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Abstract— Mobile robots are increasingly used in unstruc-
tured domains without permanent supervision by a human
operator. One example is Safety, Security and Rescue Robotics
(SSRR) where human operators are a scarce resource. There
are additional meotivations in this domain to increase robot
autonomy, e.g., the desire to decrease the cognitive load on
the operator or to allow robot operations when communication
to a operator’s station fails. Planetary exploration has in this
respect much in common with SSRR. Namely, it takes place
in unstructured environments and it requires high amounts
of autonomy due to the significant delay in communication.
Here we present efforts to carry over results from research
within SSRR, especially work on terrain classification for
autonomous mobility, to planetary exploration. The simple yet
efficient approach to terrain classification is based on the Hough
transform of planes. The idea is to design a parameter space
such that drivable surfaces lead to a strong single response,
whereas non-drivable ones lead to data-points spread over the
parameter space. The distinction between negotiable and non-
negotiable as well as other terrain type is then done by a
decision tree. The algorithm is applied in the SSRR domain
to 3D data obtained from two different sensors, namely, a
near infra-red time of flight camera and a stereo camera.
Experimental results are presented for typical indoor as well
as outdoor terrains, demonstrating robust realtime detection of
drivable ground. The work is then carried over to the planetary
exploration domain by using data from the Mars Exploration
Rover Mission (MER).

I. INTRODUCTION

Autonomous behaviors are important for robots for plane-
tary exploration even if a strong human-in-the-loop compo-
nent is involved [1]. An accordingly important topic in the
space robotics community is terrain classification to detect
drivable ground [2], [3], [4], [5], [6]. Here we present an
extension of work described in detail in [7], which deals
with a very fast but nevertheless quite robust detection of
drivable ground. The approach is based on range data from
a 3D sensor like a time-of-flight Swissranger, respectively a
stereo camera. The main idea is to process the range data
by a Hough transform with a three dimensional parameter
space for representing planes. The discretized parameter
space is chosen such that its bins correspond to planes
that can be negotiated by the robot. A clear maximum in
parameter space hence indicates safe driving. Data points
that are spread in parameter space correspond to non-drivable
ground. In addition to this basic distinction, a more fine grain
classification of terrain types is in principle possible with the
approach. An autonomous robot can use this information for
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example to annotate its map with way points or to compute
a risk assessment of a possible path.

Extensive experiments with different prototypical indoor
and outdoor ground types have been carried out. Several
datasets were gathered indoor and outdoor under very vary-
ing conditions and about 6,800 snapshots of range data
were processed in total. It is shown that drivability can
be robustly detected with success rates ranging between
83% and 100% for the Swissranger and between 98% and
100% for the stereo camera. The complete processing time
for classifying one range snapshot is in the order of 5
to 50 msec. The detection of safe ground can hence be
done in realtime on the moving robot, allowing using the
approach for reactive motion control as well as mapping
in unstructured environments. In addition to the extensive
experiments done in various indoor and outdoor settings [7],
we show here that the approach is very suited to deal with
environments, which are cluttered with rocks in different
sizes and densities much like on Mars or Moon.
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Fig. 1. The autonomous version of a Rugbot with some important onboard
sensors pointed out. The Swissranger SR-3000 and the stereo camera deliver
the 3D data for the terrain classification.

Fig. 2.

Two Rugbots at the Space Demo at RoboCup 2007 in Atlanta.

Our first interest in the problem was motivated by work
on intelligent behaviors up to full autonomy on a line of
Safety, Security, and Rescue robots developed in the Robotics



Laboratory of Jacobs University Bremen since 2001 [8], [9],
[10], [11], [12], [13], [14], [15], [16]. The latest type of
robots from Jacobs University are the so-called Rugbots,
short for “rugged robot” [17]. A picture of this type of robot
with important sensor highlighted is shown in figure 1. These
robots have been tested on various occasions including a field
test demo dealing with a hazardous material road accident,
the European Land Robotics Trials (ELROB) and several
RoboCup Rescue competitions (figure 3). The safety, secu-
rity, and rescue robotics (SSRR) domain has many aspects in
common with planetary exploration, especially the challenge
to enable intelligent up to fully autonomous behaviors of
mobile robots in highly unstructured environments. We hence
started to participate in space robotics evaluations including
the first RoboCup@Space demo in Atlanta 2007 (figure 2).

II. THE APPROACH

The terrain classification is based on the following idea.
Range images, here from simple 3D sensors in the form
of an optical time-of-flight camera and a stereo camera, are
processed with a Hough transform. Concretely, a discretized
parameter space for planes is used. The parameter space is
designed such that each drivable surface leads to a single
maximum, whereas non-drivable terrain leads to data-points
spread over the space. The actual classification is done by a
decision tree on the binned data (see algorithm 1). In addition
to binary distinctions with respect to driveability, more fine
grain classifications of the distributions are possible allow-
ing to recognize different categories like plain floor, ramp,
rubble, obstacle, and so on in SSRR domains, respectively
flat ground, small rocks, large rocks, and so on in planetary
exploration scenarios. This transform can be computed very
efficiently and allows a robust classification in real-time.

