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Abstract

* Evolving Connectionist Systems (ECOS) are systems that develop their structure, their
functionality and their internal knowledge representation through continuous learning
from data and interaction with the environment. ECOS can also evolve through
generations of populations using evolutionary computation, but the focus of the tutorial is
on the adaptive learning and improvement of each individual system. The learning
process can be: on-line, off-line, incremental, supervised, unsupervised, active,
sleep/dream, etc. These general principles can be applied to develop different models of
computational intelligence - evolving connectionist systems, evolving rule based and
fuzzy systems, evolving kernel-based systems, evolving quantum-inspired systems, and
some integrated, hybrid models [1].

 The emphasis though is on the knowledge engineering aspect of the systems, ie how to
represent human knowledge in a system and to extract interpretable information that can
can be turned into knowledge. ECOS are demonstrated on several challenging problems
problems from bioinformatics, neuroinformatics, neuro-genetics, medical decision
support, autonomous robot control, adaptive multimodal information processing. The
tutorial targets computer scientists, neuroscientists, biologists, engineers, both
researchers and graduate students.

 [1] N.Kasabov, Evolving connectionist systems: The Knowledge Engineering Approach,
Springer, 2007

« Keywords: Computational Intelligence, Neuroinformatics, Bioinformatics, Knowledge-
based neural networks, Evolving connectionist systems, Data Mining; Knowledge
Discovery
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1. Evolving Intelligent Systems: Introduction

Evolving process: the process is unfolding, developing, revealing, changing over time

in a continuous way

EIS: An information system that develops its structure and functionality in a continuous,
self-organised, adaptive, interactive way from incoming information, possibly from many
sources, and performs intelligent tasks (e.g. adaptive pattern recognition, decision
making, concept formation, languages,....).

EIS is characterised by:
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Adaptation in an incremental mode (possibly, on-line, life-long)
Fast learning from large amount of data, e.g. possibly ‘one-pass' training
Open structure, extendable, adjustable

Memory-based (add and retrieve information, delete information, trace the system
development)

Active interaction with other systems and with the environment
Represent adequately space and time at their different scales
Knowledge-based: rules;

self-improvement




EIS

Control

Environment

Adaptation

% Soun d\ el
", \
PNA ~_ Image\_l\ Pre-processing, Modelling,
Brain Signals’ Video Feature Extraction Learning, )
RO — T | rabelling Knowledge discovery

Environmental and.'. _— Numbers——
Social Information -, S

. Sensors—— |

Stock Market'.

Other Sources— |
i

Human

- Adaptive modelling of complex dynamic processes through incremental learning

» Methods: evolving NN (ECOS) — DENFIS, EFuNN, evolving FS - eTS, EC, statistical
learning (e,g. SVM), hybrid systems, quantum inspired EIS

« Extracting relationship rules, knowledge.
« Facilitating applications and discoveries across disciplines — Bioinformatics,
Neuroinformatics, Health informatics, Robotics, Business, Environment
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Evolving COnnectionist Systems — ECOS.

« ECOS are modular connectionist-based systems that evolve their structure and functionality in
a continuous, self-organised, possibly on-line, adaptive, interactive way from incoming
information; they can process both data and knowledge in a supervised and/or unsupervised
way.

|

T IEnvironment I

« Early examples of ECOS:

— RAN (J.Platt, 1991) — evolving RBF NN [ Ecos 1
— RAN with a long term memory — Abe et al, ; o | | '
— Incremental FuzzyARTMAP; —

— Growing gas; eftc.

