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Abstract
• Evolving Connectionist Systems (ECOS) are systems that develop their structure, their 

functionality and their internal knowledge representation through continuous learning 
from data and interaction with the environment. ECOS can also evolve through 
generations of populations using evolutionary computation, but the focus of the tutorial is 
on the adaptive learning and improvement of each individual system. The learning 
process can be: on-line, off-line, incremental, supervised, unsupervised, active, 
sleep/dream, etc. These general principles can be applied to develop different models of 
computational intelligence - evolving connectionist systems, evolving rule based and 
fuzzy systems, evolving kernel-based systems, evolving quantum-inspired systems, and 
some integrated, hybrid models [1]. 

• The emphasis though is on the knowledge engineering aspect of the systems, ie how to 
represent human knowledge in a system and to extract interpretable information that can 
can be turned into knowledge. ECOS are demonstrated on several challenging problems 
problems from bioinformatics, neuroinformatics, neuro-genetics, medical decision 
support, autonomous robot control, adaptive multimodal information processing. The 
tutorial targets computer scientists, neuroscientists, biologists, engineers, both 
researchers and graduate students. 

• [1] N.Kasabov, Evolving connectionist systems: The Knowledge Engineering Approach, 
Springer, 2007

• Keywords: Computational Intelligence, Neuroinformatics, Bioinformatics, Knowledge-
based neural networks, Evolving connectionist systems, Data Mining; Knowledge 
Discovery 
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1. Evolving Intelligent Systems: Introduction

Evolving process:  the  process is unfolding, developing, revealing, changing over time 
in a continuous way

EIS: An information system that develops its structure and functionality in  a continuous, 
self-organised, adaptive, interactive way from incoming information, possibly from many 
sources, and performs intelligent  tasks (e.g. adaptive pattern recognition, decision 
making, concept formation, languages,….).

EIS is characterised by:
• Adaptation in an incremental mode (possibly, on-line, life-long)
• Fast learning from large amount of data, e.g. possibly 'one-pass' training 
• Open structure, extendable, adjustable
• Memory-based (add and retrieve information, delete information, trace the system 

development)
• Active interaction with other systems and with the environment 
• Represent adequately space and time at their different scales
• Knowledge-based: rules; 
• self-improvement 
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• Adaptive modelling of complex dynamic processes through incremental learning 

• Methods: evolving NN (ECOS) – DENFIS, EFuNN, evolving FS - eTS, EC, statistical 
learning (e,g. SVM), hybrid systems, quantum inspired EIS  

• Extracting relationship rules, knowledge. 

• Facilitating applications and discoveries across disciplines – Bioinformatics, 
Neuroinformatics,  Health informatics, Robotics, Business, Environment 

EIS
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Evolving COnnectionist Systems – ECOS. 

• ECOS are modular connectionist-based systems that evolve their structure and functionality in  
a continuous, self-organised, possibly on-line, adaptive, interactive way from incoming 
information; they can process both data and knowledge in a supervised and/or unsupervised 
way.   

• Early examples of ECOS: 
– RAN (J.Platt, 1991) – evolving RBF NN
– RAN with a long term memory – Abe et al, ;
– Incremental FuzzyARTMAP; 
– Growing gas; etc.

• New developments:
– EFuNN (Kasabov, 1998, 2001), DENFIS (Kasabov and Song, 2002)
– EFuRS, eTS (P.Angelov, 2002)
– SOFNN (McGinnity, Prasad, Leng, 2004)
– TWNFI (Song and Kasabov, 2005)
– Many other

• ‘Throw the “chemicals” and let the system grow, is that what you are talking about, Nik ?’
Walter  Freeman, UC at Berkeley, a comment  at “Iizuka’”1998 conference

• N.Kasabov, Evolving connectionist systems: The knowledge engineering 
approach, second edition, Springer, 2007

Environment

ECOS
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NeuCom
• NeuCom (www.theneucom.com): 

(P.Hwang et al.) 
• A Software Environment for  

NeuroComputing, Data Mining and 
Intelligent  Systems Design

• Incorporates 60 traditional and new 
techniques for intelligent data analysis and the 
creation of intelligent systems 

• A free copy available for education and 
research from: www.theneucom.com

• Adopted in 70 research laboratories, institutes 
and universities from all over the world 

NeuCom Usage
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2. Evolving clustering methods. ECM

• ECM: Fast one-pass (or at most - several passes) algorithm for dynamic clustering of a stream of data
• Performs a simple evolving, on-line, maximum distance based clustering
• The figure shows an evolving clustering process using ECM with consecutive examples x1 to x9 in a 2D space 
• If the learning is supervised – a local function is evolved in each cluster   
• Demo
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ESOM
 

