Emerging Technologies in Transmission Networks

> Miroslav Begovic Georgia Institute of Technology

Nature of Transmission Network Disruptions

Natural Events

- Human errors, hidden failures
- Failure of equipment (aging or neglect)
- Accidental failure (or deliberate destruction) of the monitoring and control infrastructure
- Malicious actions which deliberately seek and exploit system vulnerabilities (not likely, but quite possible)

Cost of Failures

- Large amount of data on past failures: about 60 major disturbances per year, averaging 250 MW each
- Estimation of the cost to society is more than statistical analysis of size, frequency, duration and location
- No theoretical basis for estimating the cost of delivery (or nondelivery) of unit of energy
- Circumstances play a significant role; interpretations are highly subjective
- Metric: how much are customers willing to pay for emergency power supply? (According to surveys, 5-40 times the commercial cost of electricity is not uncommon)

Cost of Failures (cont.)

- Social costs: lost income, life, health, comfort, downstream economic consequences...
- New York 1977 Blackout cost estimates:
 - Riot damage (37 percent)
 - National economic costs (24 percent)
 - Various social and economic costs (39 percent)
 - Total: \$310M (7 percent of then national GNP-day)
 - Higher estimates: \$100/affected person (\$1 Billion)
 - Today's blackouts cost much more

Assessment of Emerging Technologies for Energy Systems

Market Infrastructure Analysis
Performance Indices of the Candidate Technology
Regulatory Barriers or Obstacles to Introduction
Stage of Market Introduction

Market Infrastructure

- Potential for Large Scale Production
- Supply Chain Assessment
- Infrastructure Support for Design and Construction
- Ease of Use/Quality Control/Experience
- Support/Training Infrastructure
- Availability of Turnkey Solutions

Performance Indices

 Integration in the Overall System
 Reliability (Dependability) of the Solutions Operational Accuracy MTBF / MTTR
 Economic Indicators (Cost Benefit Analysis)
 Complexity of Use

Example: Industry Experience with SIPS

- Motivation: "Industry Experience with Special Protection Schemes" IEEE/CIGRE Special Report, P. Anderson, B.K. LeReverend, IEEE Transactions on Power Systems, Vol. 11, No. 3, Aug. 1996, pp. 1166-1179
- 2004: System Protection SC of the IEEE PSRC started an initiative to update the industry experience on SPS and SIPS
- Medium: a survey, which would attempt to attract a wide response from the industry worldwide

System Studies Done Prior to Deploying the SIPS

Planning criteria

- Types of planning studies
- Real-time operational studies
- Protection and control coordination studies
- Coordination with other Protection and Control systems
- Types of protective relaying technology used
- Existence of standards for SIPS applications

Architecture Issues

Hardware Description and Outage Detection

- Outage detection Method
- Questions on use of programmable logic controllers

Scheme Architecture

- Objective: decision making
- Redundancy needs/implementation Both telecommunication and hardware
- Redundancy philosophy
- Questions on use of the voting schemes
- Questions about control: event based, or response based
- Questions on Breaker Failure
- Performance requirements:
 - Throughput timing: entire scheme
 - Throughput timing of the controller

Measurements and Communication

Data acquisition and related tools

Measured Quantities

- Time synchronization requirements
- Use of SMART SIPS / Intelligent SIPS
- Blocking (by the scheme) of any automatic reclosing
- Restoration Issues and Planned Mechanisms

Communication, Networking, and Data Exchange

- Architecture of the communication
- Communication medium and protocols
- Information about shared communication (with other applications)
- Impact of communication failure on reliability index and availability
- Cyber security implementation and protection features
- Operability of the scheme with a communication channel failure
- Control Area Visibility

SIPS: Implementation

Arming methodology

Implementation issues

- Multi-functionality of the scheme
- Design: Centralized or Distributed Architecture
- Availability of event reconstruction or system playback capability
- Description of event records and their availability within the organization

SIPS: Testing, Reliability and Cost

Testing Considerations
Testing procedures
Periodicity of testing
Maintenance issues

Cost Considerations
 Approximate cost
 System information (infrastructure)

SIPS: Summary

- Advanced analytical techniques are becoming available for various types of SIPS applications
- Traditional scheme requirements evolve towards SIPS
- Fast changing operating conditions in power systems and quickly changing enabling technologies for power system control and protection
- Industry is changing quickly and adapting to the conditions imposed by new business practices
- Survey: should provide valuable information to industry practitioners and researchers alike about the trends and experiences in system protection

Sample of ET in TD

High-Speed Monitoring and Systemwide **Communication and Control** System Integrity Protection Schemes (SIPS) Advanced Algorithms and IED for Control Power Electronics (FACTS, smart sensors) Custom Power Systems/Devices Sensor Networks for Diagnostics High Temperature Superconductivity (HTS)

Industry Needs vs. Synchronized Measurement Values

1 Angle/Freq. Monitoring

4 Real-Time Control

2 Voltage Stability Monitoring 3 Thermal Overload Monitoring

5 State Estimation (Improvement)

Synchronized Measurement Value

Economic Analysis Process

Control Technologies

- Statistical Learning Theory
- Data Mining for Dynamical Systems
- Biologically Inspired Control Architectures
- Integration of Control and System Health Mgt.
- Nonlinear Control Theory
- Modeling of Economic (Sub)systems
- Complex Adaptive Systems

Problem Environment

- High dimensionality, abundance of data
- Issues: modeling accuracy, measurement errors, sensing and actuation delays
- Problem solutions may be intractable in terms of their scaling properties (multi-scale decompositions are a logical option)
- Objective measures of success (accuracy, speed, stability) require substantial computational complexity

Conclusions

- Activities of ETCC and PES Technical Committees in identifying and assessing emerging technologies are important
- IEEE can greatly support/facilitate/provide feedback/enable standards introduction in support of emerging technologies
- Operational reality of transmission networks requires (or will soon require) support of a number of emerging (or soon to be emerging) technologies