« New developments:
— EFuNN (Kasabov, 1998, 2001), DENFIS (Kasabov and Song, 2002)
— EFuRS, eTS (P.Angelov, 2002) o TS T
— SOFNN (McGinnity, Prasad, Leng, 2004) Evolving

— TWNFI (Song and Kasabov, 2005) Connectionist
Systems

«  ‘Throw the “chemicals” and let the system grow, is that what you are talking about, Nik
Walfer Freeman, UC at Berkeley, a comment at “lizuka’”1998 conference

« N.Kasabov, Evolving connectionist systems: The knowledge engineering
approach, second edition, Springer, 2007

nkasabov@aut.ac.nz




 NeuCom (www.theneucom.com):

Duks Sourcn  ushation Dats inabves Mol Drcowry  Sionsl Prcessey Hodel [rosorstan  Hardwars  Hels

(P.Hwang et al.) B T
= A SOftware EnVironment for B MNeuro-Computing Decision Support Environment
NeuroComputing, Data  Mining  and
Intelligent Systems Design
* Incorporates 60 traditional and new 0 B
techniques for intelligent data analysis and the g
creation of intelligent systems > g "
« A free copy available for education and ~*10
research from: f
» Adopted in 70 research laboratories, institutes e T —————— 7]
and universities from all over the world e (e =i =
NeuCom Usage
Usage by Country for April 2886 700
United States (46K 600 572
ilen zealand ffutearvar T1:0#; 516 519
AUT Canpus £18X) . 500 T 1 -
China (3% E 2
India 5% § 400 — B O
Oreat Britain (U0 (0 E 0 - %ﬁigi_i Bl
Japan (2X) g ™
Trdunzziz £33 Z.
fuzkbralia €23%) 200 T 178 (N (SR B I I O
Lernuny 1% 1020 3%
Uthzr (0¥ 100 6 1 1 I N B
25
e [, ‘ ‘ ‘
U N RN N SRS S SRENEERN SR O
W W v&f\ Qé‘&é & & & \%@@ @@ S ¥ ¢

nkasabov@aut.ac.nz



http://www.theneucom.com/

2. Evolving clustering methods. ECM
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= Xj: sample - Ccj* : cluster centre O Cj¥: cluster
Rujk: cluster radius

. ECM: Fast one-pass (or at most - several passes) algorithm for dynamic clustering of a stream of data

. Performs a simple evolving, on-line, maximum distance based clustering

. The figure shows an evolving clustering process using ECM with consecutive examples x1 to x9 in a 2D space
. If the learning is supervised — a local function is evolved in each cluster

. Demo
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ESOM

+) ESOMGui Yer.1, ECOS Toolbox

a Sample

Mode

Evolving Self-Organizing Map: ESOM Gui Yer1

Data Information
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Results
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No. of units

145

135

114

144

105

Error rate

11.9%

22.2%

No. of Epochs
180

135

50

50




3. Simple ECOS and Evolving Fuzzy Neural Networks

« Hidden nodes evolve, starting from no nodes at all.
 Each hidden node is a cluster center.
*  Clusters grow in radius and shrink through a learning algorithm

+ Each hidden node represents a local model ( a rule) that associates an
input cluster with an output function, e.g. a constant label, a linear
function, a non-linear function, etc

« If a new input vector belongs to a cluster to certain degree, than the
corresponding local model applies, otherwise — m of the closest
models are used to calculate the output.

* Incremental supervised clustering with new input vectors x

First layer of connections: WA (r;(t+1))=W1 (r(t)) + Ij. D ( ))

« Second layer: W2 (r(t+1) ) = W2(r,(t)) + Ij. A1(r,(1)),
where: r; is the jth rule node (hidden node); D — distance;
A2=f2(W2.A1) is the activation vector of the output neurons when x is
presented;

- A1(r(t)) =f2 (D (W1 (r(1)) , x)) is the activation of the rule node ri(t);

- a simple linear function can be used for f1 and 2, e.g. A1(rj(t)) = 1-D
(W1 (r;(t)) , x));

- lj is the current learning rate of the rule node r; calculated for example

as lj =1/ Nex(r)), where Nex(r;) is the number of examples associated
with rule node r,.
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Evolving fuzzy neural networks EFUNN and ECF

As a general case, input and/or output variables can be
non-fuzzy (crisp) or fuzzy

Fuzzy variables
Example of three Gaussian MF

rule(case)

A Short Medium Tall
1

outputs

30 170 250
Height (cm)

EFuNN, N. Kasabov, IEEE Tr SMC, 20071

Partial case: ECF - evolving classifier function — no
output MF, only input MF.

