AUTONOMOUS SYSTEMS LAB

Evaluation of Mobility Concepts for a Martian Rover

IEEE International Conference on Robotics and Automation, 2008

Ambroise Krebs, Thomas Thueer, Cedric Pradalier and Roland Siegwart

name.surname@mavt.ethz.ch

Autonomous Systems Lab ETH Zentrum Tannenstrasse 3, CLA 8092 Zürich, Switzerland

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Rover Comparison
- Controller
- CRAB Model
- Simulations
- Tactile Wheel
- Conclusion

- $\begin{array}{ll} v_d & \text{Desired rover velocity} \\ v_r & \text{Measured rover velocity} \\ M_c & \text{Correction torque} \end{array}$
- $\begin{array}{ll} M_o & \text{Optimal torques} \\ M_w & \text{Wheel corr. torques} \\ N & \text{Normal forces} \end{array}$
- s Rover state

- Objective: Development of a Mars Rover
- Our implication: part of the team that develops the Rover Chassis
- Time scale:
 - Take off: 2013
 - Landing: 2016

Rover Comparison: Motivation

- Evaluation and comparison of locomotion performance of rovers is a difficult, though very important issue.
- Three different rovers were analyzed from a kinematic point of view. Based on a kinematic model, the optimal velocities at the actual position were calculated for all wheels and used for characterization of the suspension of the different rovers.

Reference on rear wheel

Reference on front wheel

- Simulation results show significant differences between the rovers.
- Substantial reduction of slip can be achieved by integrating kinematics in a model based velocity controller.

Comparison Metrics

- Difference between input and optimal velocities
 - Measure for the risk of violation of kinematic constraints through deviation from optimal velocity.

$$\Delta vel_{opt} = \sum_{i=1}^{n} |\vartheta_{ref} - \vartheta_{opt_i}| \quad with \quad i \neq ref$$

where ϑ_{ref} = velocity of reference wheel,
 ϑ_{opt_i} = optimal velocity of wheel *i*,
 n = number of wheels.

• Slip

 Difference between the displacement of a wheel measured at the wheel center point and the displacement derived from encoder data.

$$slip = \sum_{i=1}^{n} |\Delta pos_{wheelcenter_i} - \Delta pos_{encoder_i}|$$

Compared Systems

RCL-E by RCL (three parallel bogies, no differential mechanism)

Kinematic Models

• Kinematic modeling

$$\vartheta_{D_A} := \vartheta_D = \vartheta_A + \omega_1 \times {}^0_1 R(\alpha) {}^1 \overline{AD}$$

$$\vartheta_{D_B} := \vartheta_D = \vartheta_B + \omega_2 \times {}^0_2 R(\beta) {}^2 \overline{DB}$$

$$\vartheta_{D_C} := \vartheta_D = \vartheta_C + \omega_2 \times {}^0_2 R(\beta) {}^2 \overline{DC}$$

• Simulation setup: Working Model 2D interfaced with Matlab

Rover Comparison: Simulation Results

Rover	Ref.	Test	$\sum (\Delta vel_{opt})$	Test	$\sum (\Delta vel_{opt})$
	wheel		[m/s]		[m/s]
MER			27.87		93.71
CRAB	1	1	12.17	7	37.53
RCL-E			12.72		35.69
MER			15.87		55.46
CRAB	2	2	10.00	8	28.00
RCL-E			11.12		29.96
MER			17.25		55.20
CRAB	3	3	12.02	9	37.87
RCL-E			11.69		33.70
Terrain type	е	Trunca	ated pyramid	Unever	n terrain $24m$

Performance regarding metric $\Delta v e l_{opt}$

- Significant difference between the performance of rocker-bogie type (~15-27 m/s) and the other rovers (~10-13 m/s), CRAB and RCL-E.
- If a constant speed control was used on the rovers, the error would be much bigger on the rocker-bogie type; it has a higher need to adapt the wheel velocities in order to satisfy the kinematic constraints and reduce slip.

