Tutorial IEEE Standard 81[™] – 2012

IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System

IEEE POWER & ENERGY SOCIETY 2014 Annual Substation Committee Meeting Portland, Oregon, USA May 18, 2014

Presented by

- Bryan Beske, PE
- Carson Day, PE
- Dennis DeCosta, PE
- Lane Garrett
- Jeff Jowett
- Carl Moller
- Steve Palmer
- Sashi Patel
- Will Sheh
- George Vlachos

American Transmission Co. NEETRAC/Georgia Tech Commonwealth Associates, Inc. Commonwealth Associates, Inc. Megger CANA High Voltage Safearth Consulting NEETRAC/Georgia Tech TectoWeld Inc.

AEMC Instruments

PRESENTER TUTORIAL OBJECTIVE

What we want you to take away from this tutorial:

- 1. Understand the basic principles of measuring the electrical characteristics of grounding systems
- Learn the basic methods of measuring earth resistivity, power frequency impedance to remote earth, step and touch voltages, and verifying the integrity of the grounding system
- 3. Identify various conditions and instrument limitations that can distort test measurements
- 4. Recognize that a lethal voltage can exist during testing and implement appropriate safety precautions

PES May 18, 2014

IEEE PES Std 81-2012 Tutorial

AUDIENCE TUTORIAL OBJECTIVE

Why are you here today?

&

What do we want you to take away from this tutorial?:

- 1. Professional development hours for PE License.
- Introduce inexperienced engineers/designers to practical methods for ground testing.
- Provide experienced engineers/designers with an enhanced knowledge of test methods and techniques used for measuring the electrical characteristics of grounding systems.

IEEE PES Std 81-2012 Tutorial

May 18, 2014

6

						
	TUTORIAL OUTLINE					
1.	Introduction	Mail Ob - h	0.00			
	1.1 Test objectives & key definitions 1.2 Safety considerations	Will Sheh George Vlachos & Jeff Jowett	8:00 am 8:10 am			
	1.3 Understanding the circuit being tested	George Vlachos & Jeff Jowett				
	1.4 Typical problems encountered during testing	Carl Moller	8:30 am			
			0.00 4.11			
2.	Test methods	Lane Garrett	8:45 am			
	2.1 Earth resistivity Break	Lane Garrett	9:45 am			
	2.2 Ground Impedance	Shashi Patel	10:00 am			
	2.3 Earth potentials and step & touch potentials	Carl Moller	11:00 am			
	Lunch	12:00 pm				
	2.4 Ground integrity testing	Carson Day	1:00 am			
	2.5 Surface aggregate testing	Bryan Beske	1:30 pm			
3.	Test simulations					
· ·	3.1 Part 1	Steve Palmer	2:00 pm			
	Break		3:30 pm			
Ι.	3.2 Part 2	Steve Palmer	3:45 pm			
3.	Questions and answers		5:00 pm			
4.	Adjourn		5:30 pm			
1						
1	Gran					
1	PES					
1	May 18, 2014 IEEE PES Std 81-	2012 Tutorial	7			

QUESTIONS AND ANSWERS		
Fies		Image Courtesy of Ground Level Systems, LLC (Permission Pending)
May 18, 2014	IEEE PES Std 81-2012 Tutorial	8

INTRODUCTION

Test Objectives

- 1. Earth resistivity measurements
 - 1.1 Estimate the ground impedance of a grounding system
 - 1.2 Estimate potential gradients including step & touch voltages
 - 1.3 Compute inductive coupling to nearby power & communication cables, pipelines and other metallic objects
 - 1.4 Design cathodic protection systems
- 2. Impedance and potential gradient measurements 2.1 Verify the adequacy of the new grounding system
 - 2.2 Detect changes in an existing grounding system
 - 2.3 Identify hazardous step and touch voltages
 - 2.4 Determine the ground potential rise (GPR)

