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To safely navigate autonomously on unstructured terrain,
a planetary rover requires the ability to: a) accurately and re-
liably estimate terrain traversability, and b) plan and execute
safe paths to reach the desired goal. However, real-world
considerations such as sensing limitations and uncertainties
make these tasks particularly challenging in practice. This
work proposes novel approaches to address some of these
challenges, with experimental validation on a realistic plat-
form and a Mars-analogue environment (Fig. 1).

I. TRAVERSABILITY ESTIMATION VIA KERNEL
LEARNING IN A GAUSSIAN PROCESS FRAMEWORK

Traversability can be represented by aspects such as
roughness of the terrain [1], expected energy required to
traverse it, or risk for the platform to tip over or slip [2]. The
aspect of traversability considered in this paper is represented
by the attitude of the platform (pitch, roll) and the config-
uration of the rocker-bogie chassis, which are respectively
associated with the vehicle stability and the difficulty to
traverse over the terrain. State-of-the-art techniques to predict
the rover’s attitude and configuration angles on rough terrain
using kinematic modeling on a digital elevation map (DEM)
have been proposed (e.g. [3], [4]). However, they assume
perfect and complete knowledge of the geometry of the
underlying terrain, and use a deterministic model of the
rover’s kinematics. In practice, uncertainties in the terrain
model and in the vehicle response can be significant and
need to be considