Tutorial
IEEE Standard 81™ – 2012

IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System

IEEE POWER & ENERGY SOCIETY
2014 Annual Substation Committee Meeting
Portland, Oregon, USA
May 18, 2014

Photo Courtesy of E&S Grounding Solutions (Permission Pending)
IEEE Standard 81™ – 2012
IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System

IEEE POWER & ENERGY SOCIETY
2014 Annual Substation Committee Meeting
Portland, Oregon, USA
May 18, 2014

Presented by
• Bryan Beske, PE American Transmission Co.
• Carson Day, PE NEETRAC/Georgia Tech
• Dennis DeCosta, PE Commonwealth Associates, Inc.
• Lane Garrett Commonwealth Associates, Inc.
• Jeff Jowett Megger
• Carl Moller CANA High Voltage
• Steve Palmer Safearth Consulting
• Sashi Patel NEETRAC/Georgia Tech
• Will Sheh TectoWeld Inc.
• George Vlachos AEMC Instruments
PRESENTER TUTORIAL OBJECTIVE

What we want you to take away from this tutorial:

1. Understand the basic principles of measuring the electrical characteristics of grounding systems
2. Learn the basic methods of measuring earth resistivity, power frequency impedance to remote earth, step and touch voltages, and verifying the integrity of the grounding system
3. Identify various conditions and instrument limitations that can distort test measurements
4. Recognize that a lethal voltage can exist during testing and implement appropriate safety precautions

AUDIENCE TUTORIAL OBJECTIVE

Why are you here today?

What do we want you to take away from this tutorial?:

1. Professional development hours for PE License.
2. Introduce inexperienced engineers/designers to practical methods for ground testing.
3. Provide experienced engineers/designers with an enhanced knowledge of test methods and techniques used for measuring the electrical characteristics of grounding systems.
Tutorial Outline

1. **Introduction**
 - 1.1 Test objectives & key definitions: Will Sheh 8:00 am
 - 1.2 Safety considerations: George Vlachos & Jeff Jowett 8:10 am
 - 1.3 Understanding the circuit being tested: George Vlachos & Jeff Jowett 8:20 am
 - 1.4 Typical problems encountered during testing: Carl Miller 8:30 am

2. **Test methods**
 - 2.1 Earth resistivity: Lane Garrett 8:45 am
 - 2.2 Ground impedance: Shashi Patel 9:00 am
 - 2.3 Impedance and step & touch potentials: Carl Miller 11:00 am
 - 2.4 Ground integrity testing: Carson Day 1:00 pm
 - 2.5 Surface aggregate testing: Bryan Baeks 1:30 pm

3. **Test simulations**
 - 3.1 Part 1: Steve Palmer 2:00 pm
 - 3.2 Part 2: Steve Palmer 3:45 pm

4. **Questions and answers**
 - 5:00 pm

Questions and Answers

INTRODUCTION

Test Objectives

1. Earth resistivity measurements
 1.1 Estimate the ground impedance of a grounding system
 1.2 Estimate potential gradients including step & touch voltages
 1.3 Compute inductive coupling to nearby power & communication cables, pipelines and other metallic objects
 1.4 Design cathodic protection systems

2. Impedance and potential gradient measurements
 2.1 Verify the adequacy of the new grounding system
 2.2 Detect changes in an existing grounding system
 2.3 Identify hazardous step and touch voltages
 2.4 Determine the ground potential rise (GPR)

INTRODUCTION

Key Definitions

Coupling: The association of two or more circuits or systems in such a way that power or signal information is transferred from one to another.

Ground electrode: A conductor embedded in the earth and used for collecting ground current from or dissipating ground current into the earth.

Ground grid: A system of interconnected ground electrodes arranged in a pattern over a specified area and buried below the surface of the earth.

Ground impedance: The vector sum of resistance and reactance between a ground electrode, grid or system and remote earth.

Remote earth: A theoretical concept that refers to a ground electrode of zero impedance placed an infinite distance away from the ground under test. Remote earth is normally assumed to be at zero potential.

Soil (earth) resistivity: A measure of how much a volume of soil will resist an electric current and is usually expressed in $\Omega\cdot m$.

Ground potential rise (GPR): The maximum electrical potential that a ground electrode, grid or system might attain relative to a distant grounding point assumed to be at the potential of remote earth.

Step voltage: The difference in surface potential that could be experienced by a person bridging a distance of 1 meter with the feet without contacting any grounded object.

Touch voltage: The potential difference between the GPR of a grounding grid or system and the surface potential where a person could be standing at the same time having a hand in contact with a grounded structure or object. Touch voltage measurements can include or exclude the equivalent body resistance in the measurement circuit.

Transferred voltage: A special case of touch voltage where a voltage is transferred into or out of the vicinity of a ground electrode from or to a remote point external to the ground electrode.
Safety considerations

Three Prime Safety Hazards

• Lethal voltage between electrode and ground
• Power-system fault during test
• Step & Touch Potentials

Other Possible Hazards

• Ground Potential Rise
 Can reach several thousand volts!
• Lightning Strokes (Strikes)
Safety considerations

• Create a test plan that includes Safety Rules
• Body prevented from closing circuit between points of potential difference
• Gloves and footwear
• Isolate exposed leads and electrodes
• Keep test signal application brief
• Leads and probes kept within sight
• Avoid induced voltages from overheads

Safety considerations

Surge Arrester Testing:

• Do not disconnect ground while primary remains connected to energized line!
• Lightning & switching currents can exceed 50 kA.
• If arrester fails during test, system fault risk.

Safety considerations

Disconnecting Neutral & Shield Wires:

• Avoid coupling
Understanding the circuit being tested

- Distinctive complexities
- May need to plot multiple points
- Interference from stray voltages
Typical Problems Encountered During Testing

Carl Moller, P.Eng,
CANA High Voltage Ltd.

Not a Simple World

- Measurements always come with uncertainty
- The world isn’t as simple as we’d like it to be
 - Variability in theory vs. actual installations
 - Trending over time -> clearer picture
 - Once installed, grounding systems can change over time
- Noise
 - Manifests itself in many ways
 - Noise can come and go temporarily
 - Buried metallic structures
 - Nearby encroachment of utilities

Measurements

- My gear tells me the value is 0.012 Ohms...
 - Accuracy
 - Precision
 - Bias
- Seasonal Soil Variations
- What are affects of:
 - Harmonics?
 - Power frequencies?
 - DC noise?
Test Electrodes

- Test electrodes can introduce mutual ground resistances
- For fall of potential testing the return electrodes can influence the voltage measurements by significant amounts
- Stray AC and DC currents will pick up through the electrodes
 - Test gear has to be able to reject this noise
 - Stray noise can be a significant safety concern
 - Telluric currents

