IEEE 1711-2010

Industrial Control Systems Security

A Perspective on Product Design

INDUSTRIAL CONTROL SYSTEMS (ICS)

Characteristics:

- Long operational life (10+ yrs)
- Small to large geographic area
- Highly complex and found everywhere
- Field RTUs/PLCs are in the open, most are unprotected
- Routable (TCP/IP) protocols
- "Legacy" non-routable (serial) protocols:
 - Radio, leased line, dial-up, and multi-drop links
 - Low data throughput
 - Slow telemetry polling
 - Modbus, DNP3 protocols (MTU RTU communications)
 - Difficult to add security to existing software
 - Little/no auditing, logging

VULNERABILITIES – THE PROTOCOLS

Most legacy protocols do not have authentication making them easy to exploit and attack

- Modbus was designed to program controllers by sending Read and Write I/O registers commands, for example:
 - ✓ List defined points and their values
 - ✓ Request information about Modbus servers, PLC configurations...
 - ✓ Clear, erase, or reset diagnostic information
 - ✓ Force slave devices into "listen only" mode

Modbus RTU	Start	Addr	Func	Data	CRC	End
	3.5 char time	1-byte	1-byte	0-252	2-byte	3.5 char time
Modbus ASCII	Start :	Addr 2-byte	Func 2-byte	Data 2x (0-252)	LRC 2-byte	End CR LF

- ✓ Turn off unsolicited reporting to stifle specific alarms
- ✓ Spoof unsolicited responses to the Master to falsify events and trick the operator into taking inappropriate actions
- ✓ Issue unauthorized stops, restarts, or other functions that could disrupt specific operations

DNP3 [Header + Data] Max frame size: 292 bytes							
Header =	0x05	0x64	Len	Ctrl	Dst	Src	CRC
	1-byte	1-byte	1-byte	1-byte	2-byte	2-byte	2-byte

COMMONICS ATTACKS

Maintenance port

To install a malicious program

Spoofing

To masquerade as another to initiate an unauthorized action

Replay

To record and retransmit valid data (manipulating time variable) to trigger unpredictable results

Man-in-the-Middle (MITM)

To intercept, alter, and relay a communication message

A simple radio MITM can be setup by a combination of directional transmitter & jammer

RISK MANAGEMENT - LEGACY SYSTEMS

© SEQUI, Inc.

5

LEGACY RETROFIT ISSUES

Top Questions	What Customers Want
How do we plan for migration?	 To choose when & how much security to apply To have encrypted & clear communications on the same channel Easy migration
Do we make changes to our ICS software or equipment?	Not to change existing ICS software or equipment Easy installation
Do we make changes to our operational control?	Not to change existing operational controlHassle-free
Will it impact performance?	Strong security <u>without impacting performance</u> No impact
Will it impact our existing configuration?	Not to change existing configuration Flexibility Support for: • Modbus RTU/ASCII, DNP3 • Async 300 to 115200 bps • Point-to-point and multi-drop • Radio, dial-up, leased lines

ICSJWG 2011 FALL CONFERENCE (LONG BEACH CA)

 SEQUI presented "IEEE 1711-2010 Security for Legacy SCADA Protocols" http://www.us-cert.gov/control_systems/icsjwg/presentations/fall2011/D1-09-0200pm_Track2_Amaio-Van_rr_Title-IEEE1711-2010SecforLegSCADAProt.pdf

CURRENT BIGGEST THREAT TO ICS

European Network and Information Security Agency (ENISA) conducted a survey to identify threats, risks, and challenges to ICS and found that untrusted and legacy devices and protocols are the biggest threat to security of ICS.

