Next Generation Integrated Power Systems (NGIPS) for the Future Fleet

IEEE Electric Ship Technologies Symposium
Baltimore, MD
April 21, 2009

CAPT Norbert Doerry
Technical Director, Surface Ship Design and Systems Engineering
Naval Sea Systems Command
Norbert.doerry@navy.mil

Approved for Public Release
Agenda

- Vision
- NGIPS Technology Development Roadmap
- NGIPS Architectures
- NGIPS Design Opportunities
- NGIPS Business Model
- Institutionalizing the Electric Warship
Electric Warship Vision

- High Powered Sensor
- Combination Sensor and Weapon
- High Powered Microwave
- High Powered Laser
- Organic Surveillance Drone
 - High Altitude
 - Beam Power to Aircraft
 - Minimal Handling - No Refueling
- Electromagnetic Gun
 - More than 10 MJ on Target
- Megawatt Range
 - High Energy Laser
 - Enhanced Self Defense
 - Precision Engagement
 - No Collateral Damage
 - Megawatt Class Laser
- Integrated Power System
 - Affordable Power for Weapons and Propulsion
 - Power Dense, Fuel Efficient Propulsion
 - Reduced Signatures
 - Power Conversion Flexibility
- All Electric Auxiliaries
 - No Hydraulics
 - No HP Gas Systems
 - Reduced Sailor Workload

April 2009
Approved for Public Release
CAPT Doerry
The Road to the Electric Warship

LHD 8
Hybrid Electric Drive

CVN 78
High Voltage, High Power Distribution System
Electric Aircraft Launch

DDG 1000
Military Integrated Power System

T-AKE 1
Commercial Integrated Power System

SSN 774
Power Electronics

April 2009
Approved for Public Release
CAPT Doerry
Vision: To produce affordable power solutions for future surface combatants, submarines, expeditionary warfare ships, combat logistic ships, maritime prepositioning force ships, and support vessels.

The NGIPS enterprise approach will:

• Improve the power density and affordability of Navy power systems
• Deploy appropriate architectures, systems, and components as they are ready into ship acquisition programs
• Use common elements such as:
 • Zonal Electrical Distribution Systems (ZEDS)
 • Power conversion modules
 • Electric power control modules
• Implement an Open Architecture Business and Technical Model
• Acknowledge MVDC power generation with ZEDS as the Navy’s primary challenge for future combatants
NGIPS Technology Development Roadmap

“Directing the Future of Ship’s Power”

Power Density

Enabling Technologies
- High Speed Generator
- Advanced propulsion motors
- Common power conversion
- Power and energy control
- Zonal ship service distribution
- Energy Storage
- Medium Voltage Direct Current (MVDC)
 6 kVDC
 - Reduced power conversion
 - Eliminate transformers
 - Advanced reconfiguration

Off Ramp

Off Ramp

Off Ramp

Now

Near

Future

DDG 1000

High Frequency Alternating Current (HFAC) 4-13.8 kVAC
200-400 Hz
- Power-dense generation
- Power-dense transformers
- Conventional protection

Medium Voltage AC Power Generation (MVAC) 4-13.8 kVAC
60 Hz
- Power-dense generation
- Power-dense transformers
- Conventional protection
As ships get bigger, the percentage of volume/displacement needed for power and propulsion goes down:
- Ship Resistance scales by the square of the length of a ship
- Ship Volume/Displacement scales by the cube of the length of a ship

Assuming same power density of power system
- For small ship, adding 1 ton of payload requires roughly an additional 9 tons of ship
- For large ship, adding 1 ton of payload only requires roughly an additional 1.2 tons of ship

Reducing power system weight by 1 ton can directly increase payload by 1 ton
- Cost of increased power density more likely offset in a smaller ship.

Guidance
- Below 10,000 ltons, power density has great value.
- Above 25,000 ltons, affordable power systems have great value.

Power Density of greatest value to submarines and surface combatants
Power Density not as valuable to large ships/auxiliaries and expeditionary warfare ships

\[R = \frac{1}{2} \rho S V^2 (C_F + C_R) \]

Where:
- \(R \) is the ship’s resistance or drag
- \(\rho \) is the density of saltwater
- \(S \) is the wetted surface area
- \(V \) is the ship’s speed
- \(C_F \) is the Frictional Drag Coefficient
- \(C_R \) is the Residual Drag Coefficient
IPS Architecture

• Integrated Power
 – Propulsion and Ship Service Loads provided power from same prime movers

• Zonal Distribution
 – Longitudinal Distribution buses connect prime movers to loads via zonal distribution nodes (switchboards or load centers).
Integrated Power System (IPS)

IPS consists of an architecture and a set of modules which together provide the basis for designing, procuring, and supporting marine power systems applicable over a broad range of ship types:

- Power Generation Module (PGM)
- Propulsion Motor Module (PMM)
- Power Distribution Module (PDM)
- Power Conversion Module (PCM)
- Power Control (PCON)
- Energy Storage Module (ESM)
- Load (PLM)