Scalar Potential Showing Mutual Conductive Effects

- Large ground grids (i.e. 150m diagonal or larger)
- Multi-grounded neutrals
- HV Cable incomers
- Reactive components of impedances can become significant.
- DC meters will not help with this
- AC switchmode meters may not be able to reject the reactive component
Test Lead Coupling

- Test leads may be inductively coupled
 - Close parallel leads for “zero degree” tests
 - Close parallel leads for long Wenner/Schlumberger soil resistivity Tests
- Coiling effects
 - Test lead current and potential reels can interfere with each other

Test Lead Coupling

Frequency Dependency

- Extend 10x diagonal of ground grid
- Vary frequency
- Up to 50% Error if not accounting for lead coupling
- Low over High resistivity soil

Buried metallic objects
- Pipelines (Cathodic Protection systems)
- Rail Lines
- Foundations with rebar
- Fences
- Geological variations
- Transmission line tower grounds
- Adjacent facility grounding systems
- Multi-grounded neutral networks
- Telephone/Cable grounds

Common Pitfalls
- Hiring an inexperienced contractor
- Not knowing what to do with the test data.
- Interpretation of questionable results
- Dealing with variability in expected measurements
- Forgetting to accurately record measurements or locations
- Not understanding the test circuit

How to Interpret this?
Questions
TEST METHODS

Earth resistivity
Lane Garrett
Commonwealth Associates

- General: Safety, Circuit, Problems, Environmental
- How to perform/basic principles: Wenner, Schlumberger, Driven Rod, Computer-based Multi-meter
- Interferences
- Interpretation of results: During testing, Visual, Software

TEST METHODS

General

Safety
- PPE
 - Hard-soled (steel toe?) shoes
 - Safety glasses
 - Leather gloves
 - Traffic vest/cones
- Voltages/currents during testing
- Call before you dig (or drive rods into the ground)

TEST METHODS

General

Circuit
- Current source – circulate current into ground between two pins
- Voltmeter – measure voltage between two pins
- Wire – connects current source and voltmeter to various pins
TEST METHODS

General

Problems
• Access to site:
 • New site – grubbed, graded, final soil compaction
 • Existing site – where to test
• Injecting sufficient current – varies with instrument type
• Earth is not uniform
• Interferences

Environment
• See access to site
• Avoiding other construction activities
• Near roadway?
• When to test
 • Design schedule/materials delivery dictated?
 • When is site available?
 • Wait until final substation grading?
• Soil moisture and temperature

Effect of moisture on soil resistivity

![Graph showing the effect of moisture on soil resistivity.](Image Courtesy of Southern Company)
TEST METHODS

General

Effect of temperature on soil resistivity

![Graph showing the effect of temperature on soil resistivity.](Image Courtesy of Southern Company)

TEST METHODS

Basic Principles

- Inject current into earth to create potentials throughout the earth
- Measure voltage between two pins
- Apparent resistance is V/I
- From test geometry, derive formula to convert apparent resistance to apparent soil resistivity
- Simple formulas assume uniform soil resistivity
- Apparent soil resistivity: the equivalent overall resistivity of a volume of soil with varying properties
TEST METHODS

Wenner 4-pin test

- Measure series of apparent resistivities by varying pin spacings along a straight line (profile)
- Run at least two profiles across the site in different directions
- For each profile, plot apparent resistivity vs. pin spacing
- Use visual method or computer programs to determine layered soil resistivity model
- Sample pin spacings: 2', 4', 6', 8', 16', 24', 32', 48' (or larger for very large substations or generating plants)
Schlumberger-Palmer Test

\[\rho_a = \pi c (c+d) R / d \]

"depth" = \((2c + d)/2\)

- Vary potential (inner) pin separation, keeping distances between potential and current pins equal.
- Can leave current pins in one place, moving only potential pins.
 - Could speed up measurement process – move 2 pins instead of 4 pins.
 - Might better detect changes in soil resistivity vs. depth.
- Associate each apparent resistivity measurement with depth (spacing) computed using \((2c + d)/2\).
- Run at least two profiles across the site in different directions.
- For each profile, plot apparent resistivity vs. pin spacing.
- Use visual method or computer programs to determine layered soil resistivity model.

Driven-Rod Test

\[\rho_i = \frac{2 \pi \rho R}{\ln \left(\frac{L}{0.62D} \right)} \]

- Plot test rod diameter "D".

![Image of Driven-Rod Test Diagram]
TEST METHODS

Driven-rod test

- Drive ground rod to varying depths. For each depth:
 - Circulate current between ground rod and remote current pin
 - Measure voltage between ground rod and potential pin
 - Resistance is V/I
 - See section 2.2 for testing ground rod impedance
- Use simple (uniform soil assumption) formula to compute apparent resistivity
- Sample depths: 2', 4', 6', 8', 10', 15' 20',…100' (or refusal)
- Drive test rods at multiple locations across the site
- For each test rod location, plot apparent resistivity vs. pin spacing
- Use visual method or computer programs to determine layered soil resistivity model

TEST METHODS

Driven-rod test - Don’t do this!

TEST METHODS

Computer-based Multimeter
TEST METHODS

Computer-based Multimeter

- Injects “white noise” current – as high as several Amperes
- Automatically switches between the multiple potential probes
- Each measurement is actually several Schlumberger-Palmer measurements
- Software automatically displays 2-layer soil and parameter errors

TEST METHODS

Errors due to limited probe spacing

<table>
<thead>
<tr>
<th>Probe spacing (% grid length)</th>
<th>Error range (%)</th>
<th>Touch and step voltage (in % of grid GPR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40%</td>
<td>±50% to ±10%</td>
<td>±20% to ±110%</td>
</tr>
<tr>
<td>100%</td>
<td>±3% to ±9%</td>
<td>±5% to ±20%</td>
</tr>
<tr>
<td>300%</td>
<td>±7% to ±9%</td>
<td>±8% to ±20%</td>
</tr>
</tbody>
</table>

TEST METHODS

Interferences

- Any conductive “object” in the vicinity that can divert the test current or distort the soil potentials
 - Metal fences
 - Buried pipes (metal)
 - Grounding systems
 - Transmission or distribution pole grounds, especially if connected to other pole grounds
 - Distribution cables with bare concentric neutrals
- Any circuit that can induce voltages onto test leads
 - Transmission or distribution lines
 - Outside sources of current in the soil
- Lack of space to achieve desired maximum pin spacing
Example of interference – 3 ft parallel to grid

- 4-pin resistance at 10 ft spacing = 0.45
- Interference-free resistance = 15.11

Example of interference – perpendicular to grid

- 4-pin resistance at 10 ft spacing = 14.12
- Interference-free resistance = 15.11

Interpretation of results - software

*Perfect 2-layer soil \(\rho_2 < \rho_1 \)
Interpretation of results - software

*Perfect 2-layer soil $\rho_2 > \rho_1$

![Graph showing apparent resistivity vs. separation distance](image)