Source: ENISA. *Protecting Industrial Control Systems: Recommendations for Europe and Member States.* December 19, 2011. http://www.enisa.europa.eu/act/res/other-areas/ics-scada/protecting-industrial-control-systems.-recommendations-for-europe-and-member-states-1

DESIGN OVERVIEW

Conforms to IEEE 1711-2010:

- Encrypts and secures serial data links
- Operates without modification to network/application

Provides a web-based interface for easy management

DESIGN OVERVIEW – SYSTEM CONFIGURATION

- □ Up to 65,533 secure tunnels (IPSec-like)
- Each tunnel has its own Encryption Key & Authentication Key and protects one/more RTU

HARDWARE DESIGN - CRITERIA

 Not too fast and not too slow μProcessor **Encryption** Hardware co-processor* Ethernet 1/0 Three UARTs (RS-232/422/485) **Availability** Product longevity (10+ yrs) **Development** Mature and proven **Tools / Support**

*Encryption delay:

- Caused by block protocol encryption overhead, i.e., Header, Trailer, Message Authentication
 Code + Encryption processing
- The delay impact is greater for small messages

HARDWARE DESIGN - EMI GUIDELINES

Controlled area

- Parts with very fast rise times, and those that are thermally hot, are noisy, or are high voltage
- Signal timing considerations, such as differential pairs, critical clock signals, etc
- Signals that might need to be guard banded

Power/Ground gridding

- High voltage and/or high current traces
- Impedance controlled nets and their terminations
 - 75||100 Ohm
- Bypass caps

HARDWARE DESIGN - CONNECTORS

Port Name	Connectors
Ethernet (LAN)	RJ-45
Management	RS-232
Local	RS-232/422/485
Remote	RS-232/422/485
Local/Remote	RS-422/485 Terminal Block 10-pin

FIRMWARE DESIGN - OPERATING SYSTEM

FIRMWARE DESIGN - UCLINUX

Pros

- □ Full Linux 2.6 kernel
- □ Built-in IP connectivity, file systems, applications...
- □ Lightweight (under 300KB)
- Faster than Linux (context switches: no cache flushes)
- Royalty free

Limitation

No memory protection (no MMU)

FIRMWARE DESIGN - CODING & DEBUGGING

uClinux

- Initialization/boot loader tailored to processor
- Kernel config to fit requirements

Add-ins:

- RTAI (Real Time Application Interface) allows applications with strict timing constraints
- Encryption drivers
- Speed buffering
- Modem emulation AT command set
- IEEE 1711 functionality

FIRMWARE DESIGN - IEEE 1711 STATE MACHINE EXAMPLE

Table 3 Session state machine for one dynamic session

Action / Event	Current State					
Action / Event	closed	wait_ACK	wait_BEG	open		
send OPN	wait_ACK, 3	X	X	wait_ACK, 3		
send DTA	X	X	X	open, 1		
send CLS	X	X	X	closed, 1		
rcv OPN	wait_BEG, 5	wait_BEG, 4	wait_BEG, 8	wait_BEG, 11		
rcv ACK	closed, 1	open, 6	wait_BEG, 1	open, 1		
rcv BEG	closed, 1	wait_ACK, 1	open, 9	open, 1		
rcv DTA	closed, 7	wait_ACK, 1	wait_BEG, 1	open, 2		
rcv CLS	closed, 1	wait_ACK, 1	wait_BEG, 1	closed, 1		
rcv ERR	closed, 1	closed, 10	closed, 9	closed, 1		
rcv bad	closed, 1	wait_ACK, 1	wait_BEG, 1	open, 1		
ACK timeout	Χ	closed, 1	X	X		
BEG timeout	X	X	closed, 1	X		

Note: X = cannot occur

An IEEE 1711 compliant implementation shall perform the following actions specified in Table 3:

- do nothing
- 2: process payload
- start ACK timer
- cancel ACK timer, send ACK, start BEG timer
- 5: send ACK, start BEG timer
- 6: cancel ACK timer, send BEG
- 7: send ERR
- 8: cancel BEG timer, send ACK, start BEG timer
- cancel BEG timer
- 10: cancel ACK timer
- 11: close current session D, send ACK, start BEG timer

```
/*********************
   Session State Machine
   S+ = f(event, state) and action = f(event, state)
                             State
************************************
void session state (void)
   // Execute action = f(event, state)
   switch (ucActionTable[ucEvent][ucState]) {
   case DO NOTHING:
                            // action 1 of Table 3
       break:
   case PROCESS PAYLOAD:
                             // action 2
       process payload();
       break;
   case START_ACK TIMER:
                             // action 3
       start ACK timer();
       break;
   case SEND ACK:
                             // action 4
       cancel ACK timer();
       send ACK();
       start BEG timer();
       break:
   // action 5 ... action 11
   default:
       break;
   // Update next state: state = f(event, state)
   ucState = ucStateTable[ucEvent][ucState];
```