Rover Comparison: more Simulation Results

Performance regarding slip

- Control Strategy
 - Diverse possibilities
 - Focus here on torque control
 - Make the more loaded wheels contribute more to the rover movement
- Torque Control
 - An old story? [P.Lamon 2005]
 - State of an ongoing project

- Control Scheme
 - Tested in simulation
 with the SOLERO rover
 - Not (yet) implemented

- v_d Desired rover velocity
- v_r Measured rover velocity
- M_c Correction torque
- M_o Optimal torques
- M_w Wheel corr. torques
- N Normal forces
- s Rover state

• Current Research

- Implementation on the CRAB
- Part of trade-off study for the ExoMars Rover
- Use of tactile wheels
- May be possible to use only an axis-mounted force sensor

- Static Model
 - Compute the wheel load
 - Compute the torques
 M_o needed to keep the static equilibrium
- Move The Rover
 - Correction torques M_w
 - M_w is based on the error of the rover speed

- v_d Desired rover velocity
- v_r Measured rover velocity
- M_c Correction torque

- M_o Optimal torques
- M_w Wheel corr. torques
- N Normal forces
- s Rover state

Outline Introduction

Controller CRAB Model

el Simulations

Tactile Wheel

Conclusion

• CRAB Rover

CRAB Model Mechanical Structure

• Passive Structure

- Mobility
 - A rover has a mobility of 1
 - Computed with Grübler's formula:

 $MO = 6 \cdot n - 5 \cdot f_1 - 4 \cdot f_2 - 3 \cdot f_3 - 2 \cdot f_4 - f_5$

- CRAB
 - 30 parts, 41 pivot joints
 - wheel-ground contact as spherical joints
 - Result MO = -43

The model has to be adapted to fit the reality

- Modification
 - A: Wheel-ground interaction
 - B: Parallel bogie
 - C: Mechanical loop on each side
 - D: Differential
- Final Model
 - MO = 1
 - internal variables removed
 - 43 equations and 48 variables

• Optimization

- MO = 1 =>

single motor needed for control system under constrained

– Missing equations:

All wheels motorized:

• Heuristic

With:

$$G_i = \frac{R_i}{N_i}$$

- The optimal set of torques is found as follows:

$$H = \min\left(\sum_{i} \left(G_i - \overline{G}\right)^2\right)$$

 $n_{wheel}^{} - 1$

- Performed with ODE (Open Dynamics Engine)
- 3 test terrains
- 3 different μ

- Test
 - Torque control compared with wheel synchronization algorithm

[E.T. Baumga	rtner 2001]
--------------	-------------

Torrain		Distance Tot	Contro	Diff		
Terrain	μ	Distance 10t.	Torque	Velocity	Din.	
1	0.4	25 m	1.41 m	2.41 m	42 %	
2	0.4	25 m	1.02 m	1.60 m	37 %	
3	0.4	25 m	1.97 m	2.56 m	23 %	

- Slippage
 - Dependent on terrain
 - Dependent on soil characteristics
 - Performs better in every case
 - Shows a great potential

- Sensors Monitoring The CRAB's State
 - IMU
 - Angular sensors
 - Tactile Wheels
- Tactile Wheels
 - Specifically developed for the CRAB rover
 - Needed to obtain the wheel-ground contact angles

- Concept
 - Deformable ring linked with springs to the rim
 - Deformation measured to determine the contact angle
- Designs Considered
 - Spring type
 - Number of rows
- Mechanical Tests
 - Radial deformation
 - Angular displacement
 - Axial displacement

Final Mechanical Design

- - IR sensor measuring the distance —
 - Sensors placed on the stator —

OutlineIntroduction	Controller	CRAB Model	Simulations	Tactile Wheel	Conclusion	
Tactile Results	Wheel					
• Radial defor	mation:	0.0	5 mm/N			
• Angular dis	placement:	0.0	9 °/Nm		R.Y	

Axial displacement:

Angular displacement:

- System weight: 1.21 Kg
- IR Sensors: •
- **Resolution:** •
- Frequency:

11.25°

19

negligible

20 Hz

- Torque Control
 - Controller implemented and tested in simulation
 - Shows encouraging results
- Tactile Wheels
 - Realized and tested
 - Meet specifications
- Future Work
 - Integration of tactile wheels needs to be finished
 - Test of torque control in reality

ICRA WS Premiere: First test of the ExoMars

BreadBoard

Static stability

Static stability

Static stability

AUTONOMOUS SYSTEMS LAB

Questions ?

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Autonomous Systems Lab ETH Zentrum Tannenstrasse 3, CLA 8092 Zürich, Switzerland