Supervised clustering
Zadeh-Mamdani fuzzy rules

Simple version — ECF. Parameters: Rmax, Rmin, #input
MF (e.g. 1,2,3,...), m-of-n (e.g. 1,2,3,..), # iterations for
training (e.g. 1,2,3, ...

Demo
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4. Evolving Spiking neural networks — strongly brain-
inspired models

integration
+ leakage ™ q"““ﬂ-«____ splke
ey
]
xi Ll - < .
\ : refractory period
x2 = : —
X3 . L _____: O : - » Binary events
14 1 1 L il _,-/”-H’
ui(t) N |
I‘

til ti2

Time (ms)
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Evolving SNN

(Wysoski, Benuskova, Kasabov, Proc. ICANN, LNCS, Springer2006)

Input Picture

C@ / = \/ Contrast maps

Layer 1 x_/ /\\\x .

R LY T
7

/

Layer 2 "‘ Orientation maps

. 443._\ “lw

u

Layer 3 ¥
"".
100 MRS
Class 1 Lateral Inhibition t Class 2
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5. Evolving Neuro-Fuzzy Inference Systems
(DENFIS, Kasabov and Song, 2002, IEEE Tr Fuzzy Systems)

DENFIS algorithm:
(1) Learning:
F - Unsupervised, incremental clustering.
D 1 . - For each cluster there is a Takagi-Sugeno
777777777777 5 i = - . i fuzzy rule created: IF x is in cluster Cj
c <1 2 ks B J THEN vyj = fj (x),
Al TTTTTTTTTRA T B where: yi=p0+ 31 x1+B2x2+ ... + 3q
7777777777777777 - - Incremental learning of the function

X coefficients and weights of the
functions through least square
error

(a) Fuzzy rule group 1 for a DENFIS

(b) Fuzzy rule group 2 for a DENFIS (2) Fuzzy inference over fuzzy rules:
o - For a new input vector x = [x1,x2,
o ] ..., Xq] DENFIS chooses m
- : - fuzzy rules from the whole fuzzy
° K .
™ rule set for forming a current

i inference system.

D o .
- - The inference result is:

o . %y [Wifi (X1,%2, ..., xq )]

C E D Zi=1mwi

r' #
nkasabov@aut.ac.nz ¥



Transductive Neuro Fuzzy Inference with Weighted Data Normalisation —
TWNFI, for personalised modelling

(Q.Song and N.Kasabov, IEEE Tr FS, December 2005, and Neural Networks, Dec. 2006)

—

Yes

Output yq
calculation

o

End

Input a
vector xy

|

Standard data
normalization

I_d

Nearest samples
selection

v

Is the sample set -

same as in the
previous iteration

s

Fuzzy model
creation

!

Parameter &
variable weights
optimization

|

After the nearest samples are selected for an
input vector x, the samples are clustered using
ECM.

Fuzzy rules are created/derived for each cluster:

R,:Ifx isF and x,is F,and ... X5 is F5, then
yisG,

where Fy and Gl are fuzzy sets defined by
Gaussian type membership functions.

Input variable weights w; and fuzzy rule
parameters are optimized through the steepest
descent algorithm.

in;ﬁmj exp[— il _m”)j

1-10f j-1 26,?

f(x)= > >
i : ﬁa-exp[— i ~h) }
I =1 6I2 j=1 : 20“2
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6. Evolutionary Computation for feature, parameter and
structure optimisation of ECOS

Evolutionary computation.
Terminology:

 (ene

e« Chromosome

« Population

o Crossover

e Mutation

e Fitness function
e Selection

parents

M

e

offspring

MANN
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GA and ECOS

Many individual ECOS are
evolved simultaneously on
the same data through a GA
method