Model No. of units Error rate No. of Epochs 

GCS 145 0 180 

DCS-GCS  135 0 135 

LVQ 114 11.9% 50 

SOM 144 22.2% 50 

ESOM 105 0 1 
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3. Simple ECOS and Evolving Fuzzy Neural Networks 

• Hidden nodes evolve, starting from no nodes at all.
• Each hidden node is a cluster center.
• Clusters grow in radius and shrink through a  learning algorithm
• Each hidden node represents a local model ( a rule) that associates an 

input cluster with an output function, e.g. a constant label, a linear 
function, a non-linear function, etc

• If a new input vector belongs to a cluster to certain degree, than the 
corresponding local model applies, otherwise – m of the closest 
models are used to calculate the output.      

• Incremental supervised clustering with new input vectors x
• First layer of connections:  W1(rj(t+1))=W1 (rj(t)) + lj. D (x,W1(rj(t)) 
• Second layer:  W2 (rj(t+1) ) = W2(rj(t)) + lj. (y - A2). A1(rj(t)),

where:  rj is the jth rule node (hidden node); D – distance; 
A2=f2(W2.A1) is the activation vector of the output neurons when x is 
presented; 

- A1(rj(t)) =f2 (D (W1 (rj(t)) , x)) is the activation of the rule node rj(t); 
- a simple linear function can be used for f1 and f2, e.g. A1(rj(t)) = 1- D 

(W1 (rj(t)) , x)); 
- lj is the current learning rate of the rule node rj calculated for example 

as lj = 1/ Nex(rj), where Nex(rj) is the number of examples associated 
with rule node rj. 
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Evolving fuzzy neural networks EFuNN and ECF

• As a general case, input and/or output variables can be 
non-fuzzy (crisp)  or fuzzy

• Fuzzy variables
• Example of three Gaussian MF 

• EFuNN, N. Kasabov, IEEE Tr SMC, 2001
• Partial case: ECF – evolving classifier function – no 

output MF, only input MF.
• Supervised clustering
• Zadeh-Mamdani fuzzy rules
• Simple version – ECF. Parameters: Rmax, Rmin, #input 

MF (e.g. 1,2,3,...), m-of-n (e.g. 1,2,3,..), # iterations for 
training (e.g. 1,2,3, …

• Demo

Inputs outputs

rule(case)
nodes
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4. Evolving Spiking neural networks – strongly brain-
inspired models
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Evolving SNN  
(Wysoski, Benuskova, Kasabov, Proc. ICANN, LNCS, Springer2006)



nkasabov@aut.ac.nz

5. Evolving Neuro-Fuzzy Inference Systems  
(DENFIS, Kasabov and Song, 2002, IEEE Tr Fuzzy Systems)

Two fuzzy rule groups are formed by DENFIS to perform inference for 2 input vectors (Fig 5.7)
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DENFIS algorithm:
(1) Learning:

- Unsupervised, incremental clustering. 
- For each cluster there is a Takagi-Sugeno

fuzzy rule created: IF x  is in cluster Cj
THEN  yj = fj (x), 

where: yi = β0 + β1 x1 + β2 x2 + … + βq
- Incremental learning of the function 

coefficients and weights of the 
functions through least square 
error

(2) Fuzzy inference over fuzzy rules:
- For a new input vector x = [x1,x2, 

… , xq] DENFIS chooses m 
fuzzy rules from the whole fuzzy 
rule set for forming a current 
inference system. 

- The inference result is: 

Σ i=1,m [ ωi fi ( x1, x2, …, xq )]
y   = ______________________________

Σ i=1,m ωi
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Transductive Neuro Fuzzy Inference with Weighted Data Normalisation –
TWNFI, for personalised modelling 

(Q.Song and N.Kasabov, IEEE Tr FS, December 2005, and Neural Networks, Dec.  2006)
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After the nearest samples are selected for an 
input vector x, the samples are clustered using 
ECM. 

