Testing Numerical Transformer Differential Relays

Steve Turner

Beckwith Electric Co., Inc.

DOBLE LIFE OF A TRANSFORMER

2011

POWER TRANSFORMERS

INTRODUCTION

Commissioning versus Maintenance Testing

Main Transformer Protection:

- Restrained Phase Differential
- High Set Phase Differential
- Ground Differential

INTRODUCTION

Topics:

- Transformer Differential Boundary Test (Commissioning)
- Ground Differential Sensitivity Test (Commissioning/Maintenance)
- Secondary Transformer Protection
- Harmonic Restraint for Transformer Inrush (Maintenance)

Failure Statistics of Transformers

Failure Statistics of Transformers

	1955-	1965	1975-	1982	1983-	1988
	Number	% of Total	Number	% of Total	Number	% of Total
Winding failures	134	51	615	55	144	37
Tap changer failures	49	19	231	21	85	22
Bushing failures	41	15	114	10	42	11
Terminal board failures	19	7	71	6	13	3
Core failures	7	3	24	2	4	1
Miscellaneous	12	4	72	6	101	26
Total	262	100	1127	100	389	100

Source: IEEE C37.91

Commissioning

Common Practice:

- Test all numerical relay settings verify settings properly entered
- Easily facilitated using computer automate test set & store results
- Hundreds of tests are possible numerical relays have many settings

Commissioning

Final Goal

 Ensure the transformer is properly protected for the particular application

Typical Distribution Transformer

- **46**: Negative-Sequence Overcurrent Element (sees ground faults through bank)
- **R_G**: Grounding Resistor (Industrial Load)

TESTING NUMERICAL TRANSFORMER DIFFERENTIAL

Sensitive setting for ground fault overreach for phase-to-phase fault

Testing Numerical Transformer Differential Relays

Transformer Differential Characteristic

Boundary Test

* Simulate Through Current

I₁ = Winding 1 per unit current (A, B or C-phase)

I₂ = Winding 2 per unit current (A, B or C-phase)

3 elements per function (A, B & C-phase)

Differential Characteristic

Operating Equations

$I_d = |I_1 - I_2|$, Differential Current

$I_r = |I_1| + |I_2|$, Restraint Current

RELAYS

Differential Characteristic

Differential Characteristic

Matrix

Inverted Matrix

$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 1 \\ -\frac{1}{2} & 1 \end{bmatrix} * \begin{bmatrix} I_d \\ I_r \end{bmatrix}$

Differential Characteristic

Test Current Equations

 $I_1 = 0.5^*I_d + I_r$, Winding 1 Test Current (per unit)

 $I_2 = -0.5*I_d + I_r$, Winding 2 Test Current (per unit)

Differential Characteristic

Test Points

Differential Characteristic

Test Points (Per Unit)

	l _d	l _r	I ₁	I_2
1	0.2	0.3	0.4	0.2
2	0.2	0.7	0.8	0.6
3	0.4	1.4	1.6	1.2
4	0.6	2.0	2.3	1.7

TABLE 1

RELAYS

Delta-Wye Differential Characteristic

* Simulate Through Current

 I_1 = Winding 1 per unit current (A, B or C-phase) I_2 = Winding 2 per unit current (A, B or C-phase)

3 elements per relay (A, B & C-phase)

Delta-Wye Differential Characteristic (Relay Internally Compensates Test Currents)

DAB WINDING $I_{A1}^{relay} = I_{A1}/TAP1$ $I_{B1}^{relay} = I_{B1}/TAP1$ $I_{C1}^{relay} = I_{B1}/TAP1$

WYE WINDING

$$\begin{split} I_{A2}^{\text{relay}} &= (I_{A2}\text{-}I_{B2})/(\text{TAP2*SQRT(3)}) \\ I_{B2}^{\text{relay}} &= (I_{B2}\text{-}I_{C2})/(\text{TAP2*SQRT(3)}) \\ I_{C2}^{\text{relay}} &= (I_{C2}\text{-}I_{A2})/(\text{TAP2*SQRT(3)}) \end{split}$$