TEST METHODS

Interpretation of results - software

- Wenner Method Field Data
 - Run measurements for 300, 100, 20 soil model
 - Grounding system / geometric model

<table>
<thead>
<tr>
<th>Probe Diameter</th>
<th>V/I</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.560 inches</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process</th>
<th>Delete All Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accept</td>
</tr>
<tr>
<td></td>
<td>Stop</td>
</tr>
</tbody>
</table>

Soil Model

- Model Fit
 - Default probe length
 - No correction
 - Operating frequency: 72 Hz
 - Probe diameter: 0.560 inches
 - Probe length: 1 to 30 inches
 - Ohmeters
 - Apparent resistivity
 - Update
 - Probe spacing: feet

<table>
<thead>
<tr>
<th>Distance (feet)</th>
<th>Apparent Resistivity (Ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300.64</td>
</tr>
<tr>
<td>2</td>
<td>100.04</td>
</tr>
<tr>
<td>3</td>
<td>19.94</td>
</tr>
</tbody>
</table>

Ohmeters

- Apparent resistivity: update
- Probe spacing: feet
- Raw-meas: corrected
- Model/data fit:
 - ρ_1, ρ_2, Δ

Plot cursors

- State limits: ρ_1, ρ_2, Δ
- Algorithm controls: Ω
- Upper rho:
- Lower rho:
- Layer depth:
- Objective:
- Sensitivity:

Induced voltage correction

- View corrected data
- Real part only
- Real + reactive

Case Name

- 300-100-SOIL-MEASUREMENTS
- 300.9
- Soils resistivity model
 - Upper soil resistivity (ohms):
 - 100.1
 - Upper layer thickness (feet):
 - 19.9
 - Lower soil resistivity (ohms):
 - 225.0

Results are valid to depth of

- Feet

Advanced grounding concepts

- Form SOIL_WENNER - Copyright © A. P. Meliopoulos 1998-2013

TEST METHODS

Interpretation of results - software

- Wenner method soil parameters
 - Measured
 - Computed

File:

- Description:
 - Grounding system / geometric model

Run measurements for 300, 100, 20 soil model

TEST METHODS

Interpretation of results - software

- Wenner method model fit report
 - Separation distance (linear/log)
 - X scale

Program WinIGS - Form SOIL_RB
Interpretation of results - software

RUN MEASUREMENTS FOR 300,100,20 SOIL MODEL - 3-PIN TEST

Grounding System / Geometric Model

<table>
<thead>
<tr>
<th>Drive Rod</th>
<th>X (feet)</th>
<th>Y (feet)</th>
<th>Diameter</th>
<th>Length</th>
<th>Voltage Probe</th>
<th>Current Return</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td>-1000.002</td>
<td>1000.002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rod Length in Contact</th>
<th>Resistance V</th>
<th>I</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td>647.70</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.0000</td>
<td>270.70</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5.0000</td>
<td>177.20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10.000</td>
<td>97.710</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15.000</td>
<td>67.930</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20.000</td>
<td>50.900</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>30.000</td>
<td>21.850</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>50.000</td>
<td>10.990</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>70.000</td>
<td>7.4830</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>90.000</td>
<td>5.7170</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>110.000</td>
<td>4.6440</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>130.000</td>
<td>3.9190</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>150.000</td>
<td>3.3950</td>
<td></td>
</tr>
</tbody>
</table>

Driven Rod Method Field Data

<table>
<thead>
<tr>
<th>Process</th>
<th>Delete All Measurements</th>
<th>STOP</th>
<th>Soil Model</th>
<th>Model Fit</th>
<th>Mark / Unmark</th>
<th>Delete Measurement</th>
<th>Distance</th>
<th>Raw Measurement</th>
<th>Corrected Model</th>
<th>ft</th>
<th>Ω</th>
<th>Ω</th>
<th>Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Soil Resistivity Model

- Upper Soil Resistivity: 307.0 Ohm Meters
- Upper Layer Thickness: 101.8 Feet
- Lower Soil Resistivity: 101.8 Ohm Meters
- Results are valid to depth of 20.0 Feet

Driven Rod Method Model Fit Report

<table>
<thead>
<tr>
<th>Case Name</th>
<th>3-PIN-300-100-SOIL-MEASUREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>307.0</td>
<td>Measured</td>
</tr>
<tr>
<td>101.8</td>
<td>Soil Resistivity Model</td>
</tr>
<tr>
<td>20.0</td>
<td>Upper Layer Thickness</td>
</tr>
<tr>
<td>101.8</td>
<td>Lower Soil Resistivity</td>
</tr>
</tbody>
</table>

Drilled Rod Method Soil Parameters

- Error: Conf:
- At Confidence Level %
- Upper Rho: 307.77 feet
- Lower Rho: 101.78 feet
- Layer Depth: 20.04 feet
- Objective: 0.000000

Interpretation of results - visual

- The computed apparent resistivities are always positive.
- As the actual resistivity increases or decreases with greater depth, the apparent resistivities also increase or decrease with greater probe spacings.
- The maximum change in apparent resistivity occurs at a spacing larger than the depth at which the corresponding change in actual resistivity occurs. Thus, the changes in apparent resistivity are always plotted to the right of the probe spacing corresponding to the change in actual resistivity.
- The amplitude of the curve is always less than or equal to the amplitude of the actual resistivity vs. depth curve.
- In a multi-layer model, a change in the actual resistivity of a thick layer results in a similar change in the apparent resistivity curve.
TEST METHODS

Interpretation of results - visual

![Graph showing apparent resistivity vs separation distance.](image)

TEST METHODS

Interpretation of results – during testing

- If using software, input data in laptop while at site
- If using visual techniques, plot measurements by converting measured resistance to apparent resistivity
- Does apparent resistivity profile match expected based on soil type and environmental conditions?
- If results jump all over, check connections and/or look for interferences

![Image of software interface for interpreting test results.](image)

TEST METHODS

Interpretation of results – during testing

The good – driven rod test

![Driven rod test setup and results.](image)
TEST METHODS

Interpretation of results – during testing
The good – driven rod test

Interpretation of results – during testing
The bad – 4-pin test

Image Courtesy of Southern Company
TEST METHODS

Interpretation of results – during testing
The ugly– driven rod test

Image Courtesy of Southern Company
Interpretation of results – Sometimes good testing is masked by interpretation limitations

Inter-Electrode Spacing (meters)

-2 -1 0 1 2 3

Apparent Resistivity (Ohm-meters)

LEGEND
- Measured Data
- Computed Results Curve
- Soil Model
- Measurement Method: Wenner
- RMS error: 3.88%

Layer	Resistivity (Ohm-m)	Thickness (Meters)
Air | Infinite | Infinite
2 | 902.9030 | 0.4469047
3 | 13.05638 | 16.47048
4 | 48.61163 | Infinite