Fuzzy rules are created/derived for each cluster: 
Rl :If x1 is Fl1 and x2 is Fl2 and … xP is FlP,  then 

y is Gl ,
where Flj and Gl are fuzzy sets defined by 

Gaussian   type membership functions. 
Input variable weights wj and fuzzy rule 

parameters are optimized through the steepest 
descent algorithm.



nkasabov@aut.ac.nz

6. Evolutionary Computation for feature, parameter and 
structure optimisation of ECOS

Evolutionary computation. 
Terminology:

• Gene
• Chromosome
• Population
• Crossover
• Mutation
• Fitness function
• Selection
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GA and ECOS

• Many individual ECOS are 
evolved simultaneously on 
the same data through a GA 
method

• A chromosome represents 
each individual  ECOS 
parameters

• Individuals are evaluated and 
the best one is selected for a 
further development 

• Mutation  
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EC for feature, parameter and structure optimisation of ECF 
ECOS 

• GA optimisation of the 
parameters of the model 
and the input features

• A chromosome contains 
as “genes” all model 
parameters and input 
features (yes, no)

• Replication of individual 
models and selection of:

- The best one 
- The best m averaged, etc
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Online feature selection for EIS with incremental PCA 
and LDA

• Let us consider the case that the (N+1)th training sample is presented. The addition of this new sample will lead 
to the changes in both of the mean vector and covariance matrix; therefore, the eigenvectors and eigenvalues
should also be recalculated. The mean input vector  is easily updated.

• If the new sample has almost all energy in the current eigenspace, dimensional augmentation is not needed. 
However, if it has some energy in the complementary space to the current eigenspace, the dimensional 
augmentation cannot be avoided. When the norm of the residue vector  is larger than a threshold value, it must 
allow the number of dimensions to increase from k to k+1, and the current eigenspace must be expanded. 

• Application: Face recognition  
• Recent publications:

– S. Ozawa, S.Too, S.Abe, S. Pang and N. Kasabov, Incremental Learning of Feature Space 
and Classifier for Online Face Recognition, Neural Networks, August, 2005

– S. Pang, S. Ozawa and N. Kasabov, Incremental Linear Discriminant Analysis for 
Classification of Data Streams, IEEE Trans. SMC-B, vol. 35, No. 4, 2005
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7. Multimodel ECOS.
Model and data integration through ECOS 

-Inserting initial rules (existing knowledge) 
and training with new data

- Generating data from existing model and 
training an ECOS on both old and new data

- New rules evolve continuously

Example:   A 3D plot of data D0 (data 
samples denoted as “o” ) generated from a 
model M (formula) y = 5.1x1+0.345x1

2 –
0.83x1 log10 x2 + 0.45x2 +0.57 exp(x2 

0.2) in 
the sub-space of the problem space defined 
by x1 and x2 both having values between 0 
and 0.7,  and 

• New data D (samples denoted as “*”) 
defined by x1 and x2 having values between 
0.7 and 1;
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Prototype rules evolved through DENFIS and EFuNN after model and new 
data integration

Zhade-Mamdani fuzzy rules (ECF, EFuNN):

Rule 1: IF x1 is (Low 0.8) and x2 is (Low 0.8) THEN y is (Low 0.8), radius 
R1=0.24; N1ex= 6

Takagi-Sugeno fuzzy rules (DENFIS):

• Rule 1: IF x1 is (-0.05, 0.05, 0.14) and x2 is 
(0.15,0.25,0.35) THEN y = 0.01 + 0.7x1 + 0.12x2

• Rule 2: IF x1 is (0.02, 0.11, 0.21) and  x2 is 
(0.45,0.55, 0.65) THEN y = 0.03+ 0.67x1+ 0.09 x2

• Rule 3: IF x1 is (0.07, 0.17, 0.27) and  x2 is 
(0.08,0.18,0.28) THEN y = 0.01 +0.71x1 + 0.11x2

• Rule 4: IF x1is (0.26, 0.36, 0.46) and  x2 is 
(0.44,0.53,0.63) THEN y = 0.03+ 0.68x1+ 0.07x2

• Rule 5: IF x1is (0.35, 0.45, 0.55) and  x2 is 
(0.08,0.18,0.28) THEN y = 0.02 +  0.73x1+ 0.06x2

• Rule 6: IF x1is (0.52, 0.62, 0.72) and x2 is 
(0.45,0.55,0.65) THEN y = -0.21 + 0.95x1 + 0.28x2

• Rule 7: IF x1is (0.60, 0.69,0.79)  and x2 is 
(0.10,0.20,0.30) THEN y = 0.01+ 0.75x1+ 0.03x2

• New rules: 
• Rule 8: IF x1is (0.65,0.75,0.85)  and  x2 is  

(0.70,0.80,0.90) THEN y =-0.22+0.75x1+0.51x2
• Rule 9: IF x1is (0.86,0.95,1.05)  and  x2 is 

(0.71,0.81,0.91)  THEN  y   =0.03 + 0.59x1+0.37x2

Rule 2: IF x1 is (Low 0.8) and x2 is (Medium 0.7) THEN y is (Small 0.7), 
R2=0.26, N2ex= 9