 $TAP\# = \frac{MVA\#}{kV\#_{LL}*CTR\#*SQRT(3)}$

RELAYS

Delta-Wye Differential Characteristic (*Single-Phase* Test for *A-Phase Element*)

$$I_{A1} = I_1^*TAP1$$
$$I_{A2} = I_2^*TAP2^*SQRT(3)$$

From TABLE 1:

	l _d	l _r	I ₁	I_2
2	0.2	0.7	0.8	0.6

$${_{A1}}^{test} = 0.8^{*}TAP1$$

TESTING NUMERICAL TRANSFORMER DIFFERENTIAL

RELAYS

As an example, if we have a two winding transformer with Y/Delta-AC connection (or YD1) with Y-Y cts. This will be equivalent to case 2 with a 30° phase shift. $\begin{bmatrix} 1:\\ 0^{\circ} \end{bmatrix} \land A = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} I_{ABC} = \begin{bmatrix} 2:\\ 30^{\circ} \end{bmatrix} C \checkmark I'_{ABC} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & -1 & 0\\ 0 & 1 & -1\\ -1 & 0 & 1 \end{bmatrix} I_{ABC}$ $\begin{bmatrix} 3:\\ 60^{\circ} \end{bmatrix} \overset{\circ}{\frown} \overset{\bullet}{\frown} \overset{\bullet}{\bullet} \overset{\bullet}{$ $\begin{bmatrix} 5:\\ 120^{\circ} \end{bmatrix} \xrightarrow{C} I'_{ABC} = \begin{bmatrix} 0 & 0 & 1\\ 1 & 0 & 0\\ 0 & 1 & 0 \end{bmatrix} I_{ABC} \begin{bmatrix} 6:\\ 150^{\circ} \end{bmatrix} \xrightarrow{C} I'_{ABC} = \frac{1}{\sqrt{3}} \begin{bmatrix} -1 & 0 & 1\\ 1 & -1 & 0\\ 0 & 1 & -1 \end{bmatrix} I_{ABC}$ $\begin{bmatrix} 11:\\ 300^{\circ} \end{bmatrix}^{A} \checkmark B = \begin{bmatrix} 0 & 0 & -1\\ -1 & 0 & 0\\ 0 & -1 & 0 \end{bmatrix} I_{ABC} \begin{bmatrix} 12:\\ 330^{\circ} \end{bmatrix} \rightarrow B = I_{ABC}^{\circ} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 0 & -1\\ -1 & 1 & 0\\ 0 & -1 & 1 \end{bmatrix} I_{ABC}$

Ground Differential Element

Sensitivity Test

Ground Fault Location along Windings

Ground Differential Element

Directional Element

Disabled if |3I₀| less than 140 mA (Improves Security for CT saturation during external faults)

Ground Differential Element *Pickup*

Operate When:

$|3I_0 - I_G| > Pickup$

Ground Differential Element

Sensitivity Test

Power System Parameters:

•Source Impedance (Varies)

- •X_T = 10%
- •R_F (Varies)

•Ground Fault Location (5% from Transformer Neutral)

Ground Differential Element

R_F Coverage vs. Source Strength

RELAYS

TESTING NUMERICAL TRANSFORMER DIFFERENTIAL

RELAYS

 $|CTCF^*3I_0^{(2)} - I_{G2}| = 0.75 \text{ Amps}$

Original Pickup = 0.3 Amps

Directional Element

Other Transformer Protection

- 24 Overexcitation (V/Hz)
- **46** Negative-Sequence Overcurrent
- 49 Winding Overload
- 50 Instantaneous Phase Overcurrent (per winding)
- 50G Instantaneous Ground Overcurrent (per winding)
- 50N Instantaneous Neutral Overcurrent (per winding)
- 51 Inverse Time Phase Overcurrent (per winding)
- 51G Inverse Time Ground Overcurrent (per winding)
- 51N Inverse Time Neutral Overcurrent (per winding)
- 59G Ground Overvoltage (Ungrounded Windings)
- **63** Sudden Pressure

Causes of Overexcitation

Generating Plants

- Excitation system runaway
- Sudden loss of load
- Operational issues (reduced frequency)
 - Static starts
 - Pumped hydro starting
 - Rotor warming

Transmission Systems

- Voltage and Reactive Support Control Failures
 - Capacitor banks ON when they should be OFF
 - Shunt reactors OFF when they should be ON
 - Near-end breaker failures resulting in voltage
 - rise on line (Ferranti effect)
 - Runaway LTCs

System Control Issues: Overvoltage and Overexcitation

Overexcitation Curves

Through Fault Monitoring

TF: Through Fault				>
Through Fault Current Threshold:	5.0	1.0 🔳	▶ 100.0 (A)	Disable
Through Fault Current Time Delay:	30	1 💶	8160 (Cycles)	
Pickup Operation Limit:	1000	1	▶ 65535 (Operations)	
Cumulative I ² T Limit:	1000	1	1000000 (kA²Cycles)
Current Selection:	O Sum1 - O) Sum2 💿 🛛 🕄	C W2 C W3	
Inrush Block by Even Harmonics:	🔿 Disable	Enable		
Preset Cumulative I ² T:	0.00	0.00 💽	▶ 1000000.00 (kA²Cyc	cles)
Outputs Blocking Inputs				
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 10 11 12 13 14 15 16 17 18				
			<u>S</u> ave	<u>C</u> ancel