April 2009

Approved for Public Release
CAPT Doerry
Notional Medium Voltage Architecture

- Power Generation Modules produce Medium Voltage Power (either AC or DC)
- Large Loads (such as Propulsion Motor Modules) interface directly to the Medium Voltage bus
- PCM-1A is interface to in-zone distribution system (ZEDS)
- Control provided by PCON

Location of Energy Storage within Architecture still an open issue
Notional In-Zone Architecture

- PCM-1A
 - Protect the longitudinal bus from in-zone faults
 - Convert the power from the longitudinal bus to a voltage and frequency that PCM-2A can use
 - Provide loads with the type of power they need with the requisite survivability and quality of service

- PCM-2A
 - Provide loads with the type of power they need with the requisite survivability and quality of service
 - IPNC (MIL-PRF-32272) can serve as a model

- Controllable Bus Transfer (CBT)
 - Provide two paths of power to loads that require compartment level survivability

Location of Energy Storage within Architecture still an open issue
NGIPS Design Opportunities

- Support High Power Mission Systems
- Reduce Number of Prime Movers
- Improve System Efficiency
- Provide General Arrangements Flexibility
- Improve Ship Producibility
- Facilitate Fuel Cell Integration
- Support Zonal Survivability
- Improve Quality of Service
Support High Power Mission Systems

Deployed Mission Capability

Weapon System Development TRL=6

Weapon Development TRL=4/5

Technology Development TRL=3/4

Increasing Power Demands

0.4 MW 1 MW 1 MW 30 MW 2 MW 10 MW

Active Denial System

Femtosecond Laser System

Laser Guided Energy

Electro-Magnetic Launch Rail Gun

Free Electron Laser System

Power Demands per Mount Multiple Mounts per ship

Sensor and Weapons Power Demands will Rival Propulsion Power Demands

Approved for Public Release
CAPT Doerry
Reduce Number of Prime Movers

Traditional

Electric Drive with Integrated Power

Ship’s Power

Power Conversion and Distribution

Propulsion

Reduction Gear

Power Conversion and Distribution

MD

Mtr

MD

Mtr

April 2009

Approved for Public Release
CAPT Doerry
Improve System Efficiency

- A generator, motor drive and motor will generally be less efficient than a reduction gear.
- But electric drive enables the prime mover and propulsor to be more efficient, as well as reducing drag.

<table>
<thead>
<tr>
<th>Component</th>
<th>Mechanical Drive</th>
<th>Electric Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Turbine</td>
<td>30%</td>
<td>35%</td>
</tr>
<tr>
<td>Reduction Gear</td>
<td>99%</td>
<td>96%</td>
</tr>
<tr>
<td>Generator</td>
<td>96%</td>
<td></td>
</tr>
<tr>
<td>Drive</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>Motor</td>
<td>98%</td>
<td></td>
</tr>
<tr>
<td>Propeller</td>
<td>70%</td>
<td>75%</td>
</tr>
<tr>
<td>Relative Drag Coeff.</td>
<td>100%</td>
<td>97%</td>
</tr>
<tr>
<td>Total</td>
<td>21%</td>
<td>24%</td>
</tr>
<tr>
<td>Ratio</td>
<td></td>
<td>116%</td>
</tr>
</tbody>
</table>

Representative values: not universally true

TRADE TRANSMISSION EFFICIENCY TO REDUCE DRAG AND IMPROVE PRIME MOVER AND PROPELLER EFFICIENCY
Improve System Efficiency: Contra-Rotating Propellers

- Increased Efficiency
 - Recover Swirl Flow
 - 10 – 15% improvement
- Requires special bearings for inner shaft if using common shaft line
- Recent examples feature Pod for aft propeller

Anders Backlund and Jukka Kuuskoski, “The Contra Rotating Propeller (CRP) Concept with a Poded Drive”
General Arrangements Flexibility
Improve Ship Producibility

- Vertical Stacking of Propulsion Components
- Pods
- Athwartship Engine Mounting
- Horizontal Engine Foundation
- Engines in Superstructure
- Distributed Propulsion
- Small Engineering Spaces
Facilitate Fuel Cell Integration

• Many Advantages
 – Highly Efficient (35-60%)
 – No Dedicated intakes-uptakes; use ventilation

• Challenges
 – Reforming Fuel into Hydrogen – Onboard Chemical Plant.
 – Eliminating Sulfur from fuels.
 – Slow Dynamic Response – Requires Energy storage to balance generation and load
 – Slow Startup – Best used for base-loads

April 2009

Approved for Public Release
CAPT Doerry
Zonal Survivability

- Zonal Survivability
 - Zonal Survivability is the ability of the distributed system, when experiencing internal faults due to damage or equipment failure confined to adjacent zones, to ensure loads in undamaged zones do not experience an interruption in service or commodity parameters outside of normal parameters
 - Sometimes only applied to “Vital Loads”

- Compartment Survivability
 - Even though a zone is damaged, some important loads within the damaged zone may survive. For critical non-redundant mission system equipment and loads supporting in-zone damage control efforts, an increase level of survivability beyond zonal survivability is warranted.
 - For these loads, two sources of power should be provided, such that if the load is expected to survive, at least one of the sources of power should also be expected to survive.