A chromosome represents
each individual ECOS
parameters

Individuals are evaluated an(
the best one is selected for a
further development

Mutation

crossover

Initial
population

crossover
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EC for feature, parameter and structure optimisation of ECF

GA optimisation of the
parameters of the model
and the input features

A chromosome contains
as “genes” all model
parameters and input
features (yes, no)

Replication of individual
models and selection of:

- The best one
- The best m averaged, etc

ECOS

-} |Siftware - Genetic Algorithm For Offline ECE Optimisation
File Help

Data

Crossvalidation

Iv Single File | LymphlPI11g56s bt
*% of data for training 0

[ Multiple Files — Training Data | LymphlPI110562 b,
Testing Data [| \rohiPI11g56s bt »

¥ Crozsvalidate I Tirnefz)

[~ Split Data Only Once

Ewalve 95

" Max Field or set as ok _
o Min Field or set az a5
& mof nor set as ﬁBD T .

F | b 4
v Epochs or set az o
[v Use Gé far Feature Extraction 0,8] A - 7

VO ] 4
GA Parameters ————————
Generations I el — E\?esrtage i
Population 20 50 1 I ) T
B T ] 5 10 15 20 25
e :I Generations
Crossover Rate =
Results Feature Extraction Results ;
|PerGene = j | 0.0z Bt 5 oare a0.622 10
Mutation Rate = Time Remaining o:0:a0 0.5
Remaining Generations 1]
|Per Gene - =l [om Individuals 0 =% = @& m & ¢
[w Maintain Best Solution in Population Genome Length 28
MNumber of Classes 2
W Allow ssesual reproduction Mumber of Features q ot tStat:SL: "
+ Rank based selection £ etk Loade
" Roulette whesl selection _
™ se Fitness Scaling [ Apply pressure to use min number of genes Start
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Online feature selection for EIS with incremental PCA
and LDA

e  Letus consider the case that the (N+1)th training sample is presented. The addition of this new sample will lead
to the changes in both of the mean vector and covariance matrix; therefore, the eigenvectors and eigenvalues
should also be recalculated. The mean input vector is easily updated.

. If the new sample has almost all energy in the current eigenspace, dimensional augmentation is not needed.
However, if it has some energy in the complementary space to the current eigenspace, the dimensional
augmentation cannot be avoided. When the norm of the residue vector is larger than a threshold value, it must
allow the number of dimensions to increase from k to k+1, and the current eigenspace must be expanded.

*  Application: Face recognition
*  Recent publications:
— S. Ozawa, S.Too, S.Abe, S. Pang and N. Kasabov, Incremental Learning of Feature Space
and Classifier for Online Face Recognition, Neural Networks, August, 2005

— S. Pang, S. Ozawa and N. Kasabov, Incremental Linear Discriminant Analysis for
Classification of Data Streams, IEEE Trans. SMC-B, vol. 35, No. 4, 2005
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/. Multimodel ECOS.
Model and data integration through ECOS

-Inserting initial rules (existing knowledge)
and training with new data

_*_
+ gk
- Generating data from existing model and + *3&{&***
ini 10 PR S
training an ECOS on both old and new data FrpreT ]
S
g4 ¥y ¥

- New rules evolve continuously

Example: A 3D plot of data D, (data
samples denoted as “0” ) generated from a
model M (formula) y = 5.1x,+0.345x,% -
0.83x, log,, X, + 0.45x, +0.57 exp(x,°2) in
the sub-space of the problem space defined
by x, and x, both having values between 0
and 0.7, and

* New data D (samples denoted as “*”)
defined by x, and x, having values between
0.7 and 1;

o
el v
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Prototype rules evolved through DENFIS and EFuNN after model and new
data integration

Takagi-Sugeno fuzzy rules (DENFIS): Zhade-Mamdani fuzzy rules (ECF, EFUNN):

