3. Nano Camera Fabrication Technology Preventive diagnoses must be done regularly at homes. We need to design non-cryogeniccooled consumer electronics camera called "(passive non-contact accurate to 0.02 degree) dual infrared) Spectrum Thermometer TM" replacing traditional contact thermometers based on either thermal coupler or Mercury thermometer

Nano-photonics must learn from our eyes?

156 millions rods-cones excitations must decay to save energy and make room for further excitations. Pseudo-1-D cone suffers less noise, enjoy single photon detection without Liquid Nitrogen coolant =Nano-photonics need CAD NanoRobot manipulator, from 1 meter to 10⁻⁹ meter!

Fabrication of Sensor Pixels

- AFM based
 nanoassembly
- Pushing
 Nanotube into nanofixture
- Tuning CNT band gap by modifying its shape

Biomimetic Fovea Camera by means of Carbon Nano Tubes overlayed CCD array (1) Implementation issue: nano-robot (2) Algorithm issue: unsupervised Fusion Non-Cryogenic Co-Axial Fovea Design of Infrared Two Color Pixels Planes*

- full-band IR lens focused at dual focal planes along uniaxial for both MidIR &LongIR
- Band-selective Carbon NanoTube (CNT) generates only 1% or less occlusion over Long IR PFA CCD pixel.
- CNT might only suffer 1D noise that permits a non-cryogenic cooling.
- Un-cool FPA CCD for LongIR & steering & pointing at ROI
- Unsupervised fusion for unbiased feature extraction. *Szu et al. Patent Disclosure 2004

Non-cryogenic Spectrum Thermometer based Mid-IR 1-D CNT & Long-IR FPA

- Navy Patent 2004 unsupervised fusion by Szu et.al. can provide unbiased feature extraction.
- Un-cooled 2 Color Infrared Camera under \$1K can provide mini-UAV new capability and dual usage for family spectrum thermometer for sport medicine and early tumor diagnoses.

CNT (S. Iijima, CNT, Nature 354,56,1991; Nobel Prize: C₆₀ Bucky, Rice AFM image U. Rich Smoley 1989) _{STM image of CNT}

SEM image

TEM image

Cees Dekker, Delft Univ of Tech

Why Nano technology CNT for double color Infrared Camera?

- Nano 10⁻¹² meter is a small quantum system of molecule about 10 Angstrom (10 Dalton)
- It can fit in small space for local action.
- It is at the border of classical physics and quantum mechanics
- It can be either conductor or semiconductor depending density of states exist at Fermi surface or not.
- As a conductor, it has a sharpest field gradient for point discharge for the ionization of neutral gas
- It enjoys limited quantum phonon noise

CNT Index Scheme

- Folding Chiral vector is defined as $C_h = na_1^P + ma_2^P$
- The translation vector T is perpendicular to the chiral vector
- (n,m) is the index of CNT

Classification of CNT

- Two major categories : Conductor Armchair (n=m); semi-conductors Zigzag (n=0 or m=0 non-multiple of 3).
- Single-Wall; Multiwall

Dispersion Relation

Saito et.al. from MIT(1992APL, p.2204)

$$E_{2D} = \pm \gamma [1 + 4\cos(\frac{\sqrt{3}}{2}k_x a)\cos(\frac{1}{2}k_y a) + 4\cos^2(\frac{1}{2}k_y a)]^{1/2}$$

$$\sum_{k=0}^{P} Ck = 2\pi \text{ int egers}$$

Conductors $E_F = 0$ where density of states $\neq 0$

 $n_1 = n_2$ $2n_1 + n_2 = 3x \text{ int } egers$

FIG. 3. Electronic density of states for two (n_1, n_2) zigzag fibers: (a) (10,0) and (b) (9,0).

Single Photon Detection Design Logic

• Design Logic by means of "negate the converse", "-1x-1=+1"i.e. a single photon can not provide enough signal charge over noise (SNR) but it can nevertheless affect the photoelectric medium to tip or switch the balance of an already existed & balanced socalled dark current driven by internal energy toward a different path, e.g. Wheatstone bridge of 4 arms in balance.

Middle Infrared Implementation Material

- Biomimetic Implementation: 1-D Quantum Carbon Nanotubes (CNT) in zigzag crystalline state enjoys bandgap semiconductor, which can be tuned by radius selectively at MidIR spectral.
- Working Hypothesis: CNT should suffer less thermal noise owing to a restricted geometry of noisy phonon excitation (TBD).

Single photon SNR Quantum eff.

