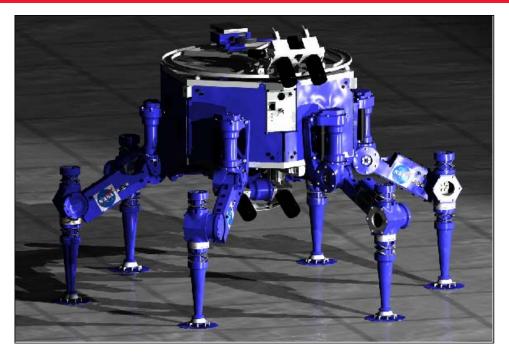
ICRA '07 Space Robotics Workshop

Lessons Learned on the AWIMR Project

Rick Wagner and Hobson Lane
Northrop Grumman Corporation
April 14, 2007


Contents

- Introduction
- Related Work
- Prototype AWIMR Description
- Lessons Learned
 - Task and Algorithm Iteration
 - Walking Locomotion
 - Sticky Foot
 - Navigation
 - Docking Force
 - Power Management
 - Business
- Conclusion

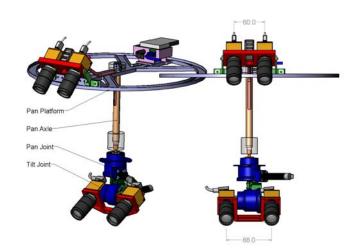
Introduction

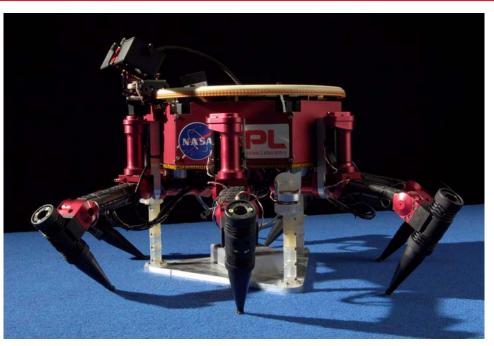
- Goal: reduce astronaut EVA time
 - Leads to a substantial reduction in mass for suits, spares, and consumables
- Solution: a walking robot to patrol the exterior of the space vehicle inspecting for micrometeorite and other damage
 - Also perform minor repairs and
 - Assist astronauts on EVA

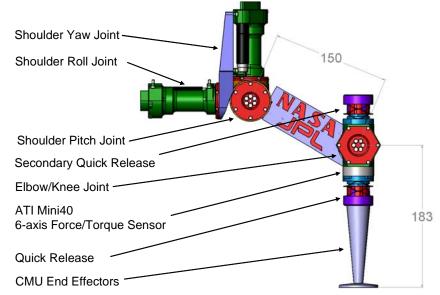
- AWIMR project began in January 2005
- Two patents filed as a result of the research
- Funding constraints cut the project short in November 2005

Related Work

- JSC's Robonaut
- JPL's LEMUR I and LEMUR II
- CMU's Skyworker
- European Robot Arm for ISS
- JSC's mini AERcam







Prototype AWIMR

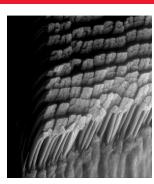
- AWIMR tasks:
 - Inspection for damage: patrol or directed modes, leak location
 - Simple repair work: reattach insulation, bond cracks, tighten screws
 - Astronaut assistance
- Phase I prototype AWIMR based on JPL's LEMUR II
- Hexagonal equipment compartment, six legs, sticky feet, and two pairs of stereo cameras

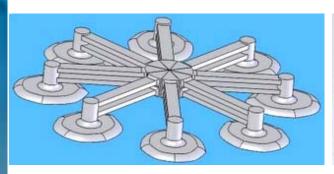
Lessons Learned: Task and Algorithm Iteration

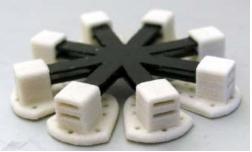
- Task trade study
 - Perform a trade study to determine space robot task set
 - Consider tasks within a system context
 - Assign a benefit for each task
 - Task set drives algorithm conceptual design which drives hardware design
 - Hardware design determines mass, power, reliability, and complexity costs: iterate for optimal task set
- Design the robot for the optimal task set
 - Example: a robot that can do all repairs may cost too much in mass and complexity
 - Use task set scenarios (CONOPS) to find out needed capabilities and control requirements early
 - Example: speed of locomotion may be very important; how fast should the robot be? (this is a real driver on costs)

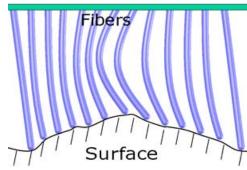
Lessons Learned: Walking Locomotion

- Primary requirement: maintain a positive grip on the spacecraft!
 - Astronauts sometimes use tethers; not practical for robots
- Mechanical grippers add considerable complexity
 - Additional degrees of joint control
 - Must have something to grab at all locations
- Electrostatic and "sticky foot" grippers have their own drawbacks






Lessons Learned: Sticky Foot


- Ripple gait
 - A single foot is moved at a time
- Tripod gait
- Pairwise opposed gait

- Can walk on any clean surface
- Requires pull-off force
- Must avoid fragile surfaces
 - Insulation blankets, solar cells, antenna mesh, etc.

Inspired by the gecko's micro-fiber sticky foot, polymers such as polydimethylsiloxane provide repeatable sticky force greater than preloading force. We found that sticky feet require attention to the zero-g gait.

Lessons Learned: Navigation

- Routine patrol or directed movement requires reregistration at some distance from charging station
 - Machine vision for navigation adds complexity
 - Bar (block or dot pattern) codes on space vehicle can help
- Obstacle avoidance is essential
- Teleoperated mode requires a high level user interface
 - Need (joystick) commands like "go forward" and "turn right," not "move this leg" or "move that leg joint."
 - Teleoperated modes are essential in early testing, so think about this interface early in the program

Lessons Learned: Docking Force

- Sticky feet (in pull direction) may not have enough force margin for docking
 - Sticky feet in shear have more force capability
- Consider pull-in capability for the docking interface
 - Screw drive, toggle, or other latching mechanism
- Force feedback control could be an enabler here

Lessons Learned: Power Management

- Dynamic gaits and control for higher speed locomotion will consume more power
- Faster inspection means more bandwidth for data which means more power for RF transmission
- Battery size is a major mass contributor
- Duty cycle might be improved by using a battery dropoff strategy for recharging
- Consider a need for power margin for contingency operations

Lessons Learned: Business

- AWIMR: a partnership among business, government, and academic institutions
- NGST, as prime, has significant experience managing subcontracts
 - The unusual mix of partners requires special attention to communication and managing expectations
 - The prime needs to understand cultural differences across institutional lines
 - Get agreement early about how information handoffs are managed

Conclusion

- The feasibility of a robot to walk on the exterior of an exploring space vehicle was established
 - Inspection
 - Repair
 - Astronaut assistance
- The reduced EVA time is a potential enabler for long duration human exploration spaceflight
- The lessons documented here will assist the inevitable follow-on project