In the end, it is sometimes just a roll of the dice!
TEST METHODS

2.2 Ground Impedance
Shashi Patel

- General: Characteristics, Why Measure, Basic Tests, Safety, Problems
- How to perform/basis principles: Two Pin, Fall of Potential, computer assisted obtaining MΩ-meter, Current Injection, Clamp-on and FOP/Clamp-on
- Limitations: FOP, Computer Multimeter, Clamp-on
- Interferences: Conductive, Inductive
- Interpretations of results: Field Test Examples

General

Basic Characteristics

- Depends on soil resistivity and size of the grounding system (covered area)
- Components:
 - Resistive component dominates for small isolated grounding systems
 - Inductive component increases with the ground grid size and specially when connected with multi grounded neutral/shield wires (interconnected grounding system)
- Changes in ground resistance
 - Reduces following initial installation due to settling of the soil
 - Seasonal variations particularly for grounds buried in a permafrost or over a high resistivity stratum such as rock bed
Why measure?
- Substations
- Verify new design or additions
- Existing ground grids
- Seasonal variations
- Safety concerns for old substations
- Fault or lightning events
- Quick estimate of Ground Potential Rise (GPR)
- GPR = Igrid x Rgrid or Ifault x Zinterconnected system
- Touch, step and transfer voltages depend on GPR
- Power line poles/structures (typical practice)
- Limit resistance to a specified value
- Install ground electrodes until the desired resistance value is obtained

<table>
<thead>
<tr>
<th>Date</th>
<th>Zg</th>
<th>GPR</th>
<th>Igrid</th>
<th>Vt(max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/13/81</td>
<td>1.1</td>
<td>111</td>
<td>101</td>
<td>N/M</td>
</tr>
<tr>
<td>8/22/86</td>
<td>0.95</td>
<td>96</td>
<td>101</td>
<td>N/M</td>
</tr>
<tr>
<td>9/28/89 (Rain)</td>
<td>0.9+j0.04</td>
<td>140</td>
<td>156</td>
<td>23</td>
</tr>
<tr>
<td>2/26/90 (Winter)</td>
<td>1.0+j0.05</td>
<td>155</td>
<td>155</td>
<td>30</td>
</tr>
<tr>
<td>8/21/90 Summer</td>
<td>0.76+j0.03</td>
<td>120</td>
<td>157</td>
<td>17</td>
</tr>
</tbody>
</table>

206’x186’ ground grid (isolated), 10x5 meshes, 16’ ground rods, soil $\rho_1=412 \ \Omega \cdot m$, $\rho_2=87 \ \Omega \cdot m$, h=16’

Source: EPRI TR-100863, July 1992 [R7]

Basic Tests
- Fall of Potential (FOP) or Three Pin Test – substation ground grids
 - Pass current between subject ground and current reference electrode (CP)
 - Measure voltage between the ground and voltage reference electrode (PP)
 - Ground impedance = V/I
- Clamp-on or Stakeless Test – power line poles or structures
 - Induce current in the loop made by the subject ground and multi grounded neutral or shield wire system
 - Measure the loop voltage
 - Ground impedance = V/I (assume zero impedance for the multi grounded neutral or shield wire system)
General

Safety

• High voltages around reference electrodes
• Stray current
• Fault current
• Test instrument producing >50 volts
• Induced voltage on long test leads laid in parallel with energized power line(s)

• Measures
 • Personal protective equipment (PPE)
 • Take appropriate measures to protect general public

General

Problems

• Test method limitations
• Interferences
 • Conductive
 • Inductive
• Testing in high soil resistivity areas
 • High resistance current electrode
 • Test current too low
 • High resistance voltage electrode
 • Measured voltage lower than the actual
• Reduce electrode resistance
 • Drive ground rod deeper or multiple ground rods
 • Distances between multiple ground rods no closer than their depths
 • Pour water around the ground electrodes

How to Perform/Basic Principles

Two Pin Method

• Resistance is measured in series with a nearby low impedance grounding system such as power company’s neutral system.
• Impedance of the reference grounding system assumed negligible
• Measured resistance represents the resistance of the ground

• Ground electrode under test
 • Isolated
 • High resistance value
How to Perform/Basics Principles

Fall of Potential (FOP) or Three Pin Method – Basic Circuit

- Widely accepted method
- Isolated or interconnected grounds
- Test current - 50 Hz to 3400 Hz
- Reference electrodes CP and PP
- PP direction at any angle from CP

Resistance of Ground Grid Lead is Included in the Measurement

Resistance of Ground Grid Leads are not Included in the Measurement

How to Perform/Basics Principles

Fall of Potential (FOP) or Three Pin Method – Instrument Connections

- PP in same direction as CP (solid line)
 a) Flat part on the graph
 b) 62% rule (PP @ 62m)
 c) Tagg’s slope method (PP @ 60m)
- PP in opposite direction (dotted line)
 a) Approaching true value from below

Assumptions
- a) Small, isolated ground grid
- b) Uniform Soil

How to Perform/Basics Principles

FOP Variations

- PP in same direction as CP (solid line)
 a) Flat part on the graph
 b) 62% rule (PP @ 62m)
 c) Tagg’s slope method (PP @ 60m)
- PP in opposite direction (dotted line)
 a) Approaching true value from below
How to Perform/Basic Principles

FOP Variations
- Ground grid in single or two-layer soil
- Determine required PP location from Figure 8 (Guide81)
- Assumptions
 a) Small, isolated ground grid
 b) PP in same direction as CP

How to Perform/Basic Principles

Computer Based Multimeter
- One CP and six PPs
- Short duration current pulse (white noise)
- Input
 a) ground grid design
 b) X, Y coordinates of CP and six PPs
- Solving 2 x 6 matrix (weighted least square)
- Displays
 a) ground impedance vs. frequency
 b) magnitude and phase angle

How to Perform/Basic Principles

Computer Based Multimeter – Recommended Locations for Reference Electrodes
- CP (>2xL)
- 6 PPs (>100'=1.2L)
How to Perform/Basic principles

Current Injection Method (CI Method)

- Sometimes used for large substations
- Use of de-energized line
- High test current (100-200 amperes)
- Can test with substation energized
- Can measure GPR and voltage gradients

Staged Fault Test

- Rarely performed for grounding measurements
- More practical to use spare channels on existing recorders
- Attenuation circuits (CTs, VTs and Voltage dividers) are required due to high currents and voltages
- Safety – PPE

Clamp-on or Stakeless Method

- Widely used method for power line grounds
- Measures resistance of pole/structure ground without disconnecting shield/neutral wire
- Several limitations
How to Perform/Basic Principles

FOP/Clamp-on Method

- \(I_{L1}, I_{L2}, I_{L3}, I_{L4} \)
- \(V, I_T \)

Limitations

- Reference electrodes are far and clear of each other's mutual resistances
- Reference electrodes are close to ground electrode
- Current Probe (CP) must be far enough to eliminate interelectrode mutual resistances (>5 x maximum dimension)