CNT bandgap at Mid IR 3 to 5 micrometer

Signal photon
$$\Delta E = \hbar \omega = h \frac{c}{\lambda} = 0.414 eV \Leftrightarrow 0.248 eV$$

Between room temperature $T = 300^{\circ} K$; Liquid Nitrogen $T = 77^{\circ} K$ Gaussian noise energy $K_B T = \frac{1}{40} eV = 0.025 eV$; 0.006eV a factor 4 Johnson shot noise whose mean = variance

$$1D: \quad \frac{1}{2}K_{B}T < dark \quad current < 3D: \quad \frac{3}{2}K_{B}T \quad at \ room \ temperature$$

Structure Dependency of Bandgap Mid IR 3 to 5 micrometer

Signal photon $\Delta E = h\omega = h\frac{c}{\lambda} = 0.414eV \Leftrightarrow 0.248eV$ • Armchair (n,n) nanotubes are (Bandgap of zigzag CNT) metals

- **t** (n, n+3i) tubes (with an integer) are small gap semiconductors with Egap $\propto 1/R^2$
- Other tubes havelarger gapsproportional to 1/R

Computation of Bandgap

• Single-wall (CW) CNT $E_g = \frac{2\gamma_0 a}{D}$

 $\gamma_0 = 2.6 \text{eV}$: pp π hopping interaction, a=1.41Å is the C-C nearest neighborhood distance, D is the diameter of the SWCNT

■ Multi-wall CNT

$$E_g \approx \frac{3}{\sqrt{2}} M_i \sigma^2 \frac{a^3}{D}$$

 $M_i \approx 2x10^{-23}$ is the mass of carbon atom, $\varpi \approx 1600$ cm^-1 is the characteristic phonon frequency

Grand Challenge: Un-cooled Mid IR SNR 5 orders of Magnitude

Time integration of 100 signal photons is needed

$$1 - D \ dark \ current \ \frac{1}{2} KT << 3 - D \ dark \ current \ \frac{3}{2} KT$$

$$0.0125eV < dark \ current < 0.0375eV$$

$$SNR_{room} = \frac{0.4 \Leftrightarrow 0.2}{0.01} = 40 \Leftrightarrow 20 \ if \ 1 - D \ (otherwise : 13 \Leftrightarrow 7 \ for \ 3 - D)$$

$$at \ 77^{\circ} K \Rightarrow noise \ 0.006x3/2 \cong 0.01 \ (1\% \ eV)$$

$$SNR_{cryogenic} = \frac{0.4 \Leftrightarrow 0.2}{0.01} = 40 \Leftrightarrow 20 \ if \ 3 - D$$

Classical Nanostructure 1/f noise vs. Quantum CNT Lorentz noise

- Wiener-Khtchine Theorem
 FT{psd(f)}=<c(x_o+x)c(x_o)>
- Nanowire, e.g.GaAs; FT{1/f} = Step(x)=1 x>0 all correlation scale i.e. self-similar noise characteristics
- CNT: FT{[1+(f/a)²]⁻¹=exp(-|x|/a) where a=1.41A°

The picture shows a carbon nano tube (CNT) based IR detector array. Each pixel of the IR detector array consists of a multi-wall CNT with a proper tuned bandgap for detection of selected spectrum of the infra red.

Nanolithograph

Nanoassembly Experiment

• Creating a fixture and then pushing a 100nm silver nanowire into the fixture (scanning size 5um)

Nanoassembly Experiment

• Creating a fixture and then pushing a 100nm silver nanowire into the fixture (scanning size 5um)

AFM image

Real-time visual display

Fabrication Process

Substrate Fabrication

The electrode patterns are made from a lift-off process

Robot end effecter

(b) lift-off

Mask Design and Fabrication

Unpolarized single pixel, which consists of five sub-pixel, is designed. The signal of the unpolarized single pixel is irrelated to the incident direction of the infrared.

Fabrication and Assembly by Nano Robot

Placement of CNTs between Electrodes

The placement of a CNT between electrodes can be easily achieved using the AFM based nano robot

CNTs between Electrodes

Assembled CNT based detectors

CNT Band Gap Tuning by Breakdown

TEM image of MWCNT

Topography of MWCNT

Testing and Results

I-V Characteristic of a CNT

Metallic behavior of CNT, the resistance of CNT is very small. The figure shows the CNT in serial connection with 10M Ohm resistor

I-V Characteristic of a CNT

Semi-conducting behavior of CNT. The figure shows the CNT in serial connection with 10M Ohm resistor

I-V Characteristic of CNT

Semi-conducting behavior of CNT. The figure shows the CNT in serial connection with 10M Ohm resistor. (-18V~18V)

Smart Vision Sensors: Rods & Cons

- Massive parallel & densely uniformly packed fovea
 6.3 Millions cons for color perception
- Distribution of 150 Millions rods are non-uniformly, polar-exponentially packed along radial direction
- Scale Invariant Architecture-Algorithm (Archirithm or Algotecture): data X = exp (U), feature domain u' =log x/2= log x- log 2=U gracefully degradation
- Ultra sensitivity: How could Single Photon be Detected by Human Vision Sensor at dark night? Although Rhodopsin molecule convert efficiently photons to charges as signal, but the energy of a photon is not enough for detection. CNT may realize it.

1-D multi-walls CNT Electrical Transport in Armchair

- Ballistic quantum
- Absence of
 backward
 scattering
- ➡ High maximum
 current density:
 10^7~10^13
 A/cm^2

Above: A carbon nanotube is a quantum conductor. The conductance rises by 1 G₀ as the depth increases sufficiently. G0= 2e2/h Stefan Frank et al., Science 280 1744 (1998)

Thermal Transport in CNT

250 c (A)

Temperature
 dependency

34

32

2

24

22

20

50

100

The thermal conductivity as a function of current, by Jianwei Che

150

200

- Length dependency
- Long-wave phonon: twiston

