
Rover Navigation and Visual Odometry: a New Framework for
Exploration Activities

Enrica Zereik, Enrico Simetti, Alessandro Sperindé, Sandro Torelli,
Fabio Frassinelli, Davide Ducco and Giuseppe Casalino

Abstract— Mobile robots are fundamental for future explo-
ration plans, involving both the Moon and Mars, in order to
accomplish different useful surface operations in a completely
autonomous manner (no human supervision required). A very
important issue (even if many other capabilities are desirable)
for this kind of robots is surely the mobility skill: a rover
able to traverse different terrains in a reliable enough manner
represents a great improvement, above all within a scenario
in which man presence is not yet planned or still implies big
challenges to be faced. In order to endow the robotic system
with a high degree of reliability and to be able to simply test
different kind of algorithms within a short time, a software
architecture developed at Graal Lab, in Genoa, is presented,
together with a first module implementing visual odometry.

I. INTRODUCTION

Software technology is traditionally characterized by pro-
prietary platforms and programming languages for each man-
ufacturer; this generates many problems as usually propri-
etary software is closed source and cannot be modified: this
is very limiting for a robotic researcher. Moreover, software
reuse becomes very hard: control algorithms developed for
a platform from a specific manufacturer cannot be employed
for another different platform and must be implemented
again. Finally, learning different proprietary languages is a
time consuming operation, compared to directly program-
ming in well-known C/C++ language. Hence a reliable
software architecture is strongly needed for basically two
reasons: to neglect all problems linked to the specific used
hardware and, above all, to give researchers the possibility
to focus their work on the control algorithms only, while
interacting with the low-level operative system through a
set of high-level APIs, very simple to use. Furthermore,
the presence of such an object-oriented framework allows
researchers to develop, implement and test their real-time
control algorithms, while being able to reuse already written
software. They are also prevented from spending countless
hours on debugging low-level code and facing hostile real-
time operative system APIs: their research interest can thus
be totally focused on control algorithm functioning and
possible improvements.

Recently, a few proposal have been presented, as ORO-
COS and CLARAty; they both are interesting but have some
drawbacks: OROCOS is too complex and requires much
time to be properly learned, while CLARAty seems to be
mostly oriented toward rover motion control, discarding other
possible desired capabilities (for example a fine manipulation
system through suitable robotic arms and hands). To this
aim, the present framework was realized, in order to be

able to modularly develop control algorithms concerning
different issues (navigation, manipulation, . . . ) and to simply
test these modules, focusing on their functioning. This is the
case of a preliminary visual odometry module that is being
implemented at Graal and whose presence can be notified to
the software architecture itself through a simple registration
process. After this module has been registered, it can exploit
framework functionalities through its standard APIs.

II. FRAMEWORK ARCHITECTURE

The main objective behind the realization of such a
framework consists in the development of a software archi-
tecture allowing robotic control engineers to focus only on
the algorithmic part, thus relieving them of the underlying
system details.

The framework is divided into different abstraction levels,
whose interaction allows to obtain the following objectives:

• independence of control algorithm code from the un-
derlying software platform;

• minimization of code lines not strictly related to control
system algorithm;

• capability of coordination among remote frameworks;
• standard communication mechanism among control

tasks with a minimum impact onto the algorithmic part.
The first objective is accomplished thanks to the Kernel
Abstraction Layer (KAL), whose job is that of masking all
calls to the underlying operative system; it allows developers
to use services supplied by the operative system but, at the
same time, to ignore their specific parameters and peculiar
calls. Thanks to this abstraction layer, being at the very base
of the framework, another very important objective can be
fulfilled: since all specific calls of the operative system are
concentrated at this level, the process of framework porting
to another software platform is vastly simplified, as only the
implementation of a new KAL is needed; the rest of the
software is automatically compatible with the new system.
The second objective has been met with the development of
the so-called WorkFrame (WF), which takes care, through
system tasks and resources, of the overall system functioning;
it imposes a centralized control of resources and helps the
developer to properly administer the system. Furthermore,
the Network (NET) layer realizes the required communica-
tion mechanism, abstracting it from the underlying physi-
cal data channels (by exploiting the calls provided by the
KAL level). Common matrix operations are provided by
a C++ mathematical library (CMAT), developed together
with the framework. Finally, the Black Board System (BBS)



allows each control task to make available to all other tasks
(eventually even running on remote systems) data produced
during its life cycle. The framework structure is summa-
rized by Fig. 1. All the software has been developed using

