The Synchronize Position Hold Engage Reorient Experimental Satellites (SPHERES) have been operating within the interior of the International Space Station (ISS), since they were launched in 2006. They have performed 23 crew-interactive test sessions that have developed and matured different areas of satellite formation flight such as rendezvous and docking, collision avoidance, reconfiguration and assembly and relative navigation[1], [2]. The SPHERES Satellites are shown in Figure 2, where they are about to dock to each other.

As a result, the SPHERES Goggles were developed and upgraded the satellites to include two cameras, an upgraded x86 processor running Linux, an 802.11 communications system and an onboard power system[4], [5]. Research was performed using this system on fiducial based relative navigation and the proposed Mars Sample Return mission’s orbital rendezvous and capture.

In 2010, DARPA released a BAA for performing Vision Based Navigation research onboard the ISS. MIT and Aurora Flight Sciences proposed to launch an flight-qualified version of the Goggles developed under the LIIVe program. This proposal was selected, and the hardware, algorithms, software and operational procedures are currently under development. Preliminary image processing results of the visual navigation algorithms are shown in Figure 4. This hardware upgrade is being manifested for launch in early 2012.

This talk will present an overview of the SPHERES satellites and their capabilities and current achievements. It will discuss the Goggles design that was developed during the LIIVe program and highlight the lessons learned. The talk will give an overview of the VERTIGO program and deliverables. It will discuss the status and current progress towards a 2012 launch.

I. ACKNOWLEDGEMENTS

I would like to gratefully acknowledge the support of my advisors, Professor David W. Miller and Dr. Alvar Saenz-
Otero as well as all of the SPHERES Team over the years. I would also like to acknowledge our industry partner Aurora Flight Sciences, who are essential to the SPHERES team in the areas manufacturing and space flight operations. Funding for the LIIVe program was provided by the US Naval Research Lab’s Spacecraft Robotics Laboratory. Funding for the author’s Graduate Program has been provided by MIT, the National Science and Engineering Research Council of Canada and the Gordon M. MacNabb Scholarship program.

REFERENCES