Limitations Based on Theories of FOP Variations

- Flat slope, 62%, Tagg and Figure 8 Plots
 - Small, isolated ground electrode system
 - Geometrical center same as electrical center
 - Must be represented by an equivalent hemispherical electrode
 - Only Tagg method allows measuring distances from a convenient point on the perimeter
 - Uniform soil structure
 - Only Figure 8 Plots allow non-uniform soil represented by a two layer model

- \(I_{L1}, I_{L2}, I_{L3}, I_{L4} \)
Limitations

Computer Based Multimeter

- Also, measures impedance of standalone ground grid without disconnecting shield/neutral wires
- Shorter CP and PP distances
 - Compensation for CP location
 - Correction for induction of CP lead on PP lead
- No restriction for soil type
- Measured data may not be accurate
 - Large, irregular shaped substation ground grids
 - Interconnected grounding system
- Provides range for the impedance value

Clamp-on Method

- Not suitable for grounding system connected at more than one point such as substation ground grid
- Resistance of subject ground must be significantly higher compared to multigrounded shield or neutral system
- Errors
 - Partially corroded neutral or shield wire
 - Device indicates open neutral or shield wire
 - High frequency current injection
 - Low signal/noise ratio for high resistance ground electrode

Interferences

- Conductive interference
 - CP and PP located near metallic objects that are connected to ground under test
 - Pole/structure grounds
 - Bare concentric cable neutrals
 - Pipes, fences etc
 - CP near metallic objects - current path altered
 - PP near metallic objects – soil potential altered
- Inductive interference
 - CP lead inducing voltage on PP lead when placed in proximity
 - Special problem – low impedance ground and long PP distances
 - CP and PP leads placed in proximity and parallel to metallic objects connected to the ground under test
 - Increases with the frequency
Interferences

- Interferences can increase or decrease the true impedance value
- The best approach is to minimize interference
 - Keep reference electrodes away from interfering metallic objects
 - Keep PP lead away from the CP lead
 - Direction of PP at a large angle from that of CP

Interpretation of Results

- Finding the true impedance value is difficult
- Basic Requirements
 - Avoid or minimize interferences
 - Place CP as far as practical (>5x largest dimension)
- Expect accurate results if test is performed within the limitations
- Try for best estimate in other cases
 - Non-uniform soil
 - Large or irregular shaped ground grids
 - Interconnected grounding systems

Interpretation of Results

- Significance of increased CP distance
- Estimate based on a trend

<table>
<thead>
<tr>
<th>CP Distance</th>
<th>62%</th>
<th>Slope Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>ft</td>
<td>Rg</td>
<td>Rg</td>
</tr>
<tr>
<td>400</td>
<td>0.215</td>
<td>0.215</td>
</tr>
<tr>
<td>600</td>
<td>0.18</td>
<td>0.166</td>
</tr>
<tr>
<td>800</td>
<td>0.165</td>
<td>0.152</td>
</tr>
<tr>
<td>1000</td>
<td>0.15</td>
<td>0.151</td>
</tr>
</tbody>
</table>

Source: B44
Interpretations of Results

Non-Uniform Soil, Test Result Comparison

<table>
<thead>
<tr>
<th>Ground Grid Type</th>
<th>PP Distance</th>
<th>Apparent Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolated Ground Grid</td>
<td>PP in same direction as CP</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>PP in opposite direction to CP</td>
<td>218</td>
</tr>
<tr>
<td>Interconnected Ground Grid</td>
<td>CP (same direction)</td>
<td>313</td>
</tr>
<tr>
<td></td>
<td>PP in opposite direction to CP</td>
<td>352</td>
</tr>
</tbody>
</table>

Source: CANA High Voltage

Matching between Test and Software Computed Data – PP in the Same Direction as CP

<table>
<thead>
<tr>
<th>Source: CANA High Voltage</th>
</tr>
</thead>
</table>

Matching between Test and Software Computed Data – PP in Opposite Direction as CP

<table>
<thead>
<tr>
<th>Source: CANA High Voltage</th>
</tr>
</thead>
</table>
Interpretations of Results

Test Method Comparison – Power Line Ground Electrodes

<table>
<thead>
<tr>
<th>Line & Ground</th>
<th>FOP Methods</th>
<th>Clamp on (N or Sh Disconnected)</th>
<th>Clamp on (Clamp on N or Sh)</th>
<th>Computer Method (N or Sh Disconnected)</th>
</tr>
</thead>
<tbody>
<tr>
<td>46 kV TL</td>
<td>38.4 Ω</td>
<td>35.9 Ω</td>
<td>35.6 Ω</td>
<td>35.4 Ω</td>
</tr>
<tr>
<td>250 kV TL</td>
<td>99.4 Ω</td>
<td>96.4 Ω</td>
<td>96.0 Ω</td>
<td>95.8 Ω</td>
</tr>
<tr>
<td>25 kV DL</td>
<td>199.0 Ω</td>
<td>202.0 Ω</td>
<td>201.0 Ω</td>
<td>240.0 Ω</td>
</tr>
<tr>
<td>25 kV DL</td>
<td>234.0 Ω</td>
<td>>234.0 Ω</td>
<td>234.0 Ω</td>
<td>310.0 Ω</td>
</tr>
</tbody>
</table>

Source: NEETRAC Project 06-209

Appendix - A

Interferences - Examples

Urban Substation 1 – FOP Test Layout

Source: CANA High Voltage
Interferences - Examples

- US-1 - Altered Soil Potentials due to Buried Structures

Source: CANA High Voltage

Interferences - Examples

- US-1 – Inductive and Conductive Interferences between Buried Structures and Test Current Circuit

Source: CANA High Voltage
Variability in Grounding Design

- Many assumptions in grounding design
- Variability in Parameters of Design
 - Temperature
 - Moisture
 - Non-homogeneous
 - Site built-up,
 - Nearby cliffs etc.
- Reality has even more variables for which we can accurately account in our designs

How to Interpret this?
Fault at Substation

Surface Potentials, Touch and Step Voltages

What do we know?
- When we install a ground grid, what have we achieved?
- Green-Field
- Brown-Field
Back to Basics
• Can we measure the performance of the ground grid?
• How might we measure scalar potentials
 ▫ Transferred potentials?
 ▫ Touch Potentials?
 ▫ Step Potentials?
• Inject current into the grid
• Measure the soil scalar potentials.

\[V = IR \]

Does this sound familiar?
• Similar concept to fall of potential testing.
• Characteristics of the current circuit
 ▫ Current Generator Injection
 ▫ Collection point remote from ground grid
• How far is far enough?

Variability in Design parameters
• Measure actual response of ground conductors
 ▫ Non-homogeneous soil
 ▫ Temperature – at time of test
 ▫ Moisture – at time of test
 ▫ Geology – Actual grid!
 ▫ Nearby foundations, metallic structures, houses, industrial ground grids…all will be present under event conditions
• Many benefits to measuring actual Volts.
Measurements

- The actual grid response can be measured
- Measure, review and validate design compliance requirements
 - Compare measurements with tolerable limits
 - Measure open circuit conditions
 - Measure loaded circuit conditions (measure body current)

What do we measure?

