
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Multiobjective Simplex Algorithm

@ Reduced cost matrix
R:=(C — CgAz'A)x

@ Xx; is efficient nonbasic variable if there is A > 0 such that
AMRZ>0and \TH =0

o At every efficient basis there exists an efficient nonbasic
variable and every feasible pivot leads to another efficient basis

Theorem (Evans and Steuer 1973)

Nonbasic variable x; is efficient if and only if the LP
max{eTv “Rz—rHé+1Iv=0,25,v=> 0}

has an optimal value of Q.
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@ The set of all efficient bases is connected by pivots with
efficient entering variables.

@ The set of all efficient extreme points of Xg is connected by
efficient edges.

@ The set of all nondominated extreme points of Yy is
connected by nondominated edges.
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@ The set of all efficient bases is connected by pivots with
efficient entering variables.

@ The set of all efficient extreme points of Xg is connected by
efficient edges.

@ The set of all nondominated extreme points of Yy is
connected by nondominated edges.
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Theorem
@ The set of all efficient bases is connected by pivots with
efficient entering variables.
@ The set of all efficient extreme points of Xg is connected by
efficient edges.
@ The set of all nondominated extreme points of Yy is
connected by nondominated edges.
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Phase I: MOLP is feasible

x% = (0,0)

Phase Il: Optimal weight

w = (1,1)

Phase II: First efficient solution
x? = (0,3)

Phase Ill: Efficient entering

variables s!. x2

Phase IlI: Efficient solutions
xt = (0,0),x3 = (3,3)
Phase Ill: No more efficient

entering variables




Phase I: MOLP is feasible

x% = (0,0)

Phase Il: Optimal weight
w=(1,1)

Phase II: First efficient solution
x? = (0,3)

Phase Ill: Efficient entering

. 2
variables s!. x2

Phase IlI: Efficient solutions
xt = (0,0),x3 = (3,3)
Phase Ill: No more efficient
entering variables




@ Phase |: MOLP is feasible
x% = (0,0)

@ Phase Il: Optimal weight
w=(1,1)

@ Phase II: First efficient solution
x? = (0,3)
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Phase |I: MOLP is feasible
x° = (0,0) A

Phase II: Optimal weight 9 .3
w = (1,1) X ; T
Phase II: First efficient solution
x? =(0,3) ) X
Phase IlI: Efficient entering :
variables s!, x? :
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Formulation and the Fundamental Theorem
Solving MOLPs in Decision and Objective Space

Phase I: MOLP is feasible

x° = (0,0)

Phase II: Optimal weight
w=(1,1)

Phase Il First efficient solution
x?=(0,3)

Phase IlI: Efficient entering
variables s!, x?

Phase Ill: Efficient solutions
x1 = (0,0),x3 =(3,3)
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Formulation and the Fundamental Theorem
Solving MOLPs in Decision and Objective Space

Phase I: MOLP is feasible
x9 = (0,0)
Phase II: Optimal weight
w=(1,1)

Phase Il: First efficient solution

x?=(0,3)

Phase IlI: Efficient entering
variables s!, x?

Phase IllI: Efficient solutions
x! =(0,0),x3 = (3,3)
Phase Ill: No more efficient
entering variables
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(Benson 1998)

@ Degeneracy causes problems for simplex algorithm

@ Decisions based on objective function values
@ Usually dim Y < p << dim X

@ Assume X is bounded

Theorem (Benson 1998)

The dimension of Y + R’; is p and (Y + ]R"’;)N = Yyu.

Y= (Y A R‘;)ﬁ(ym RY)
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(Benson 1998)

@ Degeneracy causes problems for simplex algorithm

@ Decisions based on objective function values
@ Usually dim Y < p << dim X

@ Assume X is bounded
The dimension of Y + R is p and (Y + R )y = Y.

Y =(Y+R2)N (v Rf)
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(Benson 1998)

@ Degeneracy causes problems for simplex algorithm
@ Decisions based on objective function values
@ Usually dim Y £ p << dim X

Assume X is bounded

The dimension of Y + R is p and (Y + R )y = Y.
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(Benson 1998)

@ Degeneracy causes problems for simplex algorithm

@ Decisions based on objective function values
@ Usually dim Y £ p << dim X

@ Assume X is bounded

The dimension of Y + R’é ispand (Y +R2)y= Yy
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(Benson 1998)

@ Degeneracy causes problems for simplex algorithm

@ Decisions based on objective function values
@ Usually dim Y £ p << dim X

@ Assume X is bounded

The dimension of Y + R’é ispand (Y +R2)y= Yy

Y= (Y +R2)n(y* —RY)

