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Abstract— A dynamic decoupling method is presented for 

precisely controlling the orientation of a satellite while requiring 

minimal plant information.  Using the form of the problem, the 

complex and unknown system dynamics can be approximated 

and compensated for in real time within a portion of the control 

effort.  This technique will increase the robustness of the control 

algorithm and minimize the system level constraints.  The 

solution is demonstrated by controlling the orientation of a three 

degree of freedom spacecraft simulation.  The orientation of the 

spacecraft is controlled by varying the angular velocity of four 

reaction wheels mounted in a tetrahedron configuration. 
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I. INTRODUCTION 

One of the main technical constraints when designing a 

spacecraft is the amount of attitude control that is required for 

the specific mission.  Spacecrafts can be designed: as a 

tumbler, with a gravity gradient stabilizer, based on magnetic 

torqers, with thrusters, or by using reaction wheels.  Each 

method provides more or less control over the orientation of 

the spacecraft, however the design complexity of each method 

is drastically different.  The complexity is seen in the 

mechanical configuration of the spacecraft and the software 

that is required to achieve the desired response.  

The focus of this paper is to demonstrate that a well 

designed control algorithm can dramatically reduce: the 

hardware constraints, the time to test and debug, and the cost 

to develop a system.  This claim shall be demonstrated by 

developing an attitude control simulation to orient the 

spacecraft.  The roll, pitch, and yaw axes of the spacecraft 

shall be controllable via four reaction wheels mounted in a 

tetrahedron configuration.  This architecture will not require 

the wheels to be mounted in the roll, pitch, or yaw axes of the 

spacecraft, which significantly reduces the hardware 

complexity by: allowing the reaction wheels to be configured 

in the best arrangement for the entire system and by reducing 

the mounting tolerances.  If the wheels are not mounted in line 

with the major axes of the spacecraft, then controlling its 

orientation becomes more difficult because of the cross 

coupling terms.  Rotating one reaction wheel causes the 

spacecraft to rotate in multiple axes.  Therefore the control 

algorithm will need to compensate for the system dynamics 

and the cross coupling terms.  Decoupling control is typically 

difficult and very problem specific.  However, using the form 

of the problem, a control algorithm is developed which will 

easily account for the cross coupling and provide precise 

tracking. 

The form based control solution only requires a minimal 

amount of plant information.  By using the dominant order and 

the high frequency gain, an approximation of the dynamics 

can be used as a portion of the control effort to compensate for 

the unknown and complex dynamics.  This method is less 

dependent on a trial and error approach, and it is a very 

systematic way of controlling the system.  This approach 

dramatically improves the performance and reduces the time 

spent tuning the system.   

 

II. SPACECRAFT MODEL 

The objective of the design is to control the attitude of the 

spacecraft while relaxing many of the constraints such as: 

specific alignment of the control mechanisms, mounting 

tolerances, and complexity of the control algorithm.  The roll, 

pitch, and yaw of the spacecraft are controlled by four reaction 

wheels configured in a tetrahedron configuration, as illustrated 

in Figure 1. 

 
 

Figure 1 – Tetrahedron Configuration of Reaction Wheels 

 

The alignments of the reaction wheels with respect to the axes 

of the spacecraft dictate the complexity of the control 

algorithm.  If there is a reaction wheel directly in line with 

each of the spacecraft axes then the control problem becomes 

much easier.  However, designing the entire spacecraft 

becomes more difficult.  If it is not required that the reaction 

wheels be mounted inline with the axes of the spacecraft, then 

it is easier to design the entire spacecraft but it is more 

difficult to control.  The objective of this paper is to 
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demonstrate that a systematic control algorithm can give the 

system architect flexibility in arranging the hardware without 

dramatically increasing the complexity of the control 

algorithm.  Therefore, the reaction wheel will not be mounted 

in line with the axes of the spacecraft; however they will be 

mounted in a manor that is most effective for the entire 

system.   

The tetrahedron configuration of the reaction wheels shown 

in Figure 1 is designed to be housed within a satellite 

structure.  The natural alignment of the satellite is such that 

wheel four is in line with the bottom of the satellite, pointing 

to earth, which is also the x-axis of the spacecraft.  The 

remaining reaction wheels do not line up with any of the other 

spacecrafts’ axes.  Wheel one is the closest to one of the 

spacecrafts’ axes, as its projection is in line with the 

spacecrafts’ y-axis.  Wheels two and three are arranged with 

respect to wheels one and four respectively, to form a 

tetrahedron.   

