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ESA ExoMars

® Objective: Development of a Mars Rover

® Our implication: part of the team that develops the Rover
Chassis

® Time scale:

® Take off: 2013

¢ Landing: 2016




Rover Compa.rison: Motivation

Evaluation and comparison of locomotion performance of rovers is a

difficult, though very important issue.

Three different rovers were analyzed from a kinematic point of view. Based on a
kinematic model, the optimal velocities at the actual position were calculated for all
wheels and used for characterization of the suspension of the different rovers.

e

Reference on rear wheel Reference on front wheel

Simulation results show significant differences between the rovers.

® Substantial reduction of slip can be achieved by integrating kinematics in a model
based velocity controller.




Comparison Metrics

* Difference between input and optimal velocities

== Measure for the risk of violation of kinematic constraints through deviation from

optimal velocity.

Avelyy = Z P ref — Vopt,|  with i #ref

i—1

where v,.r = velocity of reference wheel,
Vopt, = optimal velocity of wheel 7,
n = number of wheels.

* Slip

= Difference between the displacement of a wheel measured at the wheel center

point and the displacement derived from encoder data.

n
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Compared Systems

Breadboard Schematic view Kinematic model

MER by NASA (rocker-bogie type)




Kinematic Models

* Kinematic modeling

Up, = VUp = ¥4 + w; x {R(a) "AD
19DB = VUp = vp + wy X 8R(ﬁ) °’DB
ﬁDc = Up = VYo + wo X gR(ﬁ) ’DC

® Simulation setup: Working Model 2D interfaced with Matlab
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Rover Comparison: Simulation Results

Rover Ref. || Test | (Avelopt)| Test | > (Avelopt)
wheel [m/s] [m/s]
MER 27.87 93.71
CRAB 1 1 12.17 7 37.53
RCL-E 12.72 35.69
MER 15.87 55.46
CRAB 2 2 10.00 8 28.00
RCL-E 11.12 29.96
MER 17.25 55.20
CRAB 3 3 12.02 9 37.87
RCL-E 11.69 33.70
Terrain type Truncated pyramid | Uneven terrain 24m

Performance regarding metric Avel

opt

® Significant difference between the performance of rocker-bogie type (~15-27
m/s) and the other rovers (~10-13 m/s), CRAB and RCL-E.

® If a constant speed control was used on the rovers, the error would be much

bigger on the rocker-bogie type; it has a higher need to adapt the wheel

velocities in order to satisﬁ the kinematic constraints and reduce slii.



Rover Compa.rison: more Simulation
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Outline Controller CRAB Model Simulations

Control optimisation

Motivation

 Control Strategy
— Diverse possibilities
— Focus here on torque control

— Make the more loaded wheels contribute more to the rover movement

e Torque Control

— An old story? [P.Lamon 2005]

— State of an ongoing project
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Controller

Torque Contro

e Control Scheme Vi - F Vg model & |
. . . S
optimization
— Tested in simulation N
with the SOLERO rover M,
M, . ++
— Not (yet) implemented Pl || Eomemton | rover
distribution M —‘
i

va Desired rover velocity M, Optimal torques

v; Measured rover velocity My Wheel corr. torques
N
S

1 Cul’l'ent Reseal'Ch M. Correction torque Normal forces

Rover state
— Implementation on the CRAB

—  Part of trade-off study for the ExoMars Rover
— Use of tactile wheels

— May be possible to use only an axis-mounted force sensor




OutlineIntroduction CRAB Model Simulations Tactile Wheel Conclusion

Contro]ler

ptlmlzatmn

. Vi = ~+ V4 model & ¢
e Static Model optimization S
N
— Compute the wheel load
M g
— Compute the torques = ¢ dC,OIT,‘i;:ﬁF’n 3 e
M, needed to keep the Astrbytion M,, _‘
static equilibrium
va Desired rover velocity M, Optimal torques
v; Measured rover velocity My,  Wheel corr. torques
M, Correction torque N Normal forces
e Move The Rover S Rover state

— Correction torques Mw

— M, is based on the error

of the rover speed
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GRAB Model

e CRAB Rover

e Passive Structure
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CRAB Model

e Mobility

— A rover has a mobility of 1
— Computed with Griibler's formula:

MO=6-n-5-f —4-f,—3-f,—2-f,— f,

e CRAB

— 30 parts, 41 pivot joints

— wheel-ground contact as spherical joints
—  Result MO = -43

The model has to be adapted to fit the reality
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CRAB Model

e Modification

— A: Wheel-ground interaction

—  B: Parallel bogie

—  C: Mechanical loop on each side
— D: Differential

e Final Model

— MO-=1

— internal variables removed

— 43 equations and 48 variables s | CRAB o Mo
Model Optimization —»
ode

!
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CRAB Model

Optlmlzation

* Optimization

- MO=1 = single motor needed for control
— All wheels motorized: system under constrained
— Missing equations: n, -1

e Heuristic

—  With: i N

— The optimal set of torques is found as follows:

H = min(Z(Gi —é)zj
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SStimulations
(§ up

* Performed with ODE (Open Dynamics Engine)
* 3 test terrains

o 3 different I

Accumulated absolute slip of all wheels with mu=0.4 {(1.97 [m], 2.56 [m])
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RSGJ;.E}ulations \'L"—

e Test

— Torque control compared with wheel synchronization algorithm
[E.T. Baumgartner 2001]

Control Type
Terrain 1) Distance Tot. Diff.
Torque Velocity
1 0.4 25 m 141 m 241 m 42 %
2 0.4 25m 1.02 m 1.60 m 37 %
3 0.4 25m 1.97 m 2.56 m 23 %

 Slippage
— Dependent on terrain

— Dependent on soil characteristics

— Performs better in every case

— Shows a great potential
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Tactile Wheel

CRAB System Overview

e Sensors Monitoring The CRAB’s State

- IMU Onboard - 52> Remote
computer e mnmnnns .| computer
— Angular sensors i Wi ’
Pentium M1.5GHz
— Tactile Wheels
USB / Serial | [ Serial / 1C USB / CAN USB
converter converter converter
J l [
'Y Tacti|e Wheels SO | {Angular ¢ [EPOS 24/1] [EPOS 2475] [ Joystick
i MT9B i sensors : ctrl ctrl
—  Specifically developed ’
for the CRAB rover | 6x
. Energy i Tactile ! | Steering Drive
— Needed to obtain the mgt : wheels : | motors motors
wheel-ground contact angles Maxon Maxon
RE 13 RE-max 29
4x 6X
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Tactile Wheel

Detormable Wheel

* Concept

— Deformable ring linked with springs to the rim

— Deformation measured to determine the contact angle

* Designs Considered

— Spring type

— Number of rows

e Mechanical Tests

— Radial deformation
— Angular displacement
— Axial displacement
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Tactile Wheel

* Radial deformation: 0.05 mm/N

* Angular displacement: 0.09 °/Nm

* Axial displacement: negligible

* System weight: 1.21 Kg

* IR Sensors: 19

e Resolution: 11.25°

* Frequency: 20 Hz
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Conclusion

e Torque Control

— Controller implemented and tested in simulation

— Shows encouraging results

o Tactile Wheels

— Realized and tested

—  Meet specifications

e Future Work

— Integration of tactile wheels
needs to be finished

—  Test of torque control in reality
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Static stability




Static stability




Static stability
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