«40)>» «Fr «=» « =) Q>



Introduction

Finding Efficient Solutions — Scalarization
Multiobjective Linear Programming
Multiobjective Combinatorial Optimization
Applications

Commercials

Formulation and the Fundamental Theorem
Solving MOLPs in Decision and Objective Space

o letpeint Y’
Let y be solution of
min{eTy:y € Y}
Simplex S° such that Y’ C S°
defined by axes-parallel
hyperplanes and supporting
hyperplane with normal e at y

Matthias Ehrgott
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o letpeint Y’
Let y be solution of
min{eTy:y € Y}
Simplex S° such that Y’ C S°
defined by axes-parallel
hyperplanes and supporting
hyperplane with normal e at y
o While Sk £ Y’
o Find vertex y* of SkK=1 with
Sk ¢ Y’
e Find o* > 0 such that
ay® + (1 —a)p is on the
boundary of Y’
e Find supporting hyperplane to
Y’ through boundary point

Y2

9 TR e ————.12a N3

Y1

® Verticesof S k O Vertex yk being cut out

N . ) kT
°  Boundary point d" of Y' online segment (y ,p)
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Formulation and the Fundamental Theorem
Solving MOLPs in Decision and Objective Space

o letpeint Y’
Let y be solution of
min{eTy:y € Y}
Simplex S° such that Y’ C S°
defined by axes-parallel
hyperplanes and supporting
hyperplane with normal e at y
While Sk #£ Y’
o Find vertex y* of SkK=1 with
Sk ¢ Y’
e Find o* > 0 such that
ay® + (1 —a)p is on the
boundary of Y’
e Find supporting hyperplane to
Y’ through boundary point
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® Verticesof S k O Vertex yk being cut out

N . ) kT
°  Boundary point d" of Y' online segment (y ,p)
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o letpeint Y’
Let y be solution of
min{eTy:y € Y}

. Y2
Simplex S° such that Y’ C S° )
defined by axes-parallel R j_,__.,- {p 1 y
hyperplanes and supporting SeRE Y '
hyperplane with normal e at § o XS
o While Sk £ Y’ * >
o Find vertex y* of SkK=1 with
ske¢y 16

e Find o* > 0 such that
ay® + (1 —a)p is on the
boundary of Y’

e Find supporting hyperplane to
Y’ through boundary point

® Verticesof S k O Vertex yk being cut out

N . ) kT
°  Boundary point d" of Y' online segment (y ,p)
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o letpeint Y’
Let y be solution of
min{eTy:y € Y}

Y2
Simplex S° such that Y’ C S° )
defined by axes-parallel e e 13
hyperplanes and supporting RN Y Pl
hyperplane with normal e at y o \Y_. '
o While Sk £ Y’ ° -
o Find vertex y* of SkK=1 with
ske¢y 16
e Find o* > 0 such that

® Verticesof S k O Vertex yk being cut out

ay® + (1 —a)p is on the
boundary of Y’

e Find supporting hyperplane to
Y’ through boundary point

N . ) kT
°  Boundary point d" of Y' online segment (y ,p)
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x €{0,1}"
C e ZP*"
A c men

minz(x) = Cx

subject to Ax = b

x € {0,1}"

— nvariables, i=1,...,n

— p objective functions, k =1

— m constraints, j =1
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x €{0,1}"
C e zP*"

A c men

— m constraints, j=1,...,m
«Or «Fr «=)» « = DA

min z(x)

= (x
subject to Ax

= b
x € {0,1}"
— nvariables, i=1,...,n

p objective functions, k =1



minz(x) = Cx

subject to Ax = b
x € {0,1}"
x € {0,1}" — nvariables, i=1,...,n
C € ZP*" — p objective functions, k =1,...,p
AeZ™" — mconstraints, j=1,....,m
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o X ={xe€{0,1}": Ax = b}
feasible set in decision space
o Y =z(X)={C:x€e X}

feasible set in objective space
e conv(Y)+ RE
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e X ={xe{0,1}": Ax = b}
feasible set in decision space
o Y =2z(X)={C:xe X}
feasible set in objective space
e conv(Y)+RE

e
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e X ={xe{0,1}": Ax = b}
feasible set in decision space
o Y =2z(X)={C:xe X}

feasible set in objective space
e conv(Y)+RE

conv(C(X)) +RY

o H H H H
g T T g T g g g g g 10
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@ Individual minima
zi(R) = zk(x) for all x € X

