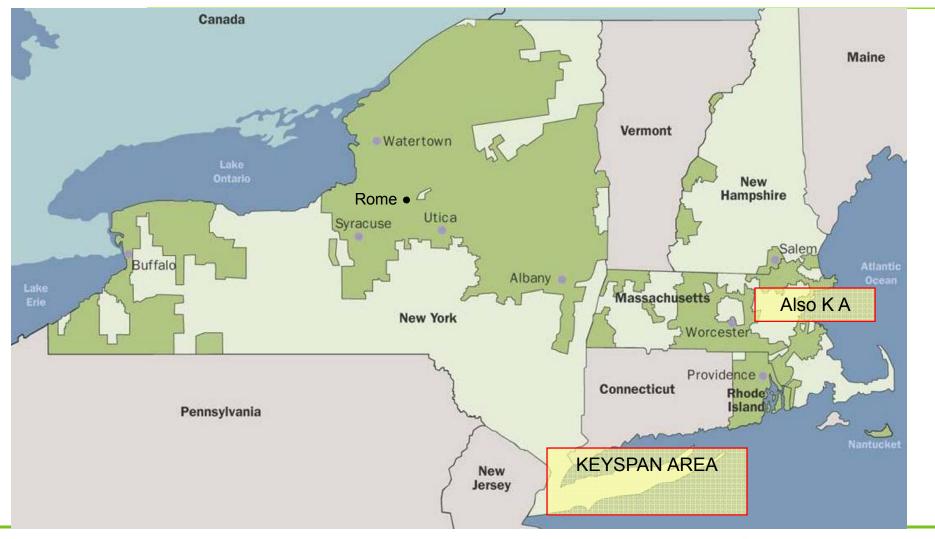
RESIDENTIAL COMBINED HEAT & POWER (CHP) TECHNOLOGIES - AN OVERVIEW

John J. Bzura, Ph.D., P.E. Principal Engineer


National Grid USA Service Company

Westborough, Massachusetts

Distributing Electricity (E) and Natural Gas (G) to Customers in Massachusetts (E), Rhode Island (E,G), New York (E,G) & New Hampshire (E), + Transmission Services

NATIONAL GRID'S U.S. SERVICE TERRITORY, Showing Former Keyspan Areas Roughly

Presentation Outline

- 1. TYPES OF TECHNOLOGIES EMPLOYED FOR RES. CHP
- 2. CURRENT INTERNATIONAL TRENDS
- 3. EXAMPLES OF CURRENT CHP PRODUCTS
- 4. SIMPLE PAYBACK ANALYSIS OF A CHP SYSTEM
- 5. PRESENT-WORTH ECONOMIC ANALYSIS OF A CHP SYSTEM
- 6. CONCLUDING COMMENTS

PRIMARY ENERGY CONVERSION DEVICES USED FOR RESIDENTIAL CHP

- Conventional piston engine using natural gas as fuel
- Stirling engine using common fuels
- Solid-oxide Fuel Cell (SOFC)
- Proton Exchange Membrane (PEM) fuel cell
- Thermophotovoltaic (TPV) system
- Solar Concentrator and Stirling engine

OVERVIEW OF INTERNATIONAL POLICIES SUPPORTING RESIDENTIAL CHP (RCHP)

- Japan: subsidies have led to installation of 50,000+ units
- Europe: governments promoting multi-family building CHP units and RCHP; "export/feed-in" payments in Germany
- United States: the federal and some state governments encourage RCHP, but incentives are small
- Canada: policies vary by province, two supportive now

CHP Technology Types Employed

- Japan
 - Internal-combustion piston engines
 - Proton Exchange Membrane (PEM) fuel cells; several fuels
 - Solid-oxide Fuel Cell (in development)
- Europe
 - Stirling engines
 - Solid-oxide Fuel Cell
 - Internal-combustion piston engines
- United States
 - Internal-combustion piston engines (4- & 2-cycle)
 - Thermophotovoltaic (TPV) systems
- Canada
 - Solid-oxide Fuel Cell
 - TPV

Conventional Piston-Engine CHP: Japan and United States

Most common unit (50K installed) made by <u>Honda</u>

- One-piston, constant rpm (now)
- Inverter output to grid, 1 kW (1.2 kW planned)
- Marathon CHP System
 - One-piston, variable speed
 - Inverter output to grid, 2.0 4.7 kW
- Other small firms working on products

Honda (L) & Marathon* (R) Systems

* Image from Marathon web site, marathonengine.com

CHP System Manufacturers Using Stirling Engine Technology

Infinia, Kennewick, Washington, U.S.