- Lay definition: Voltage across your feet spaced 1m apart.
- Worst cases typically OUTSIDE substation where no insulating gravel is present
- Around sharp corners of ground conductors
- Significantly dependent on soil resistivity
- Around geological changes
Touch Voltages

- Lay Definition: Voltage from your hand to two feet (typically 1m arm reach)
- What can you touch in a substation or nearby which might have a voltage difference?
- Metallic objects within the substation and the fence will be at the GPR of the site.
- What you are standing on will be a surface potential.

Internal Transferred Voltages

- Internal
 - Extension cords
 - Cable sheaths bonded remotely
 - Water supplies
 - Gas supplies
 - Sewer services
 - Telephone networks
 - Railways
 - Pipelines

Typical Touch Voltage Exposure

- Mesh: middle of ground grid loops
- Fence: 1m outside/inside edge of fence
- Gate: 1m off gate which is open. Also on gate while opening or unlocking
- Structure: pretty much everything else you can touch with a 1m reach
Remote Transferred Voltages

- Maximum voltage differential at 1m arm length:
 - Water faucets
 - Multi-grounded distribution neutral
 - Telephone and cable boxes
 - Fences
 - Gas lines
 - Cathodic Protection test points
 - Light standards etc.
 - Construction Power feeds

Source: Source image courtesy of Dr. Bill Carman: DREC2012, It is not enough

Construction Power Hazards

- Touch Voltage Magn. (Volts) [Near]
- Present Touch Voltages Outside Fence Area Safety [ID:Nab_s pr @ f=60.0000 Hz]
- Maximum Value: 526.68
- Minimum Threshold: 160.800

Transferred hazards to construction ground grid for 25kV fault in temporary substation!

Source: CDEGS 2013 Users' Group Meeting Conference Proceedings - "Hazards With Temporary Construction Power Substations" by Carl Moller

Methods of Measurements

- General Method:
 - Inject current
 - Measure voltage differentials

- Touch Voltage:
 - Between metallic object and soil potential

- Step Voltage:
 - Between two soil potentials 1m apart

- Transferred:
 - Same as touch

Source: Source image courtesy of Dr. Bill Carman: DREC2012, It is not enough
Specific Methods

- **Staged Fault**
 - Actually fault the substation and measure touch and step voltages
 - Almost impossible to perform without extensive resources and extremely high speed multi-channel data collection systems
 - Some large utilities will perform these tests if the risks are sufficient enough.

- **Current Injection Test**
 - **Overland Current Circuit**
 - Transmission Line
 - Off-power frequency Generator, arc welder, Custom amplifier with frequency generator
 - **Currents will split down any interconnected shield wires**
 - Voltages are measured
 - Tuned volt meter (frequency selective)
 - RMS voltages with and without signal
 - Phase measurements can be significant.

Injection Test Current

- **Current generator:**
 - Conventional Generator (120/240V or 600V) with governor (frequency counter)
 - Mobile substation generator (engineered)
 - Amplifier with frequency generator. These can be commercially bought or made yourself.
 - **RMS vs Switchmode**

Current Injection

- **Overland test leads**
- **Transmission Line**

- Generator Current 2-200A
- **Size Test Leads**
- **Return electrodes:**
 - Array of Ground Rods in Soil
 - Minimize Mutual effects

- **Injection:** Generator 2-200A
- **Return electrode:**
 - Transmission Tower and shield wires
 - Measurement of phase angle is important
Measuring Voltages

• Tuned Volt-meter (off-frequency)
• Commercial gear
• Measuring phase for voltages less important.
• Measuring the soil potentials
 ▫ Small probe in contact with soil (thin metallic probe)
 ▫ Small plate in contact with the soil (representing two feet)
• Touch Voltages
 ▫ Measure between the metallic objects (using alligator clips or similar) and the soil potentials
• Step Voltages
 ▫ Measure voltages between two points 1m apart
 ▫ Where?

Voltage Measurements

• Probe
 ▫ Unloaded (direct connection to volt-meter)
 ▫ Loaded (connection in series with 1000 Ohm resistor)
• Plate
 ▫ Unloaded
 ▫ Loaded (Most realistic)
• Issues with Probes:
 ▫ Does not represent a foot
 ▫ Provide scalar touch potentials (as would be modeled in software)
• Issues with Plates:
 ▫ Soil contact becomes significant
 ▫ Use a bit of water to achieve good contact with crushed rock or soil
 ▫ Provides realistic foot impedances in-situ
• Step Voltage
Conventional Gear

- Four pin resistance meter
 ▫ Set up to measure a touch or step resistance
- In practice, touch and step resistance measurements are below the reliable range (ie. <0.03 Ohms)
- If you have a high resistance grid, they can be very helpful!
 ▫ Great noise rejection
 ▫ Cannot take loaded measurement

Bias in measurements

- If other circuits are energized:
 ▫ Imbalance “zero sequence” currents in the grid
 ▫ Induction on current circuit
 ▫ Stray DC currents
 ▫ Currents down unforeseen paths
 ▫ Conductive interference with return electrode ground grid

- Methods to overcome Noise (Section 9.4.2):
 ▫ Take three measurements:
 ▪ Standard Section 9.4.2
 ▪ Follow equations
 ▫ Model the test scenario to apply correction factors
 ▪ Advanced techniques required
 ▪ Can provide expected values

What to do with the measurements

- Injection Testing
 ▫ Determine Current scaling factor
 ▫ Multiply voltages by current scaling factor
 ▫ Compare with IEEE 80 tolerable voltages
- Loaded voltages with plates:
 ▫ Compare with body current tolerable current levels
 ▫ Voltage across 1000 Ohm resistor is a scaled version of the current through the body

Source: IEEE 80
Conventional Meter
• Touch and step resistances
• Multiply by expected earth-return current to get respective unloaded touch and step voltage values
• Compare with IEEE 80 tolerable threshold voltages
• Use of only probes will not easily represent loaded touch voltage values

Other Issues
• Seasonal Variations
 ▫ Freezing
 ▫ Drying out of soil
 ▫ High ground-water table
 ▫ Recent Rain
 ▫ Recent hot weather
• Nearby geological changes
 ▫ Encroaching MGN
 ▫ Mining

Only one slice of the pie
• You get an excellent picture of actual voltages.
• You have to decide whether seasonal variations are significant:
 ▫ Urban
 ▫ Rural
• It’s only one slice of time.
• In Canada and US parts of the country must account for seasonal variations
• More engineering judgment is required.
Gain Experience Testing

- Who is doing these tests?
- It is highly recommended to go out in the field and perform this test.
- Get as much experience as you can in the field.