@ Lexicographic optimality (1)
z(X) <jex z(x) for all x € X

@ Lexicographic optimality (2)
Z7(X) <jex 2™ (x) for all x € X
and some permutation z™ of




@ Individual minima
zi(R) = zk(x) for all x € X

@ Lexicographic optimality (1)
z(X) <jex z(x) for all x € X

@ Lexicographic optimality (2)
Z7(X) <jex 2™(x) for all x € X
and some permutation z™ of
(z1,--, Zp)




@ Individual minima
zi(R) = zk(x) for all x € X

@ Lexicographic optimality (1)
z(X) <jex z(x) for all x € X

o Lexicographic optimality (2)
Z™(X) <jex 2" (x) for all x € X
and some permutation z™ of
(z1,---,2p)
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o Weakly efficient solutions X,g
There is no x with z(x) < z(%)
z(x) is weakly nondominated
Yon = Z(XWN)

e Efficient solutions Xg
There is no x with z(x) < z(X)
z(X) is nondominated
Yn = z(XE)
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o Weakly efficient solutions X,g
There is no x with z(x) < z(%)
z(x) is weakly nondominated
Yon = z(Xwn)

o Efficient solutions Xg
There is no x with z(x) < z(X)
z(%) is nondominated
YN = Z(XE)
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@ Supported efficient solutions

Xse: There is A > 0 with
ATC&R S AT Cx for all x € X

e CX is extreme point of
conv(Y) + REZ

i XsEl
e CX is in relative interior of

face of conv(Y) + P’i — X2
@ Nonsupported efficient solutions

Xpe: Cx is in interior of
conv(Y) + RE
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@ Supported efficient solutions
Xse: There is A > 0 with
ATCx < AT Cx forall x € X

e CX is extreme point of
conv( Y) + Rg — X1

o CX is in relative interior of
face of conv(Y) +R2 — X,eo
@ Nonsupported efficient solutions

X,e: CX is in interior of
conv(Y) +RE




@ Supported efficient solutions

Xse: There is A > 0 with
ATCx < AT Cx forall x € X
o CX is extreme point of
conv(Y) +RE — Xeg1
o CXis in relative interior of
face of conv(Y) +R2 — X,eo
@ Nonsupported efficient solutions

X,e: CX is in interior of
conv(Y) +RE
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@ Supported efficient solutions
Xse: There is A > 0 with
ATCx < AT Cx forall x € X
o CX is extreme point of
conv(Y) +RE — Xeg1
o CXis in relative interior of
face of conv(Y) +R2 — X,eo
@ Nonsupported efficient solutions

Xye: CX is in interior of
conv(Y) +RE




@ Supported efficient solutions
Xse: There is A > 0 with
ATCx < AT Cx forall x € X
o CX is extreme point of
conv(Y) +RE — Xeey
e CX is in relative interior of
face of conv(Y) +RE — X2
@ Nonsupported efficient solutions

X,e: CX is in interior of
conv(Y) +RE




@ Supported efficient solutions

Xse: There is A > 0 with
ATCR S AT Cx for all x € X
o CX is extreme point of
conv(Y) +RE — Xeg1
o CX s in relative interior of
face of conv(Y) + R’; — Xse2
@ Nonsupported efficient solutions

Xne: CX is in interior of
conv(Y) + RE
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Hansen 1979:

e x!, x? € Xg are equivalent if
Cxt = Cx? Xp
o Complete set: X C Xg such / \
that for all y € Yy there is Xsg Xne
x € X with z(x) =y /1\ \
@ Minimal complete set contains Xsp1 Xb, Xspo XNEn
no equivalent solutions l / \ l
. . X X
@ Maximal complete set contains SElm SE2m

all equivalent solutions
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Hansen 1979:
1

e x!, x? € Xg are equivalent if
Cxt = Cx?

o Complete set: X C Xg such
that for all y € Yy there is
x € X with z(x) =y

@ Minimal complete set contains
no equivalent solutions

@ Maximal complete set contains
all equivalent solutions

XE
7\

Xsk

/1IN

Xsm XE, Xsm

RN

XsE, XsE2,
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Hansen 1979:

e x!, x? € Xg are equivalent if
Cxl = Cx? Xp
o Complete set: X C Xg such / \
that for all y € Yy there is Xsp Xne
x € X with z(x) = y /l\ \
@ Minimal complete set contains Xspr X, Xsps Xne,
no equivalent solutions l / \ l
Xsp1,, Xsp2,
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Classification of Efficient Sets

Hansen 1979:

o x!,x? € Xg are equivalent if
Cx! = Cx? Xg
o Complete set: X C Xg such / \
that for all y € Yy there is Xsp Xy
x € X with z(x) =y l\ \

@ Minimal complete set contains Xspr Xp, Xspo XNE,,

no equivalent solutions l / \ l

i : X1 Xgpo
@ Maximal complete set contains S Eim SE2Zp

all equivalent solutions

Matthias Ehrgott Multiobjective Optimization



Multiobjective combinatorial optimization problems are NP-hard,
# P-complete, and intractable.