May 18, 2014

INTRODUCTION

IEEE PES Std 81-2012 Tutorial

1

2

3

Key Definitions

Coupling: The association of two or more circuits or systems in such a way that power or signal information is transferred from one to another. Ground electrode: A conductor embedded in the earth and used for collecting ground current from or dissipating ground current into the earth. Ground grid: A system of interconnected ground electrodes arranged in a pattern over a specified area and buried below the surface of the earth. Ground impedance: The vector sum of resistance and reactance between a ground electrode, grid or system and remote earth. Remote earth: A theoretical concept that refers to a ground electrode of zero impedance placed an infinite distance away from the ground under test. Remote earth is normally assumed to be at zero potential. Soil (earth) resistivity: A measure of how much a volume of soil will resist an electric current and is usually expressed in Ω -m.

PES May 18, 2014

IEEE PES Std 81-2012 Tutorial

INTRODUCTION

Key Definitions (Continued)

Ground potential rise (GPR): The maximum electrical potential that a ground electrode, grid or system might attain relative to a distant grounding point assumed to be at the potential of remote earth.

Step voltage: The difference in surface potential of remote datu. by a person bridging a distance of 1 meter with the feet without contacting any grounded object.

Touch voltage: The potential difference between the GPR of a grounding grid or system and the surface potential where a person could be standing while at the same time having a hand in contact with a grounded structure or object. Touch voltage measurements can include or exclude the equivalent body resistance in the measurement circuit.

Transferred voltage: A special case of touch voltage where a voltage is transferred into or out of the vicinity of a ground electrode from or to a remove point external to the ground electrode.

Pes May 18, 2014 IEEE PES Std 81-2012 Tutorial

Safety considerations

Three Prime Safety Hazards

- Lethal voltage between electrode and ground
- Power-system fault during test
- Step & Touch Potentials

Safety considerations

Other Possible Hazards

- Ground Potential Rise
 Can reach several thousand volts!
- Lightning Strokes (Strikes)

Safety considerations

- Create a test plan that includes Safety Rules
- Body prevented from closing circuit between points of potential difference
- Gloves and footwear
- · Isolate exposed leads and electrodes
- Keep test signal application brief
 Leads and probes kept within sight
- · Avoid induced voltages from overheads

Safety considerations

Surge Arrester Testing:

- Do not disconnect ground while primary remains connected to energized line!
- Lightning & switching currents can exceed 50 kA.
- If arrester fails during test, system fault risk.

Safety considerations

Disconnecting Neutral & Shield Wires:

Avoid coupling

Understanding the circuit being tested

- Distinctive complexities
- May need to plot multiple points
- Interference from stray voltages

Not a Simple World

- Measurements always come with uncertainty
- The world isn't as simple as
- we'd like it to be
- Variability in theory vs. actual installations • Trending over time -> clearer
- picture
 Once installed, grounding systems can change over time
- Noise
 Manifests itself in many ways Noise can come and go
 - temporally
- Buried metallic structures
 Nearby encroachment of utilities

Common Pitfalls

- Hiring an inexperienced contractor
- Not knowing what to do with the test data.
- Interpretation of questionable results
- Dealing with variability in expected measurements
- Forgetting to accurately record measurements or locations
- Not understanding the test circuit

TEST METHODS
Earth resistivity Lane Garrett Commonwealth Associates
 General: Safety, Circuit, Problems, Environmental How to perform/basic principles: Wenner, Schlumberger, Driven Rod, Computer-based Multi-meter Interferences Interpretation of results: During testing, Visual, Software
May 18, 2014 IEEE PES Sld 81-2012 Tutorial

Errors d	lue to limited prob	e spacing		
	Error r	Error range (%)		
Probe spacing (% grid length)	Grid resistance	Touch and step voltage (in % of grid GPR)		
40%	-50% to +30%	-20% to +110%		
100%	-33% to +9%	-8% to +50%		
300%	-17% to +9%	-8% to +20%		

TEST METHODS

Interpretation of results - visual

- The computed apparent resistivities are always positive.
 As the actual resistivity increases or decreases with greater depth, the apparent resistivities also increase or decrease with greater probe spacings.
 The maximum change in apparent resistivity occurs at a spacing larger than the depth at which the corresponding change in actual resistivity are always plotted to the right of the probe spacing corresponding to the change in actual resistivity.
 The amplitude of the curve is always less than or equal to the amplitude of the actual resistivity vs. depth curve.
 In a multi-layer model, a change in the actual resistivity ourve.

