

IEEE ICRA 2011

Space Robotics Workshop Introduction and JPL Robotics Activities Summary

Organized by

Richard Volpe

Manager , Mobility & Robotic Systems Section Jet Propulsion Laboratory California Institute of Technology

May 2011

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged.

Today's Agenda

	Presenter	Org	Country	Торіс	start	end	length
1	Richard Volpe	NASA-JPL	USA	Introduction & JPL Robotics	9:00	9:30	0:30
2	Rob Ambrose	NASA-JSC	USA	Robonaut 2	9:30	10:00	0:30
3	Rainer Krenn	DLR	Germany	Satellite Docking	10:00	10:30	0:30
				coffee	10:30	10:45	0:15
4	Maxime Chalon	DLR	Germany	DLR Manipulation	10:45	11:15	0:30
5	Hiroshi Ueno	JAXA	Japan	JEMRMS	11:15	11:45	0:30
6	Takashi Kubota	JAXA	Japan	Advanced Probes	11:45	12:15	0:30
				lunch	12:15	13:45	1:30
7	Glen Henshaw	NRL	USA	Hybrid AI/Control Systems	13:45	14:15	0:30
8	Kazuya Yoshida	Tohoku Univ	Japan	Dynamics and Control	14:15	14:45	0:30
9	Brent Tweddle	MIT	USA	SPHERES	14:45	15:15	0:30
				coffee	15:15	15:30	0:15
10	Sarmad Aziz	ESA	Canada	European Robot Arm	15:30	16:00	0:30
11	Yu Liu	Harbin Inst. of Tech	.China	Arm Parameter Identification	16:00	16:30	0:30
				discussion	16:30	17:00	0:30

Outline:

- 1. Intro to Workshop
- 2. Workshop Logistics
- 3. Space Robotics Technical Committee
- 4. Overview of Selected JPL Robotics Topics

Related Past Workshops

- Planetary Rovers Workshop, IEEE International Conference on Robotics and Automation (ICRA), Anchorage AK USA, 3 May 2010
- Planetary Rovers Workshop, IEEE International Conference on Robotics and Automation (ICRA), Pasadena CA USA, 19 May 2008
- Space Robotics Workshop, IEEE International Conference on Robotics and Automation (ICRA), Rome Italy, 14 April 2007.
- Planetary Rovers Workshop, IEEE International Conference on Robotics and Automation (ICRA), Barcelona Spain, 22 April 2005.
- Mars Rover Technology Workshop, IEEE Aerospace Conference, Big Sky Montana, March 7-15 2004.
- Planetary Rovers Workshop, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Grenoble France, 7 September 1997.

Archiving Presentation Material

 As in previous years, all presentations and supporting material will be posted on the website for future reference.
Please see

http://ewh.ieee.org/conf/icra/2011/workshops/SpaceRobotics/

- Or follow the link from the ICRA 2011 workshops webpage.
- Please put your presentation and supporting material (e.g. movies) on the memory stick after each talk.

Making the day go smoothly...

- Speakers are requested to finish within allocated time, and allow for a few questions.
- Audience is requested to return from breaks promptly, to allow the schedule to proceed without delay or distraction.
- Some end of day discussion time is allocated, but could extend to dinner if desired by the group.
- Please put the requested information on the sign-up sheet which will be passed around. This will be used to contact you for follow-up communications.

Dinner Proposal

South Beauty Super Brand Mall 10th Floor, West Zone Phone: 5047 1817

h

Menu: http://en.southbeautygroup.com/comcontent_detail_cp.html

Discussion Topics

• What aspects of the problem might we consider solved?

Discussion Topics

- What aspects of the problem might we consider solved?
- What are the key outstanding problems to be solved?

Discussion Topics

- What aspects of the problem might we consider solved?
- What are the key outstanding problems to be solved?
- How does the technology apply to other applications?

IEEE RAS Technical Committee – Space Robotics Status Report

Web info:

- IEEE site: <u>http://tab.ieee-ras.org/committeeinfo.php?tcid=28</u>
- Wagner site: http://rjwagner49.com/Robotics/SpaceRobotics/Spa

New, Spring 2011 Chairs:

- Richard Volpe (JPL)
- Kazuya Yoshida (Tohoku Univ.)
- Dimi Apostolopoulos (CMU)

Membership

List available online: http://rjwagner49.com/Robotics/SpaceRobotics/Membership.html

Affiliation

• AIAA SARTC: <u>http://www.aiaa.org/content.cfm?pageid=234&id=88</u> (several people here today)

News and Reporting

- send comments, news, announcements to <u>volpe@jpl.nasa.gov</u>
- planned new website
- possible new wiki
- suggestions?