Examples:

@ Shortest path (Hansen 1979, Serafini 1986)

@ Assignment (Serafini 1986, Neumayer 1994)

@ Spanning tree (Hamacher and Ruhe 1994)
@ Network flow (Ruhe 1988)
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MOCO Problems Are Hard

Theorem

Multiobjective combinatorial optimization problems are NP-hard,
#P-complete, and intractable.

Examples:
@ Shortest path (Hansen 1979, Serafini 1986)
@ Assignment (Serafini 1986, Neumayer 1994)
@ Spanning tree (Hamacher and Ruhe 1994)
@ Network flow (Ruhe 1988)
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instance

Intractable: Xg, even Ysy, can be exponential in the size of the

Empirically often

e |X,e| grows exponentially with instance size
@ |Xse| grows polynomially with instance size
But this depends on numerical values of C

«Or «Fr o« > < 1PN G4

it
-



instance

Intractable: Xg, even Ysy, can be exponential in the size of the

Empirically often

e |X,e| grows exponentially with instance size
@ |Xse| grows polynomially with instance size
But this depends on numerical values of C

«Or «Fr o« > < 1PN G4

it
-



instance

Empirically often

e |X,e| grows exponentially with instance size

@ |X.g| grows polynomially with instance size
But this depends on numerical values of C

«O)» «F)»r « =>» Q>

Intractable: Xg, even Ysy, can be exponential in the size of the



instance

Empirically often

e |X,e| grows exponentially with instance size

@ |X.g| grows polynomially with instance size
But this depends on numerical values of C

«O)» «F)»r « =>» Q>

Intractable: Xg, even Ysy, can be exponential in the size of the



instance

Empirically often

e |X,e| grows exponentially with instance size

@ |X.g| grows polynomially with instance size
But this depends on numerical values of C
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@ Introduction

@ Problem Formulation and Definitions of Optimality
© Finding Efficient Solutions — Scalarization

@ The Idea of Scalarization

@ Scalarization Techniques and Their Properties

© Multiobjective Linear Programming

@ Formulation and the Fundamental Theorem

@ Solving MOLPs in Decision and Objective Space
@ Multiobjective Combinatorial Optimization

@ Definitions Revisited and Characteristics

@ Solution Methods

© Applications
@ Commercials
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@ Scalarization

@ Single objective problem polynomially solvable and algorithm
can be directly extended to multiple objectives

@ Single objective problem polynomially solvable and ranking
algorithm exists: The 2 Phase Method

@ Single objective problem NP-hard: General integer
programming methods
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@ Scalarization

@ Single objective problem polynomially solvable and algorithm

can be directly extended to multiple objectives

@ Single objective problem polynomially solvable and ranking
algorithm exists: The 2 Phase Method
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Solving MOCO Problems

Scalarization

Single objective problem polynomially solvable and algorithm
can be directly extended to multiple objectives

Single objective problem polynomially solvable and ranking
algorithm exists: The 2 Phase Method

Single objective problem NP-hard: General integer
programming methods
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Principle and Properties of Scalarization

Convert multiobjective problem to (parameterized) single objective
problem and solve repeatedly with different parameter values

Desirable properties of scalarizations: (Wierzbicki 1984)
o Correctness: Optimal solutions are (weakly) efficient

@ Completeness: All efficient solutions can be found
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Principle and Properties of Scalarization

Convert multiobjective problem to (parameterized) single objective
problem and solve repeatedly with different parameter values

Desirable properties of scalarizations: (Wierzbicki 1984)
o Correctness: Optimal solutions are (weakly) efficient
@ Completeness: All efficient solutions can be found

e Computability: Scalarization is not harder than single
objective version of problem (theory and practice)
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Principle and Properties of Scalarization

Convert multiobjective problem to (parameterized) single objective
problem and solve repeatedly with different parameter values