IEEE PES Std 81-2012 Tutorial

PES May 18, 2014

General
Basic Characteristics
Depends on soil resistivity and size of the grounding system (covered area)
Components Resistive component dominates for small isolated grounding systems

- Components

 Resistive /stems . Inductive component increases with the ground grid size and specially when connected with multi grounded neutral/shield wires (interconnected grounding system)

•

Changes in ground resistance

Reduces following initial installation due to settling of the soil
Seasonal variations particularly for grounds buried in a permafrost or over a high resistivity stratum such as rock bed

PES May 18, 2014 2 IEEE PES Std 81-2012 Tutorial

General					
Why measure? Substations Verify new design or additions Existing ground grids – Seasonal variations Safety concerns for old substations Fault or lighthing events Quick estimate of Ground Potential Rise (GPR) GPR = Igrid x Rigrid or Ifault x Zinterconnected system Touch, step and transfer voltages depend on GPR					
 Power line poles/structures (typical practice) Limit resistance to a specified value Install ground electrodes until the desired resistance value is obtained 					
May 18, 2014 IEEE: PES Std 81-2012 Tutorial	4				

General					
Seasonal Variations of Grounding Parameters North Georgia Weather Ci Method, CP @-12 mi, PP @~4000'					
	Date	Zg Ohms	GPR Volts	lgrid Amps	Vt(max) Volts
	10/13/81	1.1	111	101	N/M
	8/22/86	0.95	96	101	N/M
	9/28/89 (Rain)	0.9+j0.04	140	156	23
	2/26/90 (winter)	1.0+j0.05	155	155	30
	8/21/90 Summer	0.76+j0.03	120	157	17
	5'x186' ground gri irce: EPRI TR-1008	d (isolated), 10x5 me 63, July 1992 [R7]	shes, 16' ground	l rods, soil ρ1=412	Ω-m, p2=87 Ω-m, h=
May 18, 20	014	IEEE F	PES Std 81-201	2 Tutorial	

General
Basic Tests
 Fall of Potential (FOP) or Three Pin Test– substation ground grids Pass current between subject ground and current reference electrode (CP) Measure voltage between the ground and voltage reference electrode (PP) Ground impedance = V/I
 Clamp-on or Stakeless Test – power line poles or structures Induce current in the loop made by the subject ground and multi grounded neutral or shield wire system Measure the loop voltage

- Measure the loop voltage
 Ground impedance = V/I (assume zero impedance for the multi grounded neutral or shield wire system)
- Piss

 May 18, 2014
 IEEE PES Std 81-2012 Tutorial
 6

General	
Safety High voltages around reference electrodes Stray current Fault current Test instrument producing >50 volts Induced voltage on long test leads laid in parallel with energized power line(s) Measures Personal protective equipment (PPE)	
Take appropriate measures to protect general public	7

How to Perform/Basic Principles

Staged Fault Test

- Rarely performed for grounding measurements
- More practical to use spare channels on existing recorders
- Attenuation circuits (CTs, VTs and Voltage dividers) are required due to high currents and voltages
- Safety PPE

May '8, 2014

IEEE PES Std 81-2012 Tutorial

	Limitations				
Cor	nputer Based Multimeter				
	Also, measures impedance of standalone ground grid without disconnecting shield/neutral wires				
•	Shorter CP and PP distances Compensation for CP location Correction for induction of CP lead on PP lead				
•	No restriction for soil type				
•	Measured data may not be accurate Large, irregular shaped substation ground grids Interconnected grounding system 				
•	Provides ±range for the impedance value				
	Key IEEE PES Std 81-2012 Tutorial	22			

23

Limitations Clamp-on Method Not suitable for grounding system connected at more than one point such as substation ground grid . • Resistance of subject ground must be significantly higher compared to multigrounded shield or neutral system Errors Partially corroded neutral or shield wire Device indicates open neutral or shield wire High frequency current injection Low signal/noise ratio for high resistance ground electrode .