DOBLE LIFE OF A TRANSFORMER 2011

Through Fault Monitoring

Even Harmonic Restraint during Inrush COMTRADE PLAYBACK

Waveform Sources:

Events from Numerical Relays
Events from Digital Fault Recorders
Simulate using Transient Software

Even Harmonic Restraint during Inrush *Traditional Approach*

•2nd Harmonic Restraint •Cross Phase Blocking

Even Harmonic Restraint during Inrush *Auto-Transformer Model*

600 MVA Auto-Transformer (Tertiary Winding DAC)

Even Harmonic Restraint during Inrush

Auto-Transformer Model

Auto-transformer Characteristics $Z_{HM} = 0.01073$ per unit $Z_{HL} = 0.04777$ per unit $Z_{ML} = 0.03123$ per unit

 $Z_{H} = \frac{Z_{HM} + Z_{HL} - Z_{ML}}{2} = 0.0140 \text{ per unit}$ $Z_{M} = \frac{Z_{HM} + Z_{ML} - Z_{HL}}{2} = -0.0029 \text{ per unit}$ $Z_{L} = \frac{Z_{HL} + Z_{ML} - Z_{HM}}{2} = 0.0340 \text{ per unit}$

 $CTR_{W1} = 1200:5$ (wye connected) $CTR_{W2} = 2000:5$ (wye connected)

Even Harmonic Restraint during Inrush *Auto-Transformer Model*

TAP1 =
$$\frac{600 \text{ MVA}}{345 \text{ kV} * 240 * \text{ SQRT(3)}} = 4.18$$

TAP2 =
$$\frac{600 \text{ MVA}}{230 \text{ kV} * 400 * \text{ SQRT(3)}} = 3.77$$

Minimum Pickup* = 0.5 per unit

Slope = 25%

*Original Pickup = 0.45 per unit

Even Harmonic Restraint during Inrush

Energize Bank with Heavy A-Phase Residual Flux

1.	 IAW1	0.006
2	i IBW1	0.003
3	 ICW1	0.004
4 -	r IAW2	0.001
5 -	IBW2	0.000
6 -	 ICW2	0.000

Total Phase Current

Even Harmonic Restraint during Inrush

Energize Bank with Heavy A-Phase Residual Flux

Data: CH 💽	ାଳି•ାରି ଲୋକୁ ଜୋକୁ ଦି ଦି ବିକୃ ସ୍ ପ୍ ା କା କା ଦା ଦା ଅଳେ ୬୮୦୦୦ ଲୋକୁ ଲୋକୁ ଆଲୁ• •ା ାାାାା ସାହାର ସାହାର ସାହାର ସାହାର ଅଳେ । ସାହାର ଅଳେ ଆଳେ । ୬ ସାଳଙ୍କ ଆଳେ । । ହାସଳଙ୍କ ଆଳେ । । । । ସାହାର ଅଳେ । । । ସାହା	RMS [
7		0.162
8 —		0.077
9 —		0.128
10 —		0.268
11 —		0.183
12 —		0.190

2nd Harmonic Phase Current

Even Harmonic Restraint

$$I_{even} = (I_2^2 + I_4^2)^{1/2}$$

Cross Phase Averaging

- Provides security if any phase has low harmonic content during inrush
- Cross phase averaging uses the sum of harmonics on all three phases as the restraint value

$$Id_{CPA^{24}} = \sqrt{IAd_{24}^{2} + IBd_{24}^{2} + ICd_{24}^{2}}$$

Even Harmonic Restraint during Inrush

Energize Bank with Heavy A-Phase Residual Flux

4th Harmonic Phase Current

Even Harmonic Restraint during Inrush

A-Phase Current (Winding 2)

TESTING NUMERICAL TRANSFORMER DIFFERENTIAL

RELAYS

CONCLUSIONS

CONCLUSIONS

- Transformer Differential Boundary Test (Commissioning)
- Ground Differential Sensitivity Test (Commissioning/Maintenance)
- Harmonic Restraint for Transformer Inrush (Maintenance)

TESTING NUMERICAL TRANSFORMER DIFFERENTIAL

RELAYS

QUESTIONS