Desirable properties of scalarizations: (Wierzbicki 1984)
o Correctness: Optimal solutions are (weakly) efficient
@ Completeness: All efficient solutions can be found

e Computability: Scalarization is not harder than single
objective version of problem (theory and practice)

@ Linearity: Scalarization has linear formulation

Matthias Ehrgott Multiobjective Optimization



o Weighted sum:
. T
miy {700
@ c-constraint:
m|>r<1 {z)(x) : zk(x) < ek, k # 1}

@ Weighted Chebychev:
nji)rg{quax Vi (zk(x) yl)}
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min {Téi( [vk(ckx — pr)] + Z [Me(crxx — Pk)]}

ex
x k=1

subject to cx < ek k=1...,p

Includes Correct Complete Computable Linear
Weighted sum + - + +
g-constraint + + - +
Benson + + - +
Chebychev + (+) (-) +
Max-ordering + + - +
Reference point + (+) (-) +
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© The general scalarization is NP-hard.

@ An optimal solution of the Lagrangian dual of the linearized
general scalarization is a supported efficient solution.
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The method of elastic constraints

@ is correct and complete,

@ contains the weighted sum and e-constraint method as special
cases,

@ is NP-hard.
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The method of elastic constraints

@ is correct and complete,

@ contains the weighted sum and e-constraint method as special

cases,

@ is NP-hard.

... but (often) solvable in practice because
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Method of Elastic Constraints

Theorem (Ehrgott and Ryan 2002)
The method of elastic constraints
@ is correct and complete,

@ contains the weighted sum and e-constraint method as special
cases,

@ is NP-hard.

... but (often) solvable in practice because

@ it “respects” problem structure

Matthias Ehrgott Multiobjective Optimization




Introduction
Finding Efficient Solutions — Scalarization

Multiobjective Linear Programming Definitions Revisited and Characteristics
Multiobjective Combinatorial Optimization Solution Methods
Applications

Commercials

Method of Elastic Constraints

Theorem (Ehrgott and Ryan 2002)
The method of elastic constraints
@ is correct and complete,

@ contains the weighted sum and e-constraint method as special
cases,

@ is NP-hard.

... but (often) solvable in practice because
@ it “respects” problem structure

@ it “limits damage” of e-constraints

Matthias Ehrgott Multiobjective Optimization
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Integer Programming Duality

Theorem (Klamroth et al. 2004)

@ X € Xg if and only if there is
F e F:={F:R™P~1 _ R nondecreasing}
such that X is an optimal solution to

max {ij — I:_((ckx)k;,gj, b) : Ax < b,x 2 0,x integer} .

o F can be chosen as an optimal solution of the IP dual
min {F(—e, b) : F((—ckx)kpjs Ax) = cix Vx € ZL, F € f}
of max{¢x : ckx > ex, k #1,Ax = b,x € ZZ}

@ The level curve of the objective function of the composite IP
at level 0 defines an upper bound on Y.

Matthias Ehrgott Multiobjective Optimization




@ The Shortest Path Problem

o Shortest path from node s to node t in a directed graph

o Labels are vectors, each node has set of labels
e New labels deleted if dominated by another label
o Labels dominated by new label dominated
@ More general: Dynamic Programming
@ The Spanning Tree Problem

«O» «Fr « = o



@ The Shortest Path Problem

o Shortest path from node s to node t in a directed graph
o Labels are vectors, each node has set of labels

e New labels deleted if dominated by another label

o Labels dominated by new label dominated

@ More general: Dynamic Programming
@ The Spanning Tree Problem

«O0)>» «F» «=)» 4«

it
it
N)
¥l
i)



@ The Shortest Path Problem

o Shortest path from node s to node t in a directed graph
o Labels are vectors, each node has set of labels

o New labels deleted if dominated by another label
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Direct Application of Single Objective Method

@ The Shortest Path Problem

Shortest path from node s to node t in a directed graph
Labels are vectors, each node has set of labels

New labels deleted if dominated by another label

Labels dominated by new label dominated

@ More general: Dynamic Programming
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Direct Application of Single Objective Method

@ The Shortest Path Problem

Shortest path from node s to node t in a directed graph
Labels are vectors, each node has set of labels

New labels deleted if dominated by another label

Labels dominated by new label dominated

@ More general: Dynamic Programming
@ The Spanning Tree Problem
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Direct Application of Single Objective Method

@ The Shortest Path Problem

Shortest path from node s to node t in a directed graph
Labels are vectors, each node has set of labels