PES May 18, 2014

IEEE PES Std 81-2012 Tutorial

Interferences
Conductive interference CP and PP located near metallic objects that are connected to ground under test Pole/structure grounds Bare concentric cable neutrals Pipes, fences etc CP near metallic objects - current path altered PP near metallic objects – soil potential altered Inductive interference CP lead inducing voltage on PP lead when placed in proximity Special problem – low impedance ground and long PP distances CP and PP leads placed in proximity and parallel to metallic objects connected to the ground under test Increases with the frequency
May 18, 2014 IEEE PES Sld 81-2012 Tutorial 24

	Interferences	
•	Interferences can increase or decrease the true impedance value The best approach is to minimize interference • Keep reference electodes away from interfering metallic objects • Keep PP lead away from the CP lead • Direction of PP at a large angle from that of CP	
1	Let PES Std 81-2012 Tutorial	25

IEEE PES Std 81-2012 Tutorial

	Inte	erpreta	tions (of Resi	ults		
Test Method C	Comparisc	n – Powei	Line Gro	ound Electro	odes		
Line & Ground		FOP Method or Sh Discor Tagg	Sh Disconnected		FOP/ Clamp on (N or Sh Conn) f=128 Hz	Computer Method (N or Sh Disconn)	
46 kV TL 2- 35' CPs	*38.4 Ω	*39.9 Ω	*39.6 Ω	f=1667 Hz 37.2 Ω	*30.7 Ω	31.0 @0.14°Ω ±12%	
230 kV TL 2- 100' CPs	#58.0 Ω	#59.0 Ω	#59.4 Ω	56.0 Ω	# 80.8 Ω	57.6 @0.5° Ω ±12%	
25 kV DL 1-8' Rod	#199.0 Ω	#202.0 Ω	#201.0 Ω	240.0 Ω	#325.0 Ω	214.0@0.2°Ω ±16%	
46 kV TL 1-8' Rod	*234.0 Ω	*>234.0 Ω	*234.0 Ω	310.0 Ω	*136.0 Ω	247.0@0.2°Ω ±8%	
*CP=350', #CP=60	0,				Source: NEETR	AC Project 06-209	
May 18, 2014		IEEE	PES Std 81-20	12 Tutorial			3

Variability in Grounding Design

- Many assumptions in grounding design
 Variability in Parameters of Design

 Temperature
 Moisture
 Non-momentum

 - Non-homogeneous
- Non-homogeneous
 Site built-up,
 Nearby cliffs etc.
 Reality has even more variables for which we can accurately account in our designs

Variability in Design parameters

Measure actual response of ground conductors

- Non-homogeneous soil
- Temperature at time of
- test • Moisture – at time of test

- Moisture at time of test
 Geology Actual grid!
 Nearby foundations, metallic structures, houses, industrial ground grids...all will be present under event conditions
- · Many benefits to measuring actual Volts.

Touch Voltages

Lay Definition: Voltage from your hand to two feet (typically 1m arm reach)

13

- What can you touch in a substation or nearby which might have a voltage difference?
- Metallic objects within the substation and the fence will be at the GPR of the site.What you are standing on will be a surface potential.

Internal Transferred Voltages

Internal

• Extension cords Cable sheaths bonded

remotely

• Water supplies

Gas supplies
 Sewer services

· Telephone networks

- Railways
- Pipelines

Specific Methods

Staged Fault

- Staged Fault Actually fault the substation and measure touch and step voltages Almost impossible to perform without extensive resources and extremely high speed multi-channel data collection systems Some large utilities..."
- systems Some large utilities will perform these tests if the risks are sufficient enough.
- Current Injection Test
- Overland Current Circuit Transmission Line
- Off-power frequency Generator, arc welder, Custom amplifier with frequency generator
 Currents will split down any interconnected shield wires
 Voltages are measured

19

- Tuned volt meter (frequency selective) RMS voltages with and without
- signal Phase measurements can be significant.