- Working with Rinnai (Japan) to supply Bosch (Germany +), Merloni (Italy +) and Rinnai itself
- Sealed helium system, zero maintenance claimed
- Third generation of commercial development
- Whispertech, Christchurch, New Zealand
 - Focused on European residential CHP market
 - Many orders placed; hard to find manufacturer

Sunpower (MicroGen) – U.S. company (U.K. engine)

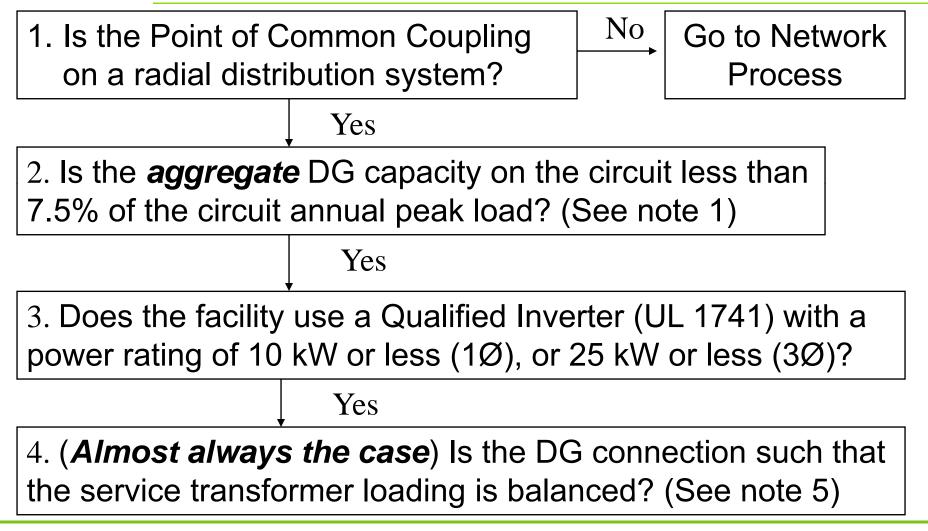
Simple Payback Analysis (*not* recommended)

- Incremental capital cost of CHP over a conventional heating system = ICC
- Net annual value of electricity displaced minus annual maintenance cost = NAV
- ICC / NAV = SPP (Simple payback period)
- Typical ICC = \$8K; -\$2K (incentive) => \$6K
- NAV = (2200 x \$.2/kWh) \$150 = 290
- SPP = 21 years (under these assumptions)

Basic* Financial Analysis

SAMPLE CALCULATION: 1-kW IC Piston engine; some default values (DV) below.				
B20	C20	D20	E20	F20
PROJECT	EQUIPMENT	INSTALLATION	INTEREST	PROJECT
CAPACITY	COST	COST	RATE, i	LIFE
(KW)	(\$/ KW)	(\$/ KW)	(%)	(YEARS)
1	\$5,000.00	\$1,000.00	6%	20
DV = 1,000	DV = \$250/KW	DV = \$50/KW	DV = 8%	DV = 5
B28	C28	D28	E28	F28
PROJECT	FUEL COST		WASTE HEAT	NON-FUEL
CAP. FACTOR	(F. C.)	EFFICIENCY	VALUE (if any)	O&M
(%) & hrs below	(\$/Million Btu)	(fuel > kWh, %)	(\$/kWh)	(\$/kWh)
25%	\$21.00	100%	0.001	0.068
(Nov-April@50%)	DV = \$12.00	DV = 34%	DV = .001	DV = .006
2190				\$150 / AkWh
DV = 75%				+F8 / C40
CAPITAL COST = $B20 \times (C20+D20) =$ \$6,000 = C. C.				
C. C. x CRF =	\$523 = ANNUAL FIXED COST = AFC			PROJECT
			= AKWH	ELECTRICITY
ANNUAL KWH =				1969 Participation (1970)
\$FUEL / YR = FY		12/1000)x(F. C.) =	\$157	COST, c/kWh
ELEC. COST =	((AFC+FY)/AKWH)+ (N-F O&M) - WHV = =================================			37.80
ELEC. VALUE =	\$438	(AKWH x CEC)		DV = 9.67

* Time value of money, but no tax considerations



WHAT MIGHT ADD TO THE VALUE OF HOME CHP SYSTEMS?

- Stand-alone operation, in winter heat & basic electricity
- Grid-connected operation <u>in summer</u> (DR credits)
- Pre-heating or heating of water for domestic hot water or pools
- Coordinate CHP inverter use with a PV system inverter ?

SIMPLIFIED INTERCONNECTION APPLICATION

Conclusions

- Many technologies, from renewable to basic to advanced, are being explored to develop an economical CHP system.
- Well-known manufacturers and high-volume mass production are finally starting to be associated with residential CHP systems.
- High "feed-in" tariffs may not persist in countries with them now.
- As utilities move toward decoupling (less \$/kWh, more \$/kW) and offer credits for summer peak-load reduction, CHP appears more attractive.
- We are familiar with CHP applications and process them quickly.