Questions
The Ground Grid

• Consists of:
 • Buried ground conductors
 • Above ground risers that are attached to equipment and support structures
 • Control/relay house grounds
 • Equipment panel grounds
 • Equipment cabinet grounds
 • Cable trench grounds
The Ground Grid

- Protects personnel by limiting step and touch voltages in the yard during normal and abnormal conditions
- Protects equipment by limiting transient voltages

A Good Ground Grid

- Withstands available fault currents
- Limits touch and step potentials
- Limits transient voltages on I&C cables at equipment terminations.
- Provides shielding to I&C cables.

Ground Grid Testing - General

Verification that integrity of ground grid is intact
- No fully or partially corroded conductors or connections
- Can identify area of yard with relative high resistance

It does not measure the ground grid resistance to remote earth.
Methods in IEEE 81

- **Section 10.2** - High Current Test Method
- **Section 10.3** - Measurement of Resistance between two risers
- **Section 10.4** - Low impedance continuity measurement by computer-based grounding multimeter

General Procedure
- Select a riser as a reference & connect source
- Connect second test lead to test riser
- Push current
- Measure
- Go to next test riser
- Repeat
High Current Test Method

- Impedance Measurement – measure voltage, calculate impedance

\[Z_{\text{path}} + \text{leads} = \frac{V}{I} \]

Figure 16 from IEEE81-2012

Measurement of Resistance between two risers

- Resistance Measurement – test equipment calculates resistance from V, I, and θ

\[R_{\text{path}} = \frac{V \cos \theta}{I} \]

Equation 11 from IEEE 81-2012

Measurement of Resistance between two risers - Resistance Calculation

\[R_{\text{path}} = \frac{V \cos \theta}{I} \]

where
- \(R_{\text{path}} \) is the path(s) resistance between two risers
- \(V \) is the voltage across two risers
- \(I \) is the current in the risers
- \(\theta \) is the phase angle between \(V \) and \(I \)
Low impedance continuity measurement by computer-based grounding multimeter

Provides a complete characterization of impedance (R+jX).

Rejects the influence of ambient currents.

Figure 18 from IEEE81-2012

Interpretation of Results

- What is a good resistance value?
 - 1.5V per 15m?
 - (i.e. 5mΩ at 300A)

Other Considerations:
- Current Division
- Ambient Currents
- Test Lead Impedance
- Compare to adjacent readings, considering:
 - Distance between points
 - Ambient currents
 - Multiple paths

Current Division

Single Point Ground
Ambient/Circulating Currents

- Ambient currents usually exist

Additive Currents
- Magnitudes
 - Additive: 40.4 A
 - Subtractive: 21.8 A

Subtractive Currents
- Magnitudes
 - Additive: 12.3 A
 - Subtractive: 36.0 A
Ambient/Circulating Currents

- Ambient currents usually exist
- Can be additive or subtractive with test current
- Will affect the voltage reading

Assume 8 mΩ impedance with 30 A test current:

\[V_{\text{Measured}} = 323 \text{ mV for additive current} \]
\[V_{\text{Measured}} = 174 \text{ mV for subtractive current} \]

Some test equipment alternates the polarity of the test current to get both additive and subtractive currents and averages the resistance

Test Lead Resistance

Where you measure affects results!

1. Measurement includes test lead impedance
2. Measurement **does not** include test lead impedance

Safety Considerations

Generally
- Equipment safety - Voltage gradients across the ground grid conductors
- Personnel Safety - Touch and Step Voltages

Specific Examples
- When using high current, ensure that appropriate rated equipment is used (i.e. clamps, cables, transformers, etc.)
- A potentially dangerous voltage can exist on the remote test lead at the reference location
<table>
<thead>
<tr>
<th>Test</th>
<th>Point</th>
<th>Rem.</th>
<th>Test</th>
<th>Point</th>
<th>Return</th>
<th>Current (A)</th>
<th>Volt (V)</th>
<th>PF</th>
<th>Resis. (Ω)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28.5</td>
<td>0.9</td>
<td>29.52</td>
<td>3.06</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.6</td>
<td>8.9</td>
<td>29.73</td>
<td>2.96</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.5</td>
<td>16.5</td>
<td>29.62</td>
<td>2.77</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.5</td>
<td>24.2</td>
<td>29.94</td>
<td>3.06</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.8</td>
<td>11.7</td>
<td>29.52</td>
<td>3.80</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.0</td>
<td>15.0</td>
<td>29.81</td>
<td>2.96</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>27.5</td>
<td>29.52</td>
<td>3.00</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

- Questionable due to low "Down" current.
- OK.
- OK.
- Questionable due to high resistance.
- OK.
TEST METHODS

Surface Aggregate Testing
Bryan Beske

- General
- How to perform/basic principles
- Limitations
- Interpretation of results

General - Background

- IEEE Std 80: Section 12.5 - Use of surface material layer
 - Table 7 – Typical surface material resistivities
 - Sentences at end of third and fourth paragraph...
 - "Thus, it is important that the resistivity of rock samples typical of the type being used in a given area be measured."
 - "Tests should be performed to determine the resistivity of the stone typically purchased by the utility."
- Problem – no standardized test method currently exists...
- ...but it still can be done.
General - Understanding the Circuit
• Like other tests – comes down to the basics
 • injecting a current and measure a voltage

4 - Pin

2 - Pin

General - Circuit Cont.
\[\rho = \frac{RA}{a} \]

• Where:
 • \(\rho \) = Resistivity (\(\Omega \cdot m \))
 • \(R \) = Resistance (\(V/I \)) (\(\Omega \))
 • \(A \) = Cross sectional area of the container perpendicular to the current flow (\(m^2 \))
 • \(a \) = Probe inner spacing (m)

General - Safety
• Test doesn’t require high current or voltage

 • Field
 • Standard field safety items
 • Traffic, system faults...

 • Lab
 • Standard lab safety items
General - Problems

- Meter capabilities
 - Does it have the resolution
 - Upper/lower
 - AC not DC
- Box Considerations
 - Large enough, non-conductive, easy to clean
 - Sturdy
 - Able to withstand repeated compaction of material
 - Properly quantifying material properties

How to perform - Lab versus field

- Same
 - Two pin – four pin
 - Hard to replicate in-situ conditions
- Different
 - Quantifying material properties

Limitations

- Field testing
 - Reproducibility
 - Seasonal variations
 - Quantifying parameters
- Laboratory testing
 - Replicating field conditions
How to perform - Choose the method

- Two pin versus four pin

Choose the method - Calc Example

Box Dimensions (m)

<table>
<thead>
<tr>
<th>Width</th>
<th>Height</th>
<th>Length</th>
<th>Pin Sep</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>0.05</td>
<td>0.40</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Example Cont.

\[\rho = R \frac{A}{a} \]