Upcoming Conferences

- Aerospace Conference 2012 (USA)
- I-SAIRAS 2012 (Italy)
- other?

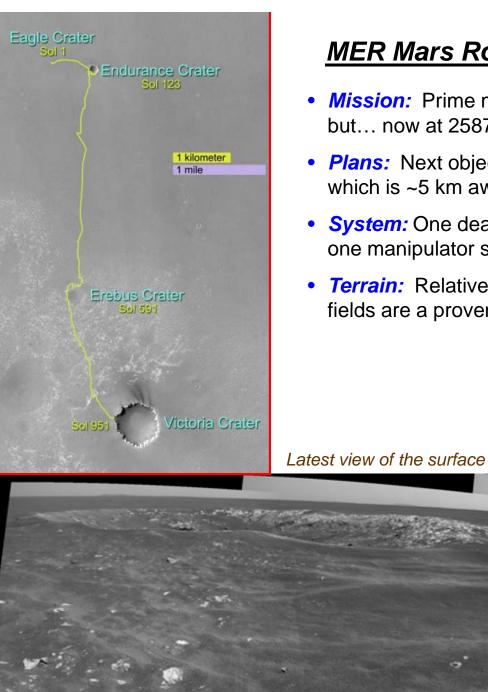
Related Conference

If you can't attend ICRA12 in Minnesota, consider Montana...

2012 IEEE Aerospace Conference

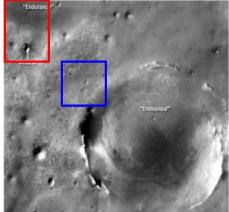
AIAA, Technical Co-Sponsor March 3-10, 2012 Big Sky, Montana (near Yellowstone NP)

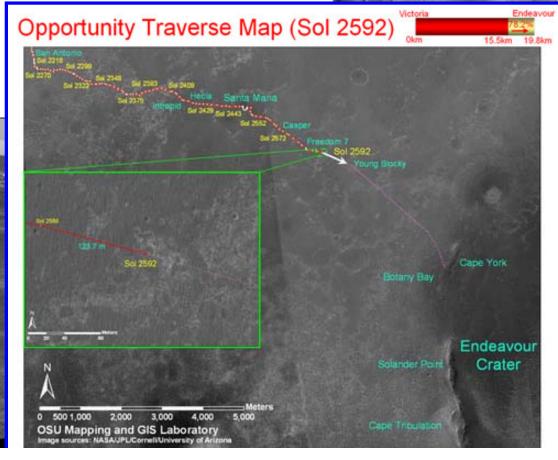
http://www.aeroconf.org/

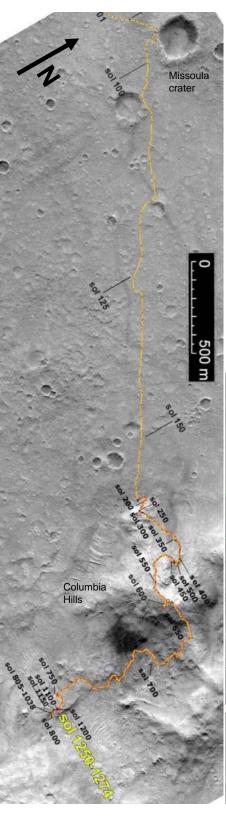

Track 2: Space Missions, Systems, and Architecture Session 2.09: Mobility and Robotics Systems for In Situ Exploration Chairs: R. Volpe & W. Zimmerman

Abstract (300–500 words) due: Draft paper (6–20 pages) deadline: Final paper deadline: *July 1, 2011 November 3, 2011* January 4, 2012