Injection Test Current

- Current generator:
 - Conventional Generator (120/240V or 600V) with governor (frequency counter) Mobile substation generator (engineered)
- Amplifier with frequency generator. These can be commercially bought or made yourself.
- RMS vs Switchmode

Current Injection · Overland test leads Transmission Line Generator Current 2-200A • Injection: Generator 2-200A

- Size Test Leads
- Return electrodes:

 Array of Ground Rods in Soil
 Minimize Mutual effects
- Transmission Tower and shield wires Measurement of phase angle is important

Return electrode:

7

Measuring Voltages

- Tuned Volt-meter (off-frequency)Commercial gear
- Measuring phase for voltages less important.
- Measuring the soil potentials Small probe in contact with soil (thin metallic probe)
- Small plate in contact with the soil (representing two feet)
- · Touch Voltages Measure between the metallic objects (using alligator clips or similar) and the soil potentials

22

- Step Voltages
- Measure voltages between two points 1m apart
 Where?

Voltage Measurements

- Probe Unloaded (direct connection to volt-meter)
 Loaded (connection in series with 1000 Ohm resistor)

• Plate • Unloaded

Loaded (Most realistic)

 Does not represent a foot Provide scalar touch potentials (as would be modeled in software) · Issues with Plates:

· Issues with Probes:

23

- Soil contact becomes significant
 Use a bit of water to achieve
- good contact with crushed rock or soil
- Provides realistic foot impedances in-situ
- Step Voltage

Bias in measurements

- · If other circuits are energized: Imbalance "zero sequence" currents in the grid
- · Induction on current circuit • Stray DC currents
- · Currents down unforeseen paths
- Conductive interference with return electrode ground grid
- Methods to overcome Noise (Section 9.4.2): Take three measurements: Standard Section 9.4.2 Follow equationsModel the test scenario to
 - apply correction factors Advanced techniques
 - required Can provide expected values

What to do with the measurements $V_{touch} = S_{factor}V_{measured}$ Injection Testing $V_{step} = S_{factor} V_{measured}$ Determine Current scaling $I_{body_m} = S_{factor} \frac{V_{measured_loaded}}{1000\Omega}$ factor Multiply voltages by current scaling factor Compare with IEEE 80 tolerable voltages Loaded voltages with plates: Compare with body current 2000 tolerable current levels

Voltage across 1000 Ohm resistor is a scaled version of the current through the body

Conventional Meter

- · Touch and step resistances
- Multiply by expected earth-return current to get respective unloaded touch and step voltage values

28

- Compare with IEEE 80 tolerable threshold voltages
- Use of only probes will not easily represent loaded touch voltage values

Only one slice of the pie

- You get an excellent picture of actual voltages.
- You have to decide whether seasonal variations are significant:
- Urban
 Rural
- It's only one slice of time.
- In Canada and US parts of the country must account for seasonal
- variations
- · More engineering judgment is required.

Gain Experience Testing

- Who is doing these tests?
 It is highly recommended to go out in the field and perform this test.
 Get as much experience as you can in the field.

32

31

Questions

The Ground Grid

Consists of:

- Buried ground conductors ٠
- Above ground risers that are attached to • equipment and support structures
- Control/relay house grounds •
- •
- Equipment panel grounds Equipment cabinet grounds •
- Cable trench grounds •

The Ground Grid

- Protects personnel by limiting step and touch voltages in the yard during normal and abnormal conditions
- Protects equipment by limiting transient voltages

A Good Ground Grid

- Withstands available fault currents
- Limits touch and step potentials
- Limits transient voltages on I&C cables at equipment terminations.
- Provides shielding to I&C cables.

Ground Grid Testing - General

Verification that integrity of ground grid is intact • No fully or partially corroded conductors or

- No fully or partially corroded conductors or connections
- Can identify area of yard with relative high resistance

It does not measure the ground grid resistance to remote earth.