Rule 1: IF x, is (Low 0.8) and x, is (Low 0.8) THEN y is (Low 0.8), radius

. Rule 1: IF X, is (-0.05, 0.05, 0.14) and X, IS R,=0.24; N, = 6
(0.15,0.25,0.35) THEN y = 0.01 + O.7X1 + O.:I_ZX2 Rule 2: IF x, is (Low 0.8) and X, is (Medium 0.7) THEN y is (Small 0.7),
 Rule 2: IF x, is (0.02, 0.11, 0.21) and X, is R7=0.26, Npe,= 9
(0.45,0.55, 0.65) THEN y =0.03+0.67%+0.09,, ] Rule 3: IF x, is (Medium 0.7) and x, is (Medium 0.6) THEN vy is (Medium
e Rule 3: IF x; is (0.07, 0.17, 0.27) and X, is 0.6), R, =0.17,N,,, =17
(0.08,0.18,0.28) THEN y = 0.01 +0.71x, + 0.11x,
 Rule 4: IF x,is (0.26, 0.36, 0.46) and X, is gg')e é; I=FO).(68i,SI\l(‘:\:|e=d1igm 0.9) and x, is (Medium 0.7) THEN y is (Medium
(0.44,0.53,0.63) THEN y = 0.03+ 0.68x,+ 0.07x, X
« Rule 5 IF x;is (0.35 0.45, 0.55) and X, is

(0.08,0.18,0.28) THEN y = 0.02 + 0.73x,+ 0.06x, EuleOSi I,I:l X, i_sl(l\/ledium 0.8) and x, is (Low 0.6) THEN y is (Medium 0.9),
* Rule 6: IF xis (0.52, 0.62, 0.72) and X, is ST e

(0'45’0'55’0'65) THEN y= -0.21+ 0'95X1 + 0'28X2 Rule 6: IF x; is (Medium 0.5) and x, is (Medium 0.7) THEN y is (Medium
« Rule 7: IF x;is (0.60, 0.69,0.79) and x, is 0.7), Re= 0.07,Nge= 5
(0.10,0.20,0.30) THEN y = 0.01+ 0.75x,+ 0.03x,

2ex

New rules:
Rule 7: IF x1 is (High 0.6) and x2 is (High 0.7) THEN y is (High 0.6), R, =
*  New rules: 0.2, Ny, =12
o Rule 8: IF XliS (0_65,0_75,0_85) and X, is Rule 8: IF x1 is (High 0.8) and x2 is (Medium 0.6) THEN vy is (High 0.6),
(0.70,0.80,0.90) THEN y =-0.22+0.75x,+0.51X, Rg=0.1.Nge,= 5
« Rule 9: IF x;is (0.86,0.95,1.05) and X, is _ o o o _
(0.71,0.81,0.91) THEN y ~0.03 + 0.59X1+0.37X2 Ellj,leNi;XIE g(l is (High 0.8) and x2 is (High 0.8) THEN y is (High3 0.8), R,
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8. Applications in Bioinformatics

Gene expression data profiling
 DNA analysis - large data

bases; data always being added
and modified; different sources
of information

* Markers and drug discoveries:
— Gastric cancer
— Bladder cancer
— CRC

o Specialised software CXTTOT—T—
S I FTWARE Cancer Profile

« Kasabov, N., Modelling and
profile discovery in
Bioinformatics: Global, local and
personalised approach, Pattern
Recognition Letters, Jan. 2007

o
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A gene regulatory network modelling software system, GeneNetXP
(Chan, Jain et al, 2006)
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Evolving fuzzy neural networks for GRN modeling
(Kasabov and Dimitrov, ICONIP, 2002)

G(t) EFuUNN G(t+dt)

* On-line, incremental learning of a GRN
» Adding new inputs/outputs (new genes)
 The rule nodes capture clusters of input genes that are related to the output genes

* Rules can be extracted that explain the relationship between G(t) and G(t+dt),
e.g.: IF g13(t) is High (0.87) and g23(t) is Low (0.9)

THEN g87 (t+dt) is High (0.6) and g103(t+dt) is Low

* Playing with the threshold will give stronger or weaker patterns of relationship
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Using a GRN model to predict the expression of genes in a future time
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9. Applications in Neuroinformatics
EEG data modelling