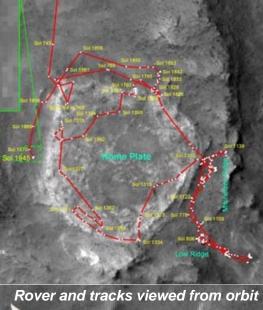
JPL Space Robotics Overview

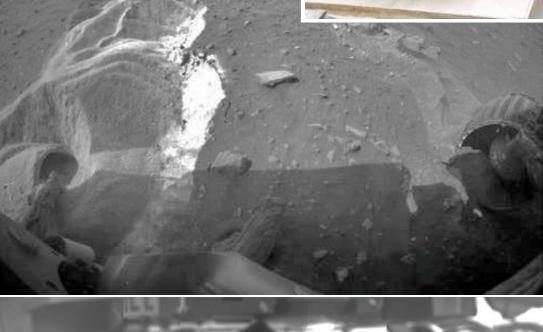

Flight Projects, MER & MSL

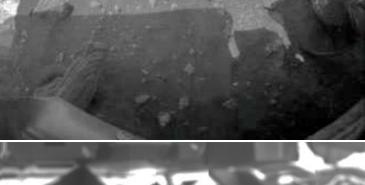



<u> MER Mars Rover Update – Opportunity</u>

- *Mission:* Prime mission was 90 days and 600m, but... now at 2587 sols and 29 km.
- Plans: Next objective is entrance to Endeavor crater which is ~5 km away.
- System: One dead steering joint, and problems with one manipulator shoulder joint and one wheel drive
- *Terrain:* Relatively flat in general, but large dune fields are a proven obstacle.







<u>MER Mars Rover Update – Spirit</u>

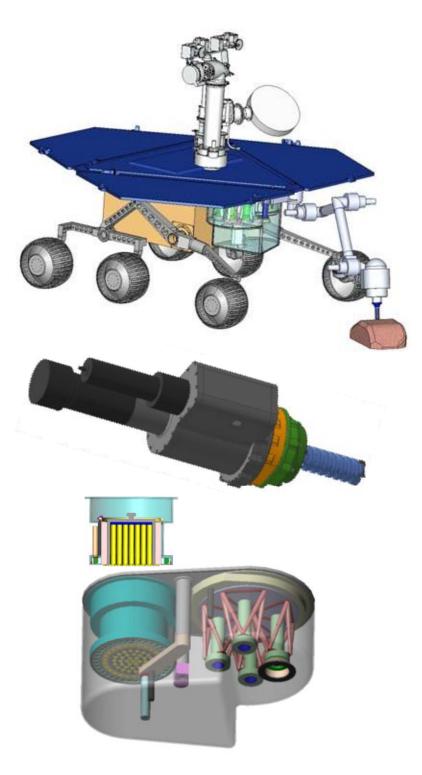
- Mission: Prime mission was 90 days and 600m, but achieved • at least 2210 Sols and 7.7km. Now at Sol 2555 with no further communication since 22Mar2010, despite regular attempts.
- *Plans:* Stationary monitoring station. Possible further attempts to get free from soft soil trap.
- **System:** Mobility system is showing its age one wheel drive • is dead, leading to science discoveries and nightmares.
- *Terrain:* Rough and rocky, more craters, hills. Locally soft. •
- Status: Increasing solar insolation improve chances of • possible rover recovery. Press conference in early June.