Formulating the equations to describe the orientation of the 

satellite, based on the given configuration, begins by 

examining the total kinetic energy (KE) of the system.  The 

systems KE is dependent on the KE of the satellite platform, 

and the KE of each reaction wheel.   
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The KE of the satellite platform is dependent on the angular 

velocity of the spacecraft and the moment of inertia of the 

satellite.   
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The KE of the reaction wheels are dependent on the angular 

velocity of the reaction wheels w in the spacecrafts’ frame of 

reference, where Ω represents the actual angular velocity of 

the reaction wheels, and the moment of inertia of the reaction 

wheels.  
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Finally, the differential equation that describes the position 

of the spacecraft can be derived by differentiating the KE of 

the entire system with respect to the angular velocity in the x, 

y, and z axes.  
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It is important to notice that the complexity of the system 

dramatically increases by not aligning the reaction wheels with 

the spacecrafts’ frame of reference.  The complexity can be 

seen by the coupling between the inputs and outputs of the 

entire system.   

 

III.   FORM BASED CONTROL 

The ability to systematically design a control algorithm to 

account for complex system dynamics will dramatically speed 

up the development time and reduce the number of hardware 

constraints.  By approximating the system dynamics the 

algorithm is capable of compensating for unknown and time-

varying parameters, nonlinearities, and the cross coupling 

terms in MIMO systems [1-3].  The means of approximating 

the system dynamics determines the accuracy and simplicity 

of the design.  Using the form of the problem the system 

dynamics can be systematically and accurately approximated.  

A typical system can be represented by the following 

differential equation. 
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The differential equation is dependent on the n
th

 and 

dominant order of the output y, the high frequency gain b, the 

input u, and the true system dynamics f that is also dependent 

on the states of the system and an unknown disturbance d.  By 

monitoring the input and output to the system the dynamics 

can be approximated  
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by subtracting the scaled input from the nth derivative of the 

output.  The n
th

 derivative is not typically available, therefore 

an Extended State Observer (ESO) can be used to approximate 

the system dynamics.  The explicit form of the controller is 

dependent on the dominant order of the system.  The given 

application requires a controller to precisely regulate the speed 

of the reaction wheels, and a controller to set the speed for 

each reaction wheel to correctly orient the spacecraft.  Each of 

these controllers is based on a dominant first order system 

therefore the form for a first order control algorithm will be 

presented.  The ESO 
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monitors the input and output of the system, and the outputs of 

the observer are the filtered output and the approximation of 

the system dynamics.  The observer gains are the high 

frequency gain b , and the observer gains 1l  and 2l .  The 

observer gains are parameterized  
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for tuning simplicity by placing the eigenvalues at one 

location.  Once an approximation of the system dynamics is 

obtained it is used as a portion of the control effort  
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to compensate for the system dynamics.  The inner loop of the 

control signal creates a unity gain system by dividing by the 

high frequency gain, and then subtracting the approximation 

of the dynamics.  The result of the inner loop is a system 

which appears as a cascaded integrator.  A front end  
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controller is then added for command following.  The structure 

of the front end controller is chosen such that the algorithm 

can be parameterized to be critically damped [4-6].  However, 

the first order case does not require any additional 

parameterization. 

 

IV.   SIMULATION RESULTS 

The results of the simulation are very promising.  The ESO 

was able to completely decouple the system, as described in 

section V, and allowed the system to be controlled with 

multiple SISO controllers.  There are three tuning parameters 

for the specific controllers.  The proportional front end 

controller had a gain of 10, the observer gain was set to 100, 

and the approximate high frequency gain for each system was 

assumed to be double the actual high frequency gain, in order 

to show the robustness of the design.  More precise methods 

can be used to determine this parameter; however the 

objective of this paper was to demonstrate the robustness of 

the design.  The graphs in Figure 3 show the desired profile vs. 

the actual angle about the x, y and z axis.  The graphs in 

Figure 4 show the error between the actual and desired angles 

of the spacecraft.  The graphs in Figure 5 show the four 

reaction wheels angular velocities.  

 

0 2 4 6 8 10 12 14
-50

0

50

100
Angular Position

x
 [

d
e
g
]

0 2 4 6 8 10 12 14
-50

0

50

100

y
 [

d
e
g
]

0 2 4 6 8 10 12 14
-50

0

50

100

Time [s]

z
 [

d
e
g
]

 
 

Figure 2 – Orientation of the Spacecraft 
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Figure 3 – Orientation Error of the Spacecraft 
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Figure 4 – Angular Velocity of the Reaction Wheels 

 

V.   CONCLUSIONS 

This paper has demonstrated that designing the control 

algorithm around the form of the problem can dramatically 

simplify the design.  The control structure provides an ability 

to systematically compensate for difficult system dynamics 

which includes unknown parameters, states, and coupling 

between axes in a MIMO system.     
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