RTOS

KAL

WF NET CMAT

BBS

control
 task

1
2

3

4

1
Resources, Scheduling
Device I/O

2
Mutually Exclusive
Interprocess Data Sharing
(also with remote tasks)

3 Network Communication

4 C++ Math Routines

Fig. 1. Framework main components and duties

the object-oriented paradigm and C++ language. Thanks
to these choices, the developed code is easy to read and
ready to be used, since for every resource and functionality
a dedicated class with its specific interface was created.
Moreover, in order to emphasize the distinction among the
different abstraction levels, each function is part of a proper
namespace, in order to clearly highlight, within every portion
of the code, the belonging of each method and object to the
specific framework layer. Currently, the framework has been
implemented on Linux/RTAI and, recently, the porting for
QNX Neutrino has been completed as well. Work in progress
consists in the implementation of a KAL for VxWorks and,
above all, for RTEMS.

III. VISUAL ODOMETRY MODULE

Motion estimation and environment three-dimensional
structure understanding are essential issues in order to
dynamically move and interact with surrounding spaces,
people and objects; space robots need these capabilities in
order to become more and more effective. In particular, for
what concerns planetary robotics, today’s rovers basically
rely on IMU and mechanical odometry in order to detect
the system position. Another technique to estimate robot
motion is visual odometry; while wheel odometry can be
deceived by non-smooth terrain, hard slopes, sandy soil and
so on, a reliable vision system could make motion estimation
independent of terrain conditions.

Starting from NASA missions, which demonstrated the
potentialities of the use of such a visual technique for
navigation on planetary surfaces, an algorithm for visual
odometry has been developed and is currently being tested
(and improved) onto a mobile platform developed at Graal
Lab. Preliminary results showed a good behavior, both in
terms of precision of the pose estimation and for what
concerns time constraints; this visual odometry module, in
fact, can provide an estimation of the robot motion within
less than a second, usually from 600 to 800 ms, according to
the captured images that are to be processed. Using relatively

new feature extraction techniques, such as SURF, this pro-
posed algorithm is able to track, in a quite robust manner,
natural features present in the environment within a short
time (also thanks to the elimination of image pyramids). The
preliminary motion estimation is then refined with the aid
of optimization techniques, such as the maximum likelihood
procedure, in order to better fit feature motion noticed from
the images.

The visual odometry module can be simply integrated into
the framework as a task providing an estimation of the rover
motion. Thanks to the framework architecture, as already
said, this feedback estimation can be made available to all
other control tasks, which can use it for their processing.
Moreover, with this philosophy, as soon as the estimation
is available, it can be used by itself (if vision is the most
trusted sensor) or together with other available measures (for
example coming from an IMU or classical wheel odometry)
by simply reading data published by the BBS.

Preliminary tests were conducted and showed the poten-
tialities carried by this kind of image processing; the robot
was asked to accomplish closed paths and, while it was
continuously moving, visual odometry module was required
to estimate the accomplished motion. When the robot goes
back again to the starting point, the algorithm returned
approximately a null vector and the total estimated motion
was correctly represented as a closed path, as pointed out
by Fig. 2. This vision algorithm is thus being currently

Fig. 2. Preliminary visual odometry interface after a closed path

tested and evaluated and possible improvements are being
studied; above all, robustness of this technique seems to be
a fundamental issue, in such a way to make vision able to
recover cases in which other sensors fail.

The accomplishment of an effective and robust real-time
(or at least close to it as much as possible) visual odometry
technique would represent a very important step, as it would
allow a significant improvement in autonomous navigation
ability, in order for the rover to be able to efficiently perform
many operations, without slowing down astronauts (e.g.
during the execution of cooperative tasks).

Moreover, the accomplishment of independence from
wheel odometry, without increasing required time for compu-
tation, allows robotic people, working in space applications,
to extend the use of rovers to rough terrains. These are only
few preliminary steps in order to endow future rovers with
an effective dynamic vision system and with the capability
to react to external stimuli, in such a way to increase robotic
employment in space missions.