MSL Flight System Development

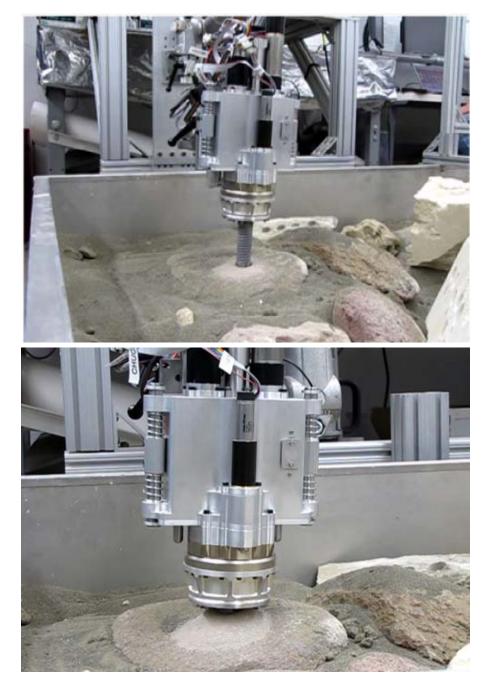
Launch Nov/Dec 2011 – Land Aug 2012

Drive <u>movie</u> Arm <u>movie</u> Mission <u>animation</u>

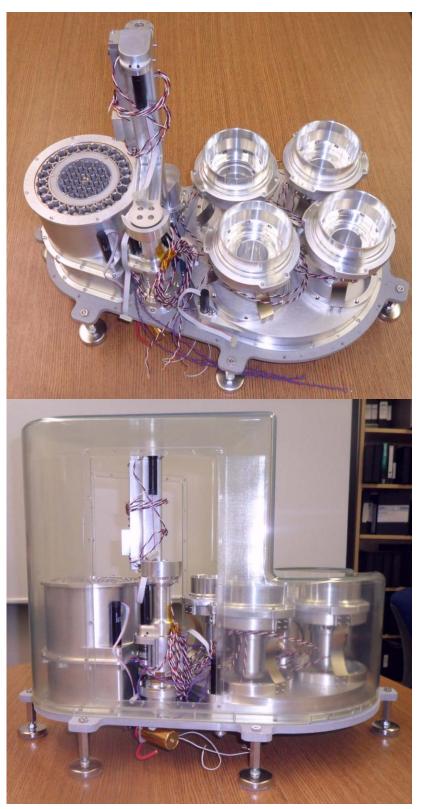
Research for Future Missions

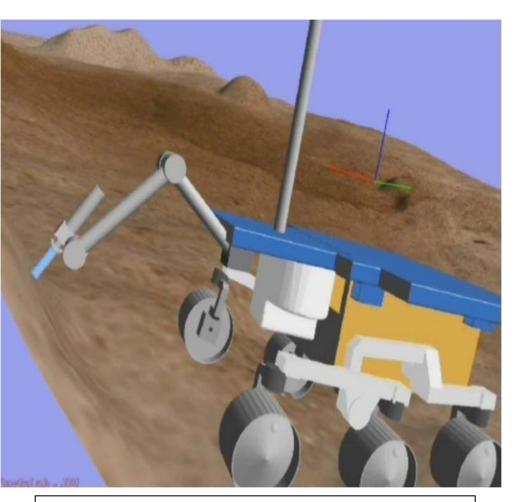

Mars Sample Return* Technology Development

[PI: Paul Backes]


- Tool Deployment Device: 5 DOF Arm
- Coring Tool: Rotary Percussive
- Caching Subsystem:
 - Use bit changeout to transfer sample to caching subsystem in tube in bit;
 - Seal tubes, store tubes in canister;

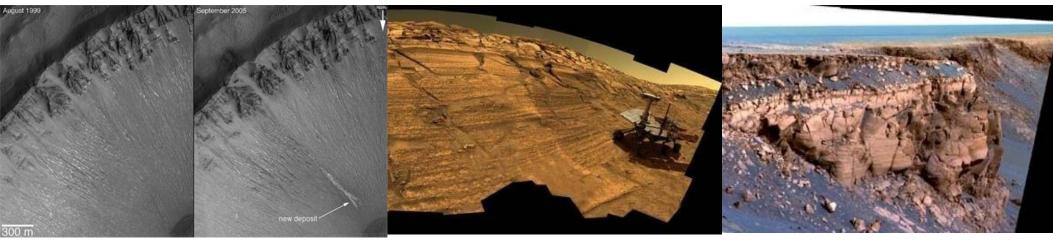
• Operation Sequence:


- 1. Caching puts tube in bit and rotates bit to bit port;
- 2. Arm puts tool at bit port and tool engages bit;
- 3. Arm deploys tool to rock;
- 4. Tool acquires, breaks off, and retains a core directly into a sample tube in the bit;
- 5. Arm puts tool at bit port and tool releases bit;
- 6. Tube is removed from bit, sealed, and stored in the canister.


