Passivity Control for Hybrid Simulations of Satellite Docking

Rainer Krenn, Klaus Landzettel, Toralf Boge, Melak Zebenay

Institute of Robotics and Mechatronics & German Space Operations Center German Aerospace Center (DLR), Oberpfaffenhofen, D-82234 Wessling

ICRA11 Space Robotics Workshop May 13, 2011, Shanghai, China

Contents of Workshop Contribution

Simulation activities in the context of On-Orbit Servicing Focus: Contact dynamics simulation

- On-orbit servicing projects and contributions
 CX-OLEV & Smart-OLEV
- Modeling and simulation in software
 - Contact dynamics modeling
 - → Docking simulation results
- → Hybrid simulation using EPOS RvD facility
 - Introduction of hybrid simulation method
 - → Introduction of EPOS facility
 - ✓ Contact dynamics simulation with EPOS
 - ✓ Numerical stability aspects
 - Passivity control

On-Orbit Servicing Projects – OLEV Type Missions (Orbital Live Extension Vehicle)

- Projects involved:
 - → CX-OLEV (ESA, Dutch Space & contractors)
 - Smart-OLEV (Kayser-Threde, SSC, Senser & contractors)
- Clients: Telecom satellites in GEO
- **Objectives: Offer commercial services**
 - Satellite operators (Eutelsat, Optus)
 - Satellite live extension
 - ✓ Fleet management
- DLR contributions 7
 - Robotic docking tool (Capture Tool) 7
 - Rendezvous and docking control 7 algorithms (image processing)
 - Docking simulations (S/W)

- 1) Capture Tool (CT)
- 2) CT Deployment Mechanism (CDM)
- 3) Target Illumination System (TIS) (2x)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

- 4) Camera System (Far-, Mid-, Near-Range Cameras with Electronics) (2x)
- 5) Docking Payload Control Unit (2x)

Docking Scenario for Multi-Body System Simulation

- ✓ Client
 - ✓ Hot Bird series, with flexible solar wings

 - ➤ AOCS deactivated, momentum wheels loaded
 - ✓ Aerojet/Marquardt R4D nozzle, slightly tilted
- ✓ Smart-OLEV
 - Orbit: GEO + 2.178 m (R-bar)
 - ➤ AOCS active
 - 75 mm lateral misalignment,
 2° attitude error in all axes
- ✓ Flexible Capture Tool deployment mechanism
 - interval > |v| ≤ 4 mm/s deployment/retraction velocity
- Capture Tool
 - → Radial laser distance sensor
 - Contact switches
 - Operational Locking Crown
- ✓ Contact sensitive bodies:
 - ➤ Nozzle vs. Capture Tool + Locking Crown
 - Launch adapter vs. Client Support Brackets

Contact Dynamics Model (3D, Multi-Point)

 → Surface meshing

in der Helmholtz-Gemeinschaft

Bounding volume tree generation

Contact area detection algorithm

Hybrid Simulation Method

- 1. Numerical simulation of satellite trajectory (S/W)
 - ✓ Free floating dynamics of satellites, 6 DOF
 - Micro-gravity / 0-gravity conditions
 - ✓ Large flexible structures, solar panels
 - Momentum wheels, reaction wheels, thrusters
- 2. Physical-mechanical display of computed trajectory using industrial robots
 - ✓ Attachment of satellite mockups
 - Perform physical contact (capture tool, nozzle)
 - Use of missions specific mechanisms, actuators and sensors (capture tool, GNC-sensors)
- 3. Sensor data feedback from facility specific sensors
 - → Robot joint sensors → actual trajectory
 - → Force torque sensors → contact dynamics purposes

Hybrid Simulation Facility EPOS (European Proximity Operations Simulator)

- 1. Development system for dynamics models: Matlab/Simulink Real-time target for numerical simulation: VxWorks
- 2. Robotic system for trajectory emulation: (Kuka, RSI, position controlled)
- 3. Force/torque sensor feedback: Schunk/DLR FTS ("Compliance")

EPOS has a long history as open-loop satellite rendezvous simulator (ATV sensor verification).

But: Is EPOS applicable for closed-loop contact dynamics simulations?

Hybrid Simulation of Docked Configuration

System to be simulated "Ideal System"

- ✓ Free floating rigid bodies
- ✓ Spring at natural length
- **→** v = 0

Hybrid simulation setup

Experimental Setup "Docked Configuration"

- Simulating the elastically fixed configuration (1 DOF) using single robot and one-end supported aluminum sheet metal
 - 1. Open hybrid simulation loop
 - 2. Initial robot/satellite position with bent beam
 - 3. Sensor calibration/reset (F = 0)
 - 4. Close hybrid simulation loop again
- Easy mechanical setup
- Nearly linear stiffness and low damping
- Easy stiffness adaptation by changing contact point distance from support point (1500 N/m ... 3000 N/m)
- ✓ Low risk of mechanical damage during experiment

Observations

- Expected: Stationary system at rest
- → Observed: Unstable system
 - → Oscillating system
 - → Increasing amplitudes

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Sources of Excitation? --- Active Elements?

- ✓ Simulation sampling rate not adequate for system dynamics?
 - \rightarrow 250 Hz >> eigen-frequency of contact dynamics problem
- ✓ Force-Torque sensor errors and noise?
 - Calibration error may cause change of static equilibrium position
 - ✓ Mean of noise is zero
 - → But: May initiate system instability if active elements are in the loop
- ✓ Passivity of robot system to be investigated

Observed Energy Error

$$E_{Error} = dt \sum_{i=0}^{k} P_{out}(t_i) - P_{in}(t_i)$$
$$= dt \sum_{i=0}^{k} F_{FTS}(t_i) (v_{Rob}(t_i) - v_{Ctrl}(t_i))$$

Transfer Function of Robot System

- Electro-mechanical system
 - Amplitude response of robot arm
 - → Phase response of robot arm
- Robot control system with preprocessing of external commands
 - → Latency
 - ✓ Smoothing of input signals

in der Helmholtz-Gemeinschaft

ICRA11 Space Robotics Workshop, Rainer Krenn, May 13, 2011

Experiment Results Using PID Type Energy Control

ICRA11 Space Robotics Workshop, Rainer Krenn, May 13, 2011

Experiment Results Using Time Domain Passivity Control

Conclusion & Future Work

- Meaningful results for design phases A/B using software simulation.
- Hybrid simulation required for phases C/D/E
 - → Real-time simulation requirement
 - → Hardware-in-the-loop simulation requirements
- → Robotic systems are not passive → Numerical instabilities
 of closed-loop simulation
- Passivity control solutions successfully implemented and tested at EPOS
 - ✓ PID energy control approach
 - ✓ Time domain passivity control
- → Future work:
 - Passivity tests at higher contact stiffness
 - Test of system transparency (accuracy of contact dynamics simulation)