Rule 3: IF x1 is  (Medium 0.7) and x2 is (Medium 0.6) THEN y is (Medium 
0.6), R3 = 0.17,N3ex=17

Rule 4: IF x1 is (Medium 0.9) and x2 is (Medium 0.7) THEN y is (Medium 
0.9), R4 = 0.08, N4ex=10

Rule 5: IF x1 is (Medium 0.8) and x2 is (Low 0.6) THEN y is (Medium 0.9), 
R5= 0.1, N5ex = 11

Rule 6: IF x1 is (Medium 0.5) and x2 is (Medium 0.7) THEN y is (Medium 
0.7), R6= 0.07,N6ex= 5

New  rules:
Rule 7: IF x1 is (High 0.6) and x2 is (High 0.7) THEN y is (High 0.6), R7 = 
0.2, N7ex = 12

Rule 8: IF x1 is (High 0.8) and x2 is (Medium 0.6) THEN y is (High 0.6), 
R8=0.1,N8ex= 5

Rule 9: IF x1 is (High 0.8) and x2 is (High 0.8) THEN y is (High3 0.8), R9= 
0.1, N9ex = 6
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8. Applications in Bioinformatics
Gene expression data profiling 

• DNA analysis - large data 
bases; data always being added 
and modified; different sources 
of information

• Markers and drug discoveries:
– Gastric cancer
– Bladder cancer
– CRC
– www.pedblnz.com

• Specialised software 
SIFTWARE

• Kasabov, N., Modelling and 
profile discovery in 
Bioinformatics: Global, local and 
personalised approach, Pattern 
Recognition Letters, Jan. 2007 

http://www.pedblnz.com/
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A gene regulatory network modelling software system, GeneNetXP
(Chan, Jain et al, 2006)
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Evolving fuzzy neural networks for  GRN modeling 
(Kasabov and Dimitrov, ICONIP, 2002)

G(t)             EFuNN G(t+dt)

• On-line, incremental learning of a GRN

• Adding new inputs/outputs (new genes) 

• The rule nodes capture clusters of input genes that are related to the output  genes 

• Rules can be extracted that explain the relationship between G(t) and G(t+dt),   
e.g.:          IF g13(t) is High (0.87)  and g23(t) is Low (0.9) 

THEN g87 (t+dt) is High (0.6) and g103(t+dt) is Low

• Playing with the threshold will give stronger or weaker patterns of  relationship
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Using a GRN model to predict the expression of genes in a future time
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9. Applications in Neuroinformatics
EEG data modelling

• Why ECOS for brain study?
• Modeling brain states of an 

individual or groups of 
individuals from EEG, fMRI 
and other information

• Example: epileptic seizure  of 
a patient; 8 EEG  channels  
data is shown

• Future direction: building 
dynamic models, e.g. brain-
regulatory networks

• Applications: 
– Neuroscience: 

Understanding and 
discoveries 

– Engineering: Brain-
computer interfaces
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ECOS for modeling perception states based on EEG data 

• Standard EEG electrode systems

• In the experiment here, four classes of brain classes of brain 
perception states are used with 37 single trials perception states are used with 37 single trials 
each of them including the following stimuli: each of them including the following stimuli: 

– Class1 - Auditory Stimulus; 
– Class2 - Visual  Stimulus; 
– Class3 - Mixed Auditory and visual 

stimuli; 
–– Class 4 Class 4 -- No stimulus.No stimulus.

• (With van Leewen et al, RIKEN, BSI, Tokyo)

Stimulus A V AV No Accuracy

A 81.2 1.3 0.1 0.2 98%

V 1.1 82.4 2.9 1.8 93.4%

AV 0.6 3.3 75 1.4 93.4%

No 0.4 1.5 1.3 80.5 96.2%
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Computational Neurogenetic Modelling (CNGM)Computational Neurogenetic Modelling (CNGM)
L.BenuskovaL.Benuskova and and N.KasabovN.Kasabov, Springer, 2007, Springer, 2007

GRNGRN
CNGM as an ANNCNGM as an ANN
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BGO: Brain-gene Ontology System 
(IJCNN 2007) 
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10. Adaptive Pattern Recognition and Robotics

• Adaptive speech recognition, 
image and video data 
processing

• ECOVIS prototype system
• Multimodal (face-, finger print-

, iris-, and voice) person 
verification  system

• Future research: Other modality 
recognition models and systems 
such as: odour-, DNA-, waves-
, personal magnetic fields.  
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ECOS for adaptive multimodal signal processing, speech and image
A simple case study: ECOS-based, adaptive, voice controlled object recognition system

Verbal Instruction

Parsing and Speech Recognition

Object Detection Based on Image

Robot Action

Speech Utterance

1 “Pen”