New labels deleted if dominated by another label

Labels dominated by new label dominated

@ More general: Dynamic Programming
@ The Spanning Tree Problem
e Generalizations of Prim's and Kruskal’s algorithms

Matthias Ehrgott Multiobjective Optimization



@ Phase 1: Compute X;e

@ Find lexicographic solutions
© Recursively:

Calculate A

Solve min AT Cx

@ Phase 2: Compute X,g
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@ Phase 1: Compute X;e
© Find lexicographic solutions
@ Recursively:
Calculate A
Solve min AT Cx
xeX
@ Phase 2: Compute X,
© Solve by triangle
@ Use neighborhood (wrong)
© Use constraints (bad)

@ Use variable fixing (possible)
© Use ranking (good)
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@ Phase 1: Compute Xsg
© Find lexicographic solutions
@ Recursively:
Calculate A
Solve min AT Cx
xeX

@ Phase 2: Compute X,

© Solve by triangle

@ Use neighborhood (wrong)
© Use constraints (bad)
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@ Finding maximal complete set:

e Enumeration to find all optimal solutions of minyex A7 Cx

e Enumeration to find all x € X, with Cx =y € Y,p
@ Finding minimal complete set:

«0O>» «Fr < > < > = Q>



@ Finding maximal complete set:

o Enumeration to find all optimal solutions of minyecx AT Cx

e Enumeration to find all x € X, with Cx =y € Y,p
@ Finding minimal complete set:

«0O>» «Fr < > < > Q>



@ Finding maximal complete set:

o Enumeration to find all optimal solutions of minyecx AT Cx
e Enumeration to find all x € X,g with Cx =y € Y,p
@ Finding minimal complete set:

«0O>» «Fr < > < > Q>



@ Finding maximal complete set:

o Enumeration to find all optimal solutions of minyecx AT Cx
e Enumeration to find all x € X,g with Cx =y € Y,p
@ Finding minimal complete set:

e Enumeration to find Xsg»

«Or «Fr o« > DA

it
a
it
v
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@ Finding maximal complete set:

e Enumeration to find all optimal solutions of min,cx A7 Cx

e Enumeration to find all x € X,e with Cx =y € Y,p
@ Finding minimal complete set:

o Enumeration to find Xg»
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(Przybylski et al. 2004)
e Hungarian Method for mingex A7 Cx

@ Enumeration of all optimal solutions of minyex AT Cx
(Fukuda and Matsui 1992)
@ Ranking of (non-optimal) solutions of min,cx A7 Cx
(Chegireddy and Hamacher 1987)
Results for 100 x 100:

Range Variable Fixing Seek & Cut Ranking

20 14049.17 2755.75 220.07
40 X 17441.35 225.06
60 X 38553.18 399.65
80 X 53747.45 721.08
100 X 60227.31 711.97
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2 Phase Algorithm for Biobjective Assignment

(Przybylski et al. 2004)
@ Hungarian Method for min,¢x AT Cx

@ Enumeration of all optimal solutions of minyex AT Cx
(Fukuda and Matsui 1992)

@ Ranking of (non-optimal) solutions of min,ex AT Cx
(Chegireddy and Hamacher 1987)
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2 Phase Algorithm for Biobjective Assignment

(Przybylski et al. 2004)
@ Hungarian Method for min,ex A7 Cx
@ Enumeration of all optimal solutions of minyex AT Cx
(Fukuda and Matsui 1992)
@ Ranking of (non-optimal) solutions of min,ex AT Cx
(Chegireddy and Hamacher 1987)
Results for 100 x 100:

Range Variable Fixing Seek & Cut Ranking

20 14049.17 2755.75  220.07
40 X 17441.35  225.06
60 X 38553.18  399.65
80 X 53747.45  721.08
100 X 60227.31  711.97
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@ Phase 1:

e Dichotomic search impossible since normal defined by three
nondominated extreme points need not define positive weights

o yl =(11,11,14),y? = (15,9,17),y® = (19, 14, 10) are three
nondominated extreme points, normal is (—1, 40, 28)

o Nondominated extreme point y* = (13,16, 11) not found
@ Phase 2:
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The 2 Phase Method for 3 Objectives

@ Phase 1:
e Dichotomic search impossible since normal defined by three
nondominated extreme points need not define positive weights
o yl =(11,11,14),y? = (15,9,17),y® = (19, 14, 10) are three
nondominated extreme points, normal is (—1, 40, 28)
o Nondominated extreme point y* = (13,16, 11) not found
@ Phase 2:

e Search by triangle impossible due to lack of natural order of
points
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The 2 Phase Method for 3 Objectives