(b) Swissranger distance image

(c) Stereo disparity

(d) Stereo point cloud

Fig. 4. Examples of sensor data.

Classical obstacle and free space detection for mobile
robots is based on two-dimensional range sensors like laser
scanners. This is feasible as long as the robot operates in
simple environments mainly consisting of flat floors and

TABLE I
THE SEVEN DATASETS USED FOR THE EXPERIMENTS PRESENTED IN [7]
AND THE ADDITIONAL EIGHTH ONE WITH PLANETARY DATA FROM THE
OPPORTUNITY MISSION.

dataset description snap- | aver.#
shots | points
stereo
sety inside, rescue arena 408 5058
seta outside, university campus | 318 | 71744
sets outside, university campus | 414 | 39762
TOF
sety inside, rescue arena 449 23515
sets outside, university campus | 470 16725
sete outside, university campus | 203 | 25171
setry outside, university campus | 5461 | 24790
MARS
sets. | planetary, sand & rocks [ 500 [ 7200

TABLE II
SUCCESS RATES AND COMPUTATION TIMES FOR DRIVABILITY
DETECTION
dataset | success false false time
rate negative | positive | (msec)
stereo
sety 1.00 0.00 0.00 4
seto 0.99 0.00 0.01 53
sets 0.98 0.02 0.01 29
TOF
sety 0.83 0.17 0.00 11
sets 1.00 0.00 0.00 8
setg 1.00 0.00 0.00 12
sety 0.83 0.03 0.14 12
MARS
setg [ 0.992 [ 0.006 [ 0.002 [ 5
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(a) Layout of the bins in the depictions of parameter spaces below

(b) Plain floor

(c) Slightly obstructed floor

(d) Ramp (e) Random step field
Fig. 5. Two-dimensional depictions of the three dimensional parameter
space for several example snapshots. Distances are on the y-axis, angles are
on the x-axis, where p, iterates just once and p. iterates repeatedly. Hits
in the bins are represented by grayscale, the darker the less hits.



Fig. 3.

Left: A Jacobs robot at the Rescue Robot Fieldtest 2006 in Bremen, Germany. The robot supports a firebrigade in the situation assessment in a

hazmat rescue drill. Center: A Jacobs land robot cooperating with an arial robot at the European Land Robotics Trials (ELROB) 2007 in Monte Ceneri,
Switzerland. The aerial robot has to search for hazard areas like seats of fire in a forest, which the land robot then has to reach. Right: Two Jacobs robots
support first responders at ELROB in the situation assessment after a simulated terrorist attack with NBC substances. The two robots are supervised by
only a single operator. The robots can operate fully autonomously and they coordinate their joined exploration of the area.

TABLE III
SPECIFICATION OF THE TWO 3D SENSORS

Swissranger Stereo Camera
Manufacturer CSEM Videre Design
Model SR-3000 Stereo-on-Chip (STOC)
Principle Time of Flight (TOF) | Stereo images’ disparity
Range 600 — 7500 mm 686 — co mm
Horiz. Field of View || 47°¢ 65.5°
Vert. Field of View 39¢ 51.5°
Resolution 176 x 144 640 x 480

plain walls. The generation of complete 3D environment
models is the other extreme, which requires significant pro-
cessing power as well as high quality sensors. Furthermore,
3D mapping is still in its infancy and it is non-trivial to
use the data for path planning. The approach presented here
lies in the middle of the two extremes. A single 3D range
snapshot is processed to classify the terrain, especially with
respect to drivability. This information can be used in various
standard ways like reactive obstacle avoidance as well as
2D map building. The approach is very fast and it is an
excellent candidate for replacing standard 2D approaches to
sensor processing for obstacle avoidance and occupancy grid
mapping in non-trivial environments. More details about the
implementation of the approach in general can be found in

[7].

III. EXPERIMENTS AND RESULTS

A Swissranger SR-3000 time-of-flight range camera
[18][19] and a Videre STOC stereo camera [20][21] are used
for 3D ground classification. Their locations on the robot
are indicated in figure 1. Both sensors allow update rates of
around 30 Hz. The most important feature of this fast data
acquisition is that robot motion does not influence it. It does
not matter for the classification whether the robot is driving
or not.

The technical details of the sensors are summarized in
Table III. Figure 4 shows typical outputs. Their relative
accuracy is compared in figure 6. As mentioned before,
the advantage of fast update rates is bought at the cost of

rather high noise rates. Nevertheless, robust classification is
possible as shown later on.
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Fig. 6.  Comparing the mean error and the standard deviation of the
Swissranger versus the stereo camera. The standard deviation increases as
the square of the range [21] for both sensors. The stereo camera is in general
less accurate and also has a systematic error in the mean error which is linear
with respect to the range.