2 “Rubber”

3 “Cup”

4 “Orange”

5 “Circle”

6 “Ellipse”

7 “Rectangle”
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Robocup
1 gold and 2 silver medals for the Singapore Polytechnic at the World Robo-cup in Seoul, 2004, using 

ECOS; Bronze  medal in Japan, 2005 (Loulin)
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11 .Applications of ECOS for DSS  
Local, adaptive renal function evaluation system based on DENFIS:  

(Marshal, Song, Ma, McDonell and Kasabov, Kidney International, May 2005)

• New method: Song, Q. , N. Kasabov, T. Ma, M. Marshall, Integrating regression formulas and kernel 
functions into locally adaptive  knowledge-based neural networks: a case study on renal function 
evaluation, Artificial Intelligence in Medicine, 2006, Volume 36, pp 235-244 
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KEDRI-TELECOM Mobile Calls Traffic Optimization System 
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12. Future directions: Quantum inspired CI
• Quantum principles: superposition; entangelment, interference, parallelism 

• QI methods for EIS:
– QI clustering
– Quantum neuron with a recurrent connection (Li et al, 2006): the output and 

the input variables are represented as particle waves
– QI neural networks (Ezov and Ventura, 2000) 
– QI associative memories  (e.g. Ventura and Martinez, m=O(2n) patterns stored 

in 2n+1 neurons , while in a Hopfield NN it is m<0.5n patterns in n neurons
– QI fuzzy systems
– QI GA
– QI swarm intelligence

• Applications:
– Specific algorithms with polynomial time complexity for NP-complete problems 

(e.g. factorising large numbers, Shor, 1997) 
– Search algorithms ( Grover, 1996), O(N1/2) vs O(N) complexity)
– Memorizing large number of patterns
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Example: Quantum inspired evolutionary algorithms (QEA)  

• The representation of individuals is usually done in the form of bit-strings, 
real-valued vectors, symbols etc. QEA uses a q-bit representation based on 
the concept of q-bits in Quantum Computing. Each q-bit is defined as a pair of 
numbers (α, β). A Q-bit individual as a string of m q-bits is represented as:

for i = 1, 2, …, m:

• Evolutionary computing with Q-bit representation has a better characteristic of 
population diversity than other representations, since it can represent linear 
superposition of states probabilistically . 

• Here, only one Q-bit individual with m q-bits is enough to represent 2m states 
whereas in binary representation, 2m individuals will be required for the same. 

• The Q-bit representation leads to quantum parallelism in the system as it is 
able to evaluate the function on a superposition of possible inputs. The output 
obtained is also in the form of superposition which needs to be collapsed to 
get the actual solution.

• In QEA, the population of Q-bit individuals at time t  can be represented as:  
where n  is the size of the population. 

• The rotation gate, used as  Q-gate is represented as: 

1 2( ) { , , ..., }t t t
nQ t q q q=

. . .1 2

. . .1 2
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Quantum Inspired Computational Intelligence 
(M Defoin-Platel, S.Shliebs, et al)

The KEDRI quantum inspired evolutionary algorithm performs exponentially faster 
and more accurately than the classical algorithms when evaluating combinations of 

variables for a modelling task
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QI-ECOS
(Natural Computing, 2007)

X1
On- 0.7  
Off  - 0.3

Con 1-1
S1- 7.3 - 0.1
S2 -5.4 – 0.3
S3- 9.3 – 0.5
S4-7.0 - 0.05
S5-4.3 – 0.05   

Output 1

Output 2

Cluster 1

Cluster .2

Cluster  3

Fun 1
c1- 0 - 0.1
c1- 0.5- 0.7
c1- 1- 0.2



nkasabov@aut.ac.nz

13. Conclusions
• Brain-, gene- and quantum principles are useful for the creation of new types

of EIS for :
– Solving problems and making discoveries in bioinformatics, 

neuroinformatics, medicine, chemistry, physics
– Solving hard AI and NP-complete problems  
– At the nano-level of microelectronic devices, quantum processes may 

have a significant impact.
• How much “inspiration”? –Depends on the problem in hand.
• Integrating different levels of information processing through general 

information theory - a challenge for information science 
• New algorithms and models, e.g. quantum inspired CNGM
• Starting to use these models as a further inspiration for new computer devices 

– million times faster and more accurate
• Impact on the hardware – parallel, ubiquitous
• How do we implement the BGQI computational intelligence in order to benefit 

from their high speed and accuracy? Should we wait for the quantum 
computers to be realised many years from now, or we can implement them 
efficiently on specialised computing devices based on classical principles of 
physics? 
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