SURVIVABILITY DEALS WITH PREVENTING FAULT PROPOGATION AND WITH RESTORATION OF SERVICE UNDER DAMAGE CONDITIONS
• Quality of Service is a metric of how reliable a distributed system provides its commodity (electricity) to the standards required by its users (loads).

• A failure is any interruption in service, or commodity parameters outside of normal parameters, that results in the load not being capable of performing its function.
 – Interruptions in service shorter than a specified amount for a given load are NOT a failure for QOS calculations.

• For NGIPS, Three time horizons …
 – Uninterruptible loads
 • Interruptions of time t1 – on the order of 2 seconds – are NOT tolerable
 – Short-term interruptible loads
 • Interruptions of time t1 – on the order of 2 seconds – are tolerable
 • Corresponding to fault detection and isolation
 – Long-term interruptible loads
 • Interruptions of time t2 – on the order of 2-5 minutes – are tolerable
 • Corresponding to time for bringing additional power generation on line.

QUALITY OF SERVICE DEALS WITH ENSURING LOADS RECEIVE A RELIABLE SOURCE OF POWER UNDER NORMAL OPERATING CONDITIONS
Open Architecture Business Model

• "Naval Open Architecture (NOA) is the confluence of business and technical practices yielding modular, interoperable systems that adhere to open standards with published interfaces. This approach significantly increases opportunities for innovation and competition, enables reuse of components, facilitates rapid technology insertion, and reduces maintenance constraints. OA delivers increased warfighting capabilities in a shorter time at reduced cost.

CNO Rhumb Lines
December 2006
Open Architecture (OA) Business Model

- Using Performance Specifications that define “what” is needed not “how” it is designed
 - Includes extensive use of well-defined and detailed interface specifications (Technical Architecture)
 - Includes well defined validation methods
- Subdividing labor and specialization at the module or component level
- Defining and segregating roles and responsibilities for component delivery, system integration and life cycle support
- Including a “spiral” peer review process to provide feedback from the evaluation of fielded systems to update architecture documentation and module designs
- Ensures that the designs are published, available to third parties, the Government is enforcing it’s data rights.
Department of Defense
Architectural Framework

Operational Architecture
“Defining Requirements”

Operational View
Identifies What Needs to be Accomplished and Who Does It

Technical Standards View
Prescribes Standards and Conventions

Technical Architecture
“Defining Standards”

Specific System Capabilities
- Technical Standards Criteria
 Governing Interoperable
 Implementation/Procurement
 of the Selected System Capabilities

- Specific System Capabilities
 Required to Satisfy Information Exchanges

- Systems for Support
- Technical Standards
- Information Exchanges

- Basic Technology
- Capabilities
- Operational Requirements
- Capabilities
- What Needs To Be Done
- Who Does It
- Human Exchanges
- Required To Get Done

Systems Architecture
“Designing the System”

Relates Systems and Characteristics to Operational Needs

April 2009
Approved for Public Release
CAPT Doerry
NGIPS Business Model Structure

OPERATIONAL ARCHITECTURE

Derived Requirements

System Design & Engineering

SYSTEMS ARCHITECTURE

Operational Requirements

Spiral Development

"Build Test Build"

TECHNICAL ARCHITECTURE

MODULE Development

System Integration

Life Cycle Support

NDI Module

FOR

Ship Power and Propulsion Systems

Gov PM Oversight

April 2009

Approved for Public Release

CAPT Doerry
Institutionalizing the Electric Warship

Early Technology Demonstration
Incorporation into Production Units

Standardization of Architecture and Interfaces

Standardization of Design Process
Integration into Design Tools

Full Implementation in Standards and Specifications
Part of Engineering School Curriculum

NGIPS is addressing all aspects of Institutionalizing the Electric Warship

Historic Focus of Electric Warship Efforts
Standards & Specifications

- Naval Vessel Rules
 - Includes provisions for IPS
 - Updated Annually
- MIL-STD-1399 sections 300B and 680
 - Updated/created in 2008
- MIL-PRF-32272 IPNC
 - Model for PCM-2A issued in 2008
- IEEE Standards
 - IEEE Std 45 Electrical Installations on ships – being extensively revised.
 - IEEE Std 1662 Power Electronics on Ships
 - P1676 Control Architecture
 - P1709 MVDC Power on Ships
 - P1713 Electrical Shore-to-ship Connections
- NSRP Ship Production Panel on Electrical Technologies

April 2009
Approved for Public Release
CAPT Doerry
Summary

- Vision
- NGIPS Technology Development Roadmap
- NGIPS Architectures
- NGIPS Design Opportunities
- NGIPS Business Model
- Institutionalizing the Electric Warship

QUESTIONS?