@ Phase 1:

e Dichotomic search impossible since normal defined by three
nondominated extreme points need not define positive weights

o yl =(11,11,14),y? = (15,9,17),y® = (19, 14, 10) are three
nondominated extreme points, normal is (—1, 40, 28)

o Nondominated extreme point y* = (13,16, 11) not found

@ Phase 2:

e Search by triangle impossible due to lack of natural order of
points

o yl =(22,42,25),y? = (38,33,27),y3 = (39,31, 30) are three
nondominated extreme points

o y*=(30,38,37) is not “below" (39,41,30)

Matthias Ehrgott Multiobjective Optimization



P
wo = {A>0:Ap:1—ZAk}

k=1

WOo(y) = {)\ eWl ATy =min{A\Ty:ye Y}}

Theorem
e Ify is a nondominated extreme point of Y then dim
Wo(y)=p—1.
o Woy)=U,ey,, W°(»)
e dim W°(y) + dim F(y) = p—1 forall y € Yy, where F(y)
is the maximal nondominated face of Y containing y.
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Weight Set Decomposition

1%
Wwo .= {)\>0:>\p:12)\k}

k=1
Wo(y) = {A eW' ATy =min{ATy:ye Y}}

Theorem
e Ify is a nondominated extreme point of Y then dim
Wo(y)=p—1.
o Wo(y)=U,ey,, W)

e dim W°(y) + dim F(y) = p—1 forall y € Yy, where F(y)
is the maximal nondominated face of Y containing y.
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e Forp=1,...,pfind y¥
minimizing the k-th objective

e S:={y'...,yP} and
WO(y*) ={re WO : ATy = 08
min{\Ty :y € S}}

o Facets of W2(y*) define
biobjective problems

@ Solve biobjective problems for Q Woprh

0.6

A2

all facets for all y* to find new 02
nondominated extreme points
added to S o
A
e Stop if W(y) = WO(y) for all '
_)/ES «Or «Fr «=H «=Er» = VQQ
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Finding Nondominated Extreme Points

@ For p=1,...,pfind y*
minimizing the k-th objective

o S:={y!...,yP} and
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biobjective problems
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@ For p=1,...,pfind y*
minimizing the k-th objective

o S:={y!...,yP} and

Wg(yk) ={ e W
min{\Ty :y € S}}

02)\Ty:

e Facets of ng(yk) define

biobjective problem

@ Solve biobjective problems for
all facets for all y* to find new
nondominated extreme points

added to S

e Stop if W2(y) = WO(y) for all
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o Relevant weights

e Intersection points of at least
three sets WO(y)

e Points in the interior of faces
where two sets W0(y)
intersect
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for enumeration
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Finding Supported Nondominated Points

1 I
Weight to use
for enumeration
@ Relevant weights o5 VOl 055
) . y
e Intersection points of at least J
three sets WO(y) s 5
e Points in the interior of faces *2 W)
where two sets WO(y) s X
intersect & woyl) .
@ Enumerate all optimal solutions 02 7
of weighted sum problems o\ &
WO(y2) \t
00 0.2 0.4 A 0.6 0.8
1

Matthias Ehrgott Multiobjective Optimization



The search area

A = ((conv Yon)n +R§) \ (YSN +R§)
(

(conv Yen)n + RZ) <chD(ysN)U — RS

I\VAS
~

@ Procedure to calculate D(Ygy)

@ For each u € D(Ygy) find closest nondomiated facet of Y

@ Apply ranking procedure to enumerate solutions between facet
of Y and parallel plane through u
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The search area
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@ Procedure to calculate D(Ygy)
@ For each u € D(Ygy) find closest nondomiated facet of Y

@ Apply ranking procedure to enumerate solutions between facet
of Y and parallel plane through u

Matthias Ehrgott Multiobjective Optimization



Introduction

Finding Efficient Solutions — Scalarization
Multiobjective Linear Programming
Multiobjective Combinatorial Optimization

Applications
Commercials

Definitions Revisited and Characteristics

Solution Methods

Results for Three-Objective Assignment Problem

n |Yn] S/C2004 T-P 2003 Letal (2005) P etal. 2007

5 12 0.15 0.04 0.15 0.00
10 221  99865.00 97.30 41.70 0.08
15 483 X 544 53 172.29 0.36
20 1942 X X 1607.92 451
25 3750 X X 5218.00 30.13
30 5195 X X 15579.00 55.87
35 10498 X X 101751.00 109.96
40 14733 X X X 229.05
45 23941 X X X 471.60
50 29193 X X X 802.68