In figure 5, there are 2D histograms depicting the bins of
the parameter space for three more or less typical snapshots.
The origin of the histogram is in the top left corner, the
down-pointing axis contains the distances, the right-pointing
axis contains both p, and p,. This is accomplished by first
fixing p, and iterating p, then increasing p, and iterating p,
again and so on. This is depicted graphically in sub-figure
5(a). The bin which corresponds to the floor is indicated
by a little frame. The magnitude of the bins is represented
by shade, where white corresponds to all magnitudes above
the threshold ¢,, = 2/3, which is used in the decision tree
classification. All the other shades are scaled uniformly
and thus the different histograms are better comparable in
contrast to a scheme where just the top bin is white.

The approach was tested with extensive test runs in
complex indoor and outdoor settings as described in [7]. The
results of the test-runs include about 6,800 snapshots of range
data. As shown in table II, the approach can robustly detect
drivable ground in a very fast manner. The success rates



Algorithm 1 The classification algorithm: it uses three simple criteria organized in a decision tree like manner. #5S is the

max

cardinality of S, bin

is the bin with most hits. The algorithm returns after the first assignment to class.

if #bingeo, > t5, - #PC then
class < floor
else

if (#{bin | #bin > t,, - #bin™} < ) and (#bin™ >

class < type( biny,y) € {floor, plateau, canyon, ramp }
else
class < obstacle
end if
end if

tp, - #PC) then

Fig. 8.
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Fig. 7. The average time per classification directly depends on the average
number of 3D points per snapshot in each dataset.

Fig. 9. A Rugbot on Mars in the vicinity of the Endurance crater; the
environment is modeled based on original data from the opportunity mission.

A Jacobs Rugbot in the RoboCup Virtual Simulator (left), exploring its environment on different planetary surface types (center and right).

range between 83% and 100%. The stereo camera has the
drawback that it does not deliver data in featureless environ-
ments, but it allows an almost perfect classification ranging
between 98% and 100%. The Swissranger behaves poorly
in strongly sunlit situations. In these cases, the snapshot is
significantly distorted but not automatically recognizable as
such. According situations occurred during the recording of
the outdoor data of sety and set; causing the lower success
rates for the Swissranger in these two cases. The two sensors
can hence supplement each other very well. The processing
can be done very fast, namely in the order of 5 to 50 msec.

This work was now supplemented with an additional
dataset, which included a typical planetary scenario, namely
the terrain of the Eagle crater on Mars (dataset #8). The
underlying environment model (figure 8) is based on ground
truth data from the Mars Exploration Rover (MER) mission
data archives [22]. Like in the SSRR experiments, the range
snapshots derived from the MER data where first classified
by hand as a comparison basis. The overall data of the
Eagle crater consists of an elevation map with 2700 by 2700
data points with 0.01 m resolution. The 500 range snapshots
extracted from the data are 90x80 pixels each. Also in this
case, the approach performed very fast and robust (table II).

This work on terrain classification for planetary explo-
ration by autonomous robots can be carried out in USAR-
sim, a high fidelity mobile robot simulator first developed
for SSRR [?], [?], by importing the ground truth MARS
data from the MER missions. The simulator provides val-
idated robot and sensor models, hence it allows realistic
experiments. An other significant advantage over real world
experiments is that it allows a systematic generation of
environment types (figure 8). This allows for example to
generate different terrains with sandy ground and rocks of
different sizes distributed in different densities in a controlled



manner. Therefore, it allows experiments without the tedious
hand labeling of real world data as a comparison basis for
assessing the robustness of the algorithm.

IV. CONCLUSION

A simple but fast and robust approach to classify terrain
for mobility is presented. It uses range data from a 3D
sensor like a time-of-flight Swissranger, respectively a stereo
camera. The range data is processed by a Hough transform
with a three dimensional parameter space for representing
planes. The discretized parameter space is chosen such that
its bins correspond to planes that can be negotiated by the
robot. A clear maximum in parameter space hence indicates
safe driving. Data points that are spread in parameter space
correspond to non-drivable ground. The actual classification
is done by a decision tree on the binned data. This also
allows a more fine grain classification in addition to the
basic distinction of negotiable and non-negotiable terrain.
An autonomous robot can use this information for example
to annotate its map with way points or to compute a risk
assessment of a possible path. Extensive experiments with
different prototypical indoor and outdoor ground from the
Safety, Security and Rescue (SSRR) domain have been
carried out previously [7]. Here we show that the work can
extend to planetary exploration as application domain. For
this purpose, experiments with ground truth data from the
Mars Exploration Rover (MER) mission were carried out.
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