Coring and Caching Prototypes

Pre-decisional draft for discussion purposes only

Integrated Mars Sample Acquisition and Handling (IMSAH) System Movies


Operational Sequence Animation

Coring Autonomy Field Test Mono Lake, CA – October, 2010

Autonomous Coring in the lab at JPL

Pre-decisional draft for discussion purposes only

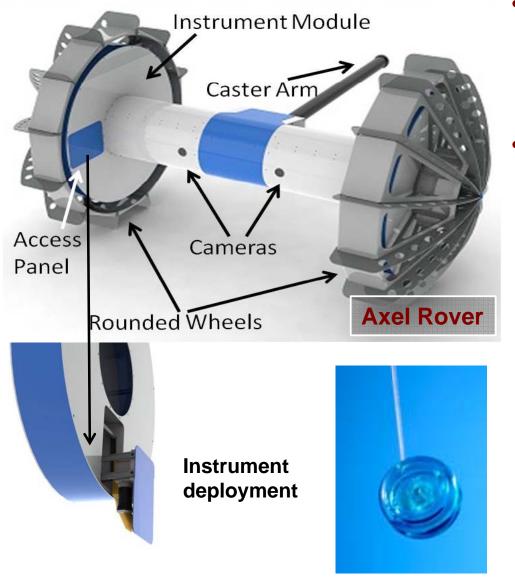
Centauri Montes Region crater seepage

Opportunity rendered in Endurance Crater

Victoria Crater Cliff and Layers

Steep Terrain Access Systems

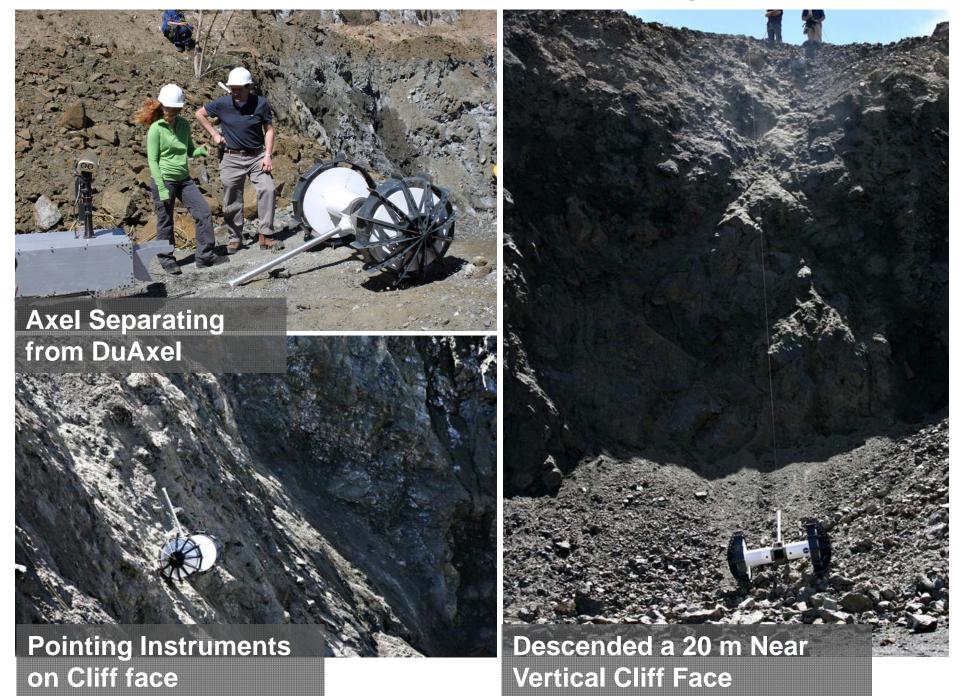
- water seepage and rock layering are science drivers.
- current 'rocker-bogey' systems limited to ~30 deg slopes.
- new system concepts are being explored. Typically tethered for access down steep terrain.


Axel 2-wheeled in Marsyard

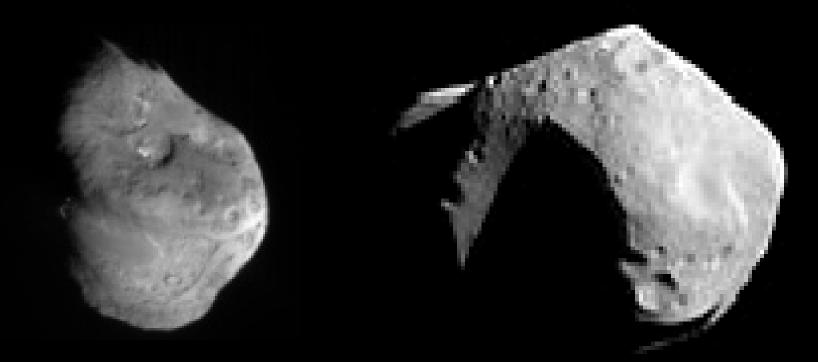
Cliffbot 4-wheeled in Norway

Lemur 4-limbed in lab ATHLETE 6-wheeled New Mexico

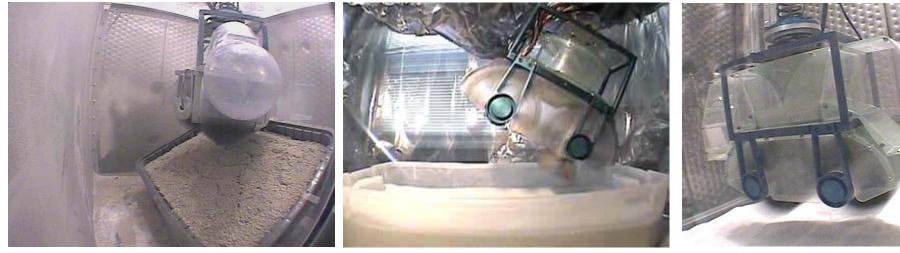
Technology: Axel Robots



• Versatile Mobility


- Operates with and without a tether
- Traverses extreme terrain
- Robust: operates upside down
- Simple: minimally actuated
- Science Capability
 - Acquires multiple measurements
 - Acquires samples
 - Favorable payload mass to system ratio