SOFTWARE DESIGN - WEB SERVER

BOA and thttpd:

- Small, lightweight, and fast
- Popular among embedded crowd, esp. for embedded Linux

Configuration

- System Configure operating parameters
- Serial Configure port and data communications settings
- Access Add user login accounts
- Advanced Configure SCADA settings, cipher settings, and encryption

Configuration > System

Configuration > Serial

Policies > Add

LEGACY SYSTEMS "GOING ETHERNET"

- The trend is to integrate serial SCADA protocols with corporate network for effective management and real-time business decisions However:
 - Serial protocols remain insecure, lack authentication (they're simply wrapped inside TCP/IP packets!)
 - The backdoor risk is still there
 - TCP/IP has its own vulnerabilities (that are widely shared within the computer underground!)

Numerous FREE scanning, vulnerability discovery, and attack tools are available, such as *nmap*, *TCPview*, *Nessus*, *Attacker Tool Kit (ATK)*, *Sniffit*, *Netcat*, *Wireshark*

Visit "Top 100 Network Security Tools" at http://sectools.org/

IEEE 1711-2010 ENHANCEMENTS

Examples of vendor-added functionality:

- Management functions, such as audit logs, reports...
- Secure Serial-over-Ethernet
- Dial-up access control via session negotiation
- Interface to low-cost wireless, such as ZigBee® IEEE 802.15.4
- Custom embedded analog/digital remote I/O and data acquisition

ENHANCEMENTS - AUDIT LOGS, REPORTS

The table below describes pages of the Web interface and their access level permissions.

		ACCESS LEVEL		
NAVIGATION PAGE	DESCRIPTION	Administrator 1	Crypto Officer	User ²
Configuration	Clicking the tab opens the Product Information page	~	4	V
System	Settings for protocol, source address, IP address, Web timers, and reset button	4	×	×
Serial	Settings for serial ports	✓	✓	✓
Access	Setup login accounts	~	√ /3	√ 3
Advanced	Settings for timeout, <u>prebuffer</u> , broadcast mode, and advanced cipher settings	~	4	×
Policies	Clicking the tab opens the Policies Table page	✓	4	4
Add	Add a policy	✓	✓	×
Сору	Copy a policy	✓	✓	×
Edit	Edit a policy	✓	✓	×
Delete	Delete policies	✓	✓	×
DiagUp	Establish connection to remote device	✓	✓	4
<u>DiagDn</u>	Terminate connection to remote device	✓	✓	4
□ 4	Selected policy is in effect when point-to- point link is established		4	×
Audit	Opens the Audit page for a summary of EncryptorPak activity	✓	×	×
Info	Opens the Info page for a quick view of EncryptorPak configuration settings	~	4	4
Logout	Returns to the Login page	~	4	4

¹ The Administrator level can be assigned to more than one login user

✓ Allowed

× Denied

² The User level is intended primarily for users with testing responsibilities

³ Access page only allows changing own password

⁴ Available on menu bar only when Point-to-Point protocol is selected

ENHANCEMENTS – SECURE SERIAL-OVER-ETHERNET

ENHANCEMENTS - DIAL-UP ACCESS CONTROL

Timing diagram for answering device:

- 1. Receives an incoming call (RI toggle) and auto-answers (DCD active)
- 2. Transmits challenge data
- 3. Receives response data
- 4. If "failed" challenge, drop DTR
- 5. Modem disconnects call (DCD inactive)

ENHANCEMENTS – LOW-COST WIRELESS

Point-to-Multipoint

EncryptorPak Z

ZigBee® Wireless

Please feel free to send your comments or questions

Tien Van Tracy Amaio, Ph.D. tvan@sequi.com teamaio@sequi.com