- \(A = (0.06)(0.05) = 0.0030 \)
- \(a = 0.2 \)
- \(\rho = R(0.015) \)
- \(\rho = \frac{V}{I} \)
How to perform - Quantify parameters

- What parameters will impact the resistivity:
 - Sample size
 - Moisture content
 - Particle size
 - Compaction
 - Water resistivity

Quantify parameters - Sample size

- Vessel size: minimum of 3 times max particle diameter

Quantify parameters - Moisture Content

- ASTM C127, Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate
- ASTM D2216, Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
Quantify parameters - Particulate Size

- ASTM C136, Sieve Analysis of Fine and Coarse Aggregates

Quantify parameters - Compaction

- ASTM C29, Bulk Density (“Unit Weight”) and Voids in Aggregate
- ASTM D698, Laboratory Compaction Characteristics of Soil Using Standard Effort
- ASTM D1557, Laboratory Compaction Characteristics of Soil Using Modified Effort

Quantify parameters - Water Resistivity

- What to use
 - Tap water
 - Typical resistivity from 0.2Ωm to 2000Ωm
 - Rain Water
 - Typical resistivity from 100Ωm to 5,000Ωm
 - Distilled water
 - Typical resistivity from 3,300Ωm to 20,000Ωm
 - “Laboratory Modified” water
 - User determined

http://water.epa.gov/type/rlc/monitoring/waqpf.cfm
Interpretation of results

- During testing
 - Know the limitations of your equipment
- Considerations for acceptance
 - Conditions tested at vs those experienced in field
 - Comparison to other testing results
 - Historical testing performed

Utility Experience

- Current Practice
 - Existing Stations
 - Obtain representative sample and test
 - Evaluate ground grid using tested value
 - New Stations
 - Obtain sample from quarry and test
 - Design grid using tested value

Test setup being used
Effects of Compactions and Water Used

Table 1: Compacted Graded Aggregate

<table>
<thead>
<tr>
<th>Moisture Content (%)</th>
<th>Sample</th>
<th>Water</th>
<th>Original Sample</th>
<th>Less NOC</th>
<th>Less WOC</th>
<th>Less NOC-WOC</th>
<th>Diff Between Waters</th>
<th>% Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>21,728</td>
<td>24,881</td>
<td>15%</td>
<td>33,849</td>
<td>38,580</td>
<td>14%</td>
<td>56%</td>
<td>55%</td>
</tr>
<tr>
<td>1.2</td>
<td>5,157</td>
<td>5,624</td>
<td>9%</td>
<td>9,477</td>
<td>10,819</td>
<td>14%</td>
<td>84%</td>
<td>92%</td>
</tr>
<tr>
<td>2.3</td>
<td>1,748</td>
<td>2,094</td>
<td>20%</td>
<td>3,360</td>
<td>3,947</td>
<td>17%</td>
<td>92%</td>
<td>88%</td>
</tr>
</tbody>
</table>

Table 2: Dense Graded Aggregate

<table>
<thead>
<tr>
<th>Moisture Content (%)</th>
<th>Sample</th>
<th>Water</th>
<th>Original Sample</th>
<th>Less NOC</th>
<th>Less WOC</th>
<th>Less NOC-WOC</th>
<th>Diff Between Waters</th>
<th>% Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>224</td>
<td>538</td>
<td>140%</td>
<td>430</td>
<td>1,174</td>
<td>173%</td>
<td>92%</td>
<td>118%</td>
</tr>
<tr>
<td>5.8</td>
<td>196</td>
<td>376</td>
<td>92%</td>
<td>338</td>
<td>774</td>
<td>121%</td>
<td>72%</td>
<td>99%</td>
</tr>
<tr>
<td>7.6</td>
<td>145</td>
<td>254</td>
<td>75%</td>
<td>282</td>
<td>475</td>
<td>68%</td>
<td>94%</td>
<td>87%</td>
</tr>
</tbody>
</table>

[Images of graphs showing decreasing fines comparison and all samples - 3000m]
• Presentation was based on the paper:

doi: 10.1109/TPWRD.2013.2284819

Available at:
Test Simulations and Field Examples

Presented by:
Stephen Palmer, Director, and Bill Fischer, Principal Engineer
Safearth Consulting

TEST METHODS

Test Simulations & Field Examples
Session Overview
Topics:
• Current Flow in Soil
• Electrode Resistance
• Interference
• Soil Resistivity
• 3-Point Impedance
• Current Injection
• Grid Integrity

Topics covered with a mix of theory, practical demo and video

DEMO’S - TESTING IN A TUB

• Current Mechanism
• Scale
• Accuracy
• Limitations
• Layers
• Infrastructure
CURRENT FLOW IN SOIL

• Theory Recap

• Fault Circuit

CURRENT FLOW IN SOIL

• Demonstration
ELECTRODE RESISTANCE

- Theory Recap

\[R_e = \frac{\rho}{2\pi r} \]

where:

\(\rho \) = Earth resistivity [\(\Omega \cdot m \)]

\(r \) = Rod length [m]

\(d \) = Rod diameter [m]

Resistance of driven rod [\(\Omega \)]

ELECTRODE RESISTANCE

- Demonstration
ELECTRODE RESISTANCE
CLAMP-ON METHOD
- Theory Recap

ELECTRODE RESISTANCE
CLAMP-ON METHOD
- Demonstration

ELECTRODE RESISTANCE
CLAMP-ON METHOD
- Video
INTERFERENCE – Mutual Resistance / Proximity Effect

• Theory Recap

INTERFERENCE – Mutual Resistance / Proximity Effect

• Finger Puppets can help

Mutual Resistance Demo
INTERFERENCE - STANDING VOLTAGES

Theory Recap
- What could cause a standing voltage?
- What difference could a standing voltage make?

INTERFERENCE - STANDING VOLTAGES

Demonstration

INTERFERENCE - STANDING VOLTAGES

Theory Recap
- Noise Immune Test Instruments should be OK
- Test Frequency Versus Noise Sources
- Signal to Noise Ratio
SOIL RESISTIVITY TESTING

- Wenner Method
- Schlumberger-Palmer Method
- Drilled Rod

WENNER RESISTIVITY TEST

- Theory Recap

WENNER RESISTIVITY TEST

- Demonstration
WENNER RESISTIVITY TEST

- Video

DRILLED OR DRIVEN ROD TEST

- Theory Recap

Driven Rod Raw Test Demo
DRIVEN ROD TEST

- Video

THREE-POINT IMPEDANCE

- Theory Recap
- 61.8% Rule

THREE-POINT IMPEDANCE

- Demonstration
THREE-POINT IMPEDANCE

- Theory Recap
- 61.8% Rule
- Works best for homogeneous soil
- Higher resistance isolated grids

THREE-POINT IMPEDANCE

- Video

CURRENT INJECTION

- Theory Recap

(c) safearth.com
INTEGRITY TESTING
• Demonstration

INTEGRITY TESTING
• Video

TRICKS & TRAPS RECAP