Axel/DuAxel Field Testing - Lancaster, CA (video to be shown on National Geographic 6/11)


Robotic Exploration of Primitive Bodies

Primitive Bodies Touch-and-Go (TAG) Sampling Technology

JPL TAG Sampling Tool – Brush Wheel Sampler

<u>video</u>

Sample Acquisition

- Flight-like shaped canister
- 60° off alignment to 30° slope
- 50-80 kPa mixed pumice
- 0.5 kg/s collection rate

Sample Acquisition

- Flight-like shaped canister
- 30° slope
- 6 cm/sec horizontal velocity
- Glass bead simulant
- 0.22 kg/sec collection rate

Sample Acquisition

- Vaccum Chamber
- Glass bead simulant
- 0.22 kg/sec collection rate

Robotic Exploration of Venus

Venus Cloud-Level Balloon Concept

[PI: Jeff Hall]

- Objective: Develop a balloon for Venus that could float in the clouds at ~55 km altitude for a 1 month flight mission with a 100 kg payload.
- Challenges:
 - Clouds are made of sulfuric acid aerosols.
 - Balloon must maintain altitude despite turbulence and changing solar heating conditions (expect 5-6 circumnavigations in 1 month).
 - Balloon must be deployed from a folded/stored configuration and inflated upon arrival at Venus.

• Solutions:

- Spherical helium superpressure balloon design to maintain altitude despite environment changes.
- Laminate balloon material:
 - Aclar film for gas barrier and acid resistance (Aclar is a close chemical cousin of Teflon)
 - Vectran fabric for high strength to take pressure loads
- Aerial deployment and inflation of the balloon during initial parachute-assisted descent
 - Would avoid the need to land first on the hot (460 °C) surface.

Pre-decisional draft for discussion purposes only

Prototype 5.5 m diameter Venus balloon

Prototype Venus balloon during aerial deployment and inflation test

Spacecraft Formation Flying [PI: Fred Hadaegh]

- Formation: S/C coupled by feedback control with direct or Indirect coupling between all S/C
- Tightest requirements for synthetic apertures
- GEO Sparse Aperture: DARPA LASSO
 - Control requirements derived from stroke limitations of adaptive optics and deformable mirror
 - Millimeter-level error box
 - Arc second-level attitude control
- Deep Space Nulling Interferometer: TPF-I
 - Control requirements derived from stroke limitations of adaptive optics
 - Half-centimeter to several centimeter error box
 - Sub-arcminute to arc second level attitude control
- Deep Space Fizeau Synthetic Aperture: Stellar Imager
 - Sub-Centimeter-level error box
 - 32 S/C Large formation control
 - Sub-arcminute to arc second level attitude control

Movie: JPL RoboDome Testbed

Space Robotics Workshop Agenda

	Presenter	Org	Country	Торіс	start	end	length
1	Richard Volpe	NASA-JPL	USA	Introduction & JPL Robotics	9:00	9:30	0:30
2	Rob Ambrose	NASA-JSC	USA	Robonaut 2	9:30	10:00	0:30
3	Rainer Krenn	DLR	Germany	Satellite Docking	10:00	10:30	0:30
				coffee	10:30	10:45	0:15
4	Maxime Chalon	DLR	Germany	DLR Manipulation	10:45	11:15	0:30
5	Hiroshi Ueno	JAXA	Japan	JEMRMS	11:15	11:45	0:30
6	Takashi Kubota	JAXA	Japan	Advanced Probes	11:45	12:15	0:30
				lunch	12:15	13:45	1:30
7	Glen Henshaw	NRL	USA	Hybrid AI/Control Systems	13:45	14:15	0:30
8	Kazuya Yoshida	Tohoku Univ	Japan	Dynamics and Control	14:15	14:45	0:30
9	Brent Tweddle	MIT	USA	SPHERES	14:45	15:15	0:30
				coffee	15:15	15:30	0:15
10	Sarmad Aziz	ESA	Canada	European Robot Arm	15:30	16:00	0:30
11	Yu Liu	Harbin Inst. of Tech	.China	Arm Parameter Identification	16:00	16:30	0:30
				discussion	16:30	17:00	0:30