Matthias Ehrgott
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Ulungu and Teghem 1997,
Mavrotas and Diakoulaki 2002
Branching: As in single
objective case

Bounding: Ideal point of
problem at node is dominated
by efficient solution

Branching may be very
ineffective

Use lower and upper bound sets

L={G G}
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Multicriteria Branch and Bound

@ Ulungu and Teghem 1997,
Mavrotas and Diakoulaki 2002

@ Branching: As in single
objective case

@ Bounding: Ideal point of
problem at node is dominated
by efficient solution

@ Branching may be very
ineffective

@ Use lower and upper bound sets OB )
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Ehrgott and Gandibleux 2005:

@ Lower bound set L

© Upper bound set U

(-]

o

(-]

is ]Rg—closed
is ]Rg—bounded

Yy C L—HR;

Lc(L+Rg)N

is H%l’i—closed
is R -bounded

vwed[(u+re)]

UcC (U - E’i)

N




Ehrgott and Gandibleux 2005:

@ Lower bound set L

is ]Rg—closed
is ]Rg—bounded

YNE L+R§
Lc(L+Rg)N

© Upper bound set U

is R? -closed

is R’;-bounded
vwed[(u+ Rg)c]
Uc (U + Rg)N




90000 T T T T
ub  *
b e
80000 - dMax —O—
o X
70000 G .
*
60000 - ¥ .
-
A
Y2 50000 | * ]
Tx
K *
40000 - : .
\. *
30000 |- \C?**’”m -
™
20000 T
e Y T K. o
10000 | | | | | | |
10000 20000 30000 40000 50000 60000 70000 80000 90000
Y1
«0)>» «Fr «=)» « =)




Markowitz 1952 ' oo s e L e o

maxz(x) = pu'x 0
o
minz(x) = x'ox 0 //
250
subject to e’x = 1 0 //
Xi = uj . = f
> 100
xi 2 i "
eTy o k 00 200 400 600 800 1000 1200 1400 1600
f
y € {01}
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Markowitz 1952 with cardinality constraint, e.g. Chang et al. 2000

max zj (x)

min z3(x)
subject to e’ x
Xi
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Partition flights into set of pairings, but minimizing cost can cause

delays ...
and be very expensive
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Partition flights into set of pairings, but minimizing cost can cause
delays ...
and be very expensive

Sunday, 4 August, 2002, 20:29 GMT 21:29 UK

Delays as Easyjet cancels 19 flights

Passengers with low-cost airline Easyjet are suffering delays after 19 flights in and out
of Britain were cancelled.

The company blamed the move - which comes a week after passengers staged a protest sit-in
at Nice airport - on crewing problems stemming from technical hitches with aircraft.
Crews caught up in the delays worked up to their maximum hours and then had to be allowed
home to rest.

Mobilising replacement crews has been a problem as it takes time to bring people to
airports from home. Standby crews were already being used and other staff are on holiday.
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Model 1: Minimize cost and minimize non-robustness (Ehrgott and
Ryan 2002)

o 1 pairing j includes flight /
Y71 0 otherwise

min z1(x) c'x
minz(x) = r'x
subject to Ax = e
Mx b
x € {0,1}"
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Model 1: Minimize cost and minimize non-robustness (Ehrgott and
Ryan 2002)

0 1 pairing j includes flight /
Y71 0 otherwise

minzi(x) = c'x
minz(x) = r’x
subject to Ax = e
Mx = b
x € {0,1}"
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Non-robustness
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Radiotherapy Treatment Design

Choose beam directions and intensities to destroy tumour and
spare healthy organs (e.g. Holder 2004)
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Radiotherapy Treatment Design

Choose beam directions and intensities to destroy tumour and
spare healthy organs (e.g. Holder 2004)

min(zr, zs, zv)

subject to Arx +zre =2 Ir
ATX § ur
Asx —zse < ug
Avx —zyve S oun
zZs 2 —us
zv =2 0
x =2 0
x < Mye
y € {0,1}"

Matthias Ehrgott Multiobjective Optimization



Choose beam directions and intensities to destroy tumour and
spare healthy organs (e.g. Holder 2004)

min(zr, zs, zv)

subject to Arx +zre = It
Arx < ur ”
Asx —zse = us
Anvx —zye S ouy “
zs 2 —us =
zv =2 0 N
x 20 .
x = Mye :
y € {0,1}" R
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