§ Channels of EEG from an Epileptic Seizure

 Why ECOS for brain study’ 100 w . | |
] . oF
* Modeling brain states of an 100 ‘ | . .
SRR 1000 5 10 15 20 25
individual or groups of X
individuals from EEG, fMF 100 ‘ | . .
- - Q 5 10 15 20 25
and other information ° MMMMWWWWWMW—
« Example: epileptic seizure 20, : . . - -
a patient; 8 EEG channels R T R -
data is shown 100 w . . .
. . - 1000 5 10 15 20 25
e Future direction: building OWMWWWWW%
dynamic models, e.g. brain- oo ; m s 20 2
° Applications: '188(1 ‘:3 1:0 1:5 ?:ﬂ 25
— Neuroscience: I i i e mersmrmiff———
Understanding and 500 5 10 15 20 %
discoveries 53WWWWWWMWWWWWMWWWWNWWWW—
1 1 . 1 0 ) 10 15 20 25
- Englnee“ng' Braln- Seizure onset at about 10 Sec

computer interfaces
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ECOS for modeling perception states based on EEG data

o  Standard EEG electrode systems

. In the experiment here, four classes of brain
perception states are used with 37 single trials
each of them including the following stimuli:

— Classl - Auditory Stimulus;
— Class2 - Visual Stimulus;
— Class3 - Mixed Auditory and visual
stimuli;
— Class 4 - No stimulus.
 (With van Leewen et al, RIKEN, BSI, Tokyo)

Stimulus A \ AV No _ Accuracy
A 81.2 1.3 0.1 0.2 98%

\Y 1.1 82.4 2.9 1.8 93.4%
AV 0.6 3.3 75 1.4 93.4%
No 0.4 1.5 1.3 80.5 96.2%
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Computational Neurogenetic Modelling (CNGM) gy
L.Benuskova and N.Kasabov, Springer, 2007 =

Computational

Neurogenetic
Modeling

Cipinm

CNGM as an ANN

——0.1~3.5Hz (delta)
——35+75Hz (theta)
— — 75~125Hz (alpha)
—+—125~18Hz (betal)
——18~30Hz (beta2)
—+ - 30~50Hz (gama)

Band Relative Intensity Ratio

0 1000 2000 3000 4000 5000
Time (ms)




BGO: Brain-gene Ontology System
IJCNN 2007)
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10. Adaptive Pattern Recognition and Robotics

Adaptive speech recognition,
image and video  data
processing

ECOVIS prototype system
Multimodal (face-, finger print-
, Iris-, and voice) person
verification system

Future research: Other modality
recognition models and systems
such as: odour-, DNA-, waves-
, personal magnetic fields.

Frad |
IW l% # eamiimmaitel Faljoian (B




ECOS for adaptive multimodal signal processing, speech and image
A simple case study: ECOS-based, adaptive, voice controlled object recognition system

Speech Utterance

l‘Pen1,

“Rubber”

Verbal Instruction “Cup”

“Orange”

A 4

Parsing and Speech Recognition

“Circle”

“Ellipse”

~N|[o|lo|l ] O] DN PP

\ 4

Object Detection Based on Image

@obot Action >

“Rectangle”
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Robocup
1 gold and 2 silver medals for the Singapore Polytechnic at the World Robo-cup in Seoul, 2004, using

ECOS; Bronze medal in Japan, 2005 (Loulin)
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11 .Applications of ECOS for DSS
Local, adaptive renal function evaluation system based on DENFIS:
(Marshal, Song, Ma, McDonell and Kasabov, Kidney International, May 2005)

J . GFR-ECOS DEMO, Nowv. 2003 , KEDRI , AUT , N7

File Funckion Help

GFR-ECOS: Evolving Medical Decision Support System
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Circle: Fuzzy Rule Node Triangle: Input f+
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HumSystemBRules: 21
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New method: Song, Q. , N. Kasabov, T. Ma, M. Marshall, /nfegrating regression formulas and kernel

functions into locally adaptive knowledge-based neural networks: a case study on renal function
evaluation, Artificial Intelligence in Medicine, 2006, Volume 36, pp 235-244
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KEDRI-TELECOM Mobile Calls Traffic Optimization System