Methods in IEEE 81

- Section 10.2 High Current Test Method
- <u>Section 10.3</u> Measurement of Resistance between two risers
- Section 10.4 Low impedance continuity measurement by computer-based grounding multimeter

General Procedure

- Select a riser as a reference & connect source
- Connect second test lead to test riser
- Push current

Measurement of Resistance between two risers - Resistance Calculation

$R\downarrow path = Vcos\theta/I$

Equation 11 from IEEE 81-2012

where

Rpath

V

I

A

is the path(s) resistance between two risers

- is the voltage across two risers is the current in the risers
- is the phase angle between V and I

4

Interpretation of Results

• What is a good resistance value?

- 1.5V per 15m? (i.e. 5mΩ at 300A)
 Compare to adjacent readings, considering:
- Other Considerations:
- Current Division
- Ambient Currents
- Test Lead Impedance
- Distance between points
- Ambient currents
- Multiple paths

Safety Considerations

Generally

- Equipment safety Voltage gradients across the ground grid conductors
- Personnel Safety Touch and Step Voltages

Specific Examples

- When using high current, ensure that appropriate rated equipment is used (i.e. clamps, cables, transformers, etc.)
 A potentially dangerous voltage can exist on the protect test head the preformance location
- remote test lead at the reference location

Ref. oint	Rem. Test Point		nt (A)	Curr.	Volt (V)		Resis. (Ω)	Notes
R1	2	28.5	0.9	29.52	3.06	0.18	0.019	Questionable due to low "Down" current
R1	3	20.6	8.9	29.73	2.96	0.17	0.018	ок 31 14
R1	4	14.5	16.5	29.62	2.77	0.14	0.013	ок
R1	5	5-5	24.2	29.94	3.06	0.15	0.015	ок
Rı	6	17.8	11.7	29.52	3.80	0.36	0.033	Questionable due to high resistance
R1	7	15.0	15.0	29.81	2.96	0.13	0.005	ок
Rı	8	1.5	27.5	29.52	3.00	0.17	0.018	Questionable due to low "Up" current and high resistance
-10			-4-1	11	- 80	111	1	Mar Line
-11	1	CH.		- Ar	HL.	1		
-11			-1-,	8/1-	•	1		This of on other
•][86	*RI	107		8	Æř	i porti	
			The	Å.		ET!	1 1	<u>∎</u> = 6, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
- 10			100	8-	1	Edd	8	

General - Background

General

Limitations

May 18, 2014

Interpretation of results

- IEEE Std 80: Section 12.5 Use of surface material layer

 - .
 - Table 7 Typical surface material resistivities Sentences at end of third and fourth paragraph... "Thus, it is important that the resistivity of rock samples typical of the type being used in a given area be measured."
- "Tests should be performed to determine the resistivity of the stone typically purchased by the utility."
 Problem no standardized test method currently
- exists...
- ...but it still can be done.

Field

- Standard field safety items
- Traffic, system faults...

• Lab

• Standard lab safety items

General - **Problems**

Meter capabilities

- Does it have the resolution
- Upper/lower
- AC not DC
- Box Considerations
- Large enough, non-conductive, easy to clean
- Sturdy
- · Able to withstand repeated compaction of material
- Properly quantifying material properties

How to perform - Lab versus field

• Same

- Two pin four pin
- · Hard to replicate in-situ conditions

Different

· Quantifying material properties

Limitations

Field testing

- Reproducibility
- Seasonal variations
- Quantifying parameters

Laboratory testing

Replicating field conditions

How to perform - Quantify parameters

- What parameters will impact the resistivity:
 - Sample size
 - Moisture content
 - Particle size
 - Compaction
 - Water resistivity

Vessel size: minimum of 3 times max particle diameter

Quantify parameters - Compaction

- ASTM C29, Bulk Density ("Unit Weight") and Voids in Aggregate
- ASTM D698, Laboratory Compaction Characteristics of Soil Using Standard Effort
- ASTM D1557, Laboratory Compaction Characteristics of Soil Using Modified Effort