@
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12. Future directions: Quantum inspired CI

* Quantum principles: superposition; entangelment, interference, parallelism

QI methods for EIS:
— QI clustering

— Quantum neuron with a recurrent connection (Li et al, 2006): the output and
the input variables are represented as particle waves

— QI neural networks (Ezov and Ventura, 2000)

— QI associative memories (e.g. Ventura and Martinez, m=0(2") patterns stored
in 2n+1 neurons , while in a Hopfield NN it is m<0.5n patterns in n neurons

— QI fuzzy systems
- QIGA
— QI swarm intelligence

« Applications:

— Specific algorithms with polynomial time complexity for NP-complete problems
(e.g. factorising large numbers, Shor, 1997)

— Search algorithms ( Grover, 1996), O(N"2) vs O(N) complexity)
— Memorizing large number of patterns
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Example: Quantum inspired evolutionary algorithms (QEA)

«  The representation of individuals is usually done in the form of bit-strings, a1lar |...] an
real-valued vectors, symbols etc. QEA uses a g-bit representation based on B
the concept of g-bits in Quantum Computing. Each g-bit is defined as a pairof L #1182 | - m

numbers (a, B). A Q-bit individual as a string of m g-bits is represented as:
|0‘i|2 i |:3i|2 =1
fori=1,2, ..., m:

«  Evolutionary computing with Q-bit representation has a better characteristic of
population diversity than other representations, since it can represent linear
superposition of states probabilistically .

* Here, only one Q-bit individual with m g-bits is enough to represent 2™ states
whereas In binary representation, 2™ individuals will be required for the same.

«  The Q-bit representation leads to quantum parallelism in the system as it is
able to evaluate the function on a superposition of possible inputs. The output
obtained is also in the form of superposition which needs to be collapsed to
get the actual solution.

* In QEA, the population of Q-bit individuals at time f can be represented as: Q(t) = {qlt . CI; oo q;}
where n is the size of the population.

cos@ -—siné
- The rotation gate, used as Q-gate is represented as: S singd  cosd

o
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Quantum Inspired Computational Intelligence
(M Defoin-Platel, S.Shliebs, et al)
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The KEDRI quantum inspired evolutionary algorithm performs exponentially faster
and more accurately than the classical algorithms when evaluating combinations of
variables for a modelling task
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QI-ECOS
(Natural Computing, 2007)
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13. Conclusions

* Brain-, gene- and quantum principles are useful for the creation of new types
of EIS for :

— Solving problems and making discoveries in bioinformatics,
neuroinformatics, medicine, chemistry, physics

— Solving hard Al and NP-complete problems

— At the nano-level of microelectronic devices, quantum processes may
have a significant impact.

 How much “inspiration”? —Depends on the problem in hand.

* Integrating different levels of information processing through general
information theory - a challenge for information science

* New algorithms and models, e.g. quantum inspired CNGM

» Starting to use these models as a further inspiration for new computer devices
— million times faster and more accurate

* Impact on the hardware — parallel, ubiquitous

 How do we implement the BGQI computational intelligence in order to benefit
from their high speed and accuracy? Should we wait for the quantum
computers to be realised many years from now, or we can implement them
efficiently on specialised computing devices based on classical principles of
physics?
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KEDRI: The Knowledge Engineering and Discovery
Research Institute

 Established
June 2002

 Funded by AUT, NERF (FRST), NZ
industry

e External funds approx NZ$3.8 min. :
* 6 senior research fellows and post-docs |' i
« 20 PhD and Masters students;
o 25 associated researchers

 Both fundamental and applied research
(theory + practice)

150 refereed publications

« 2 PCT patents

* Multicultural environment (9 ethnic
origins)

« Strong national and international
collaboration
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