Quantify parameters - Water Resistivity

• What to use

- Tap water
- Typical resistivity from 0.2 Ω m to 200 Ω m¹ Rain Water
- Typical resistivity from 100 Ωm to 5,000 Ωm^1
- Typical resistivity from 3,300Ωm to 20,000Ωm² "Laboratory Modified" water
- User determined

 $^1Sanders, L.L., 1998, A Manual of Field Hydrogeology: Prentice-Hall, NJ, 381p.$ $^http://water.epa.gov/type/rsl/monitoring/vms59.cfm$

Interpretation of results

During testing

Know the limitations of your equipment

• Considerations for acceptance

- Conditions tested at vs those experienced in field
- Comparison to other testing results
- Historical testing performed

Utility Experience

Current Practice

- **Existing Stations**
- \cdot Obtain representative sample and test
- Evaluate ground grid using tested value

New Stations

- Obtain sample from quarry and test
- Design grid using tested value

Effe	ects o	f Co	mpa	ctions	and	Wat	orlic	od
Effe	ects o	f Co	mpa	ctions	: and	Wat	or Hc	od
					and			cu
	1		Sample 1 -	Open Graded				
Moisture		Tap Water		-	istilled Wate		% Diff Betwe	en Water
Content (%)		Loose	% Diff	Compacted	Loose	% Diff	Compacted	Loose
0.5	21,728	24,881	15%	33,849	38,580	14%	56%	55%
1.2	5,157	5,624	9%	9,477	10,819	14%	84%	92%
2.3	1,748	2,094	20%	3,360	3,947	17%	92%	88%
			Sample 2	Dense Graded	Aggrogato			
			Sample 2 -		istilled Wate		% Diff Betwe	
Moisturo				0	isuned Wate	n % Diff	Compacted	Loose
Moisture	Compacted	Tap Water	% Diff	Compacted	Loose			20000
Content (%)		Loose	% Diff	Compacted	Loose			
Content (%) 5.0	224	Loose 538	140%	430	1,174	173%	92%	118%
Content (%) 5.0 5.8	224 196	Loose 538 376	140% 92%	430 338	1,174 747	173% 121%	92% 72%	99%
Content (%) 5.0	224	Loose 538	140%	430	1,174	173%	92%	
Content (%) 5.0 5.8	224 196	Loose 538 376	140% 92%	430 338	1,174 747	173% 121%	92% 72%	99%

• Presentation was based on the paper:

Edlebeck, J.E.; Beske, B., "Identifying and Quantifying Material Properties That Impact Aggregate Resistivity of Electrical Substation Surface Material," Power Delivery, IEEE Transactions on , vol.PP, no.99, pp.1,1 doi: 10.1109/TPWRD.2013.2284819

Available at:

://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6648455&isnumber=435924

	TEST METHODS	
Test S	imulations & Field Examples	
Tenine	Session Overview	
Topics:	 Current Flow in Soil Electrode Resistance Interference Soil Resistivity 3-Point Impedance Current Injection Grid Integrity 	
Topics co	vered with a mix of theory, practical demo and video	
May 18, 2014	IEEE PES Std 81-2014 Tutorial	2

$\rho_2 = \rho_1$
A

(c) safearth.com

ELECTRODE RESISTANCE CLAMP-ON METHOD • Theory Recap

INTERFERENCE - STANDING VOLTAGES

Theory Recap

- What could cause a standing voltage?
- What difference could a standing voltage make?

INTERFERENCE - STANDING VOLTAGES

Theory Recap

- Noise Immune Test Instruments should be OK
- Test Frequency Versus Noise Sources
- Signal to Noise Ratio

SOIL RESISTIVITY TESTING

- Wenner Method
- Schlumberger-Palmer Method
- Drilled Rod

WENNER RESISTIVITY TEST

• Theory Recap

-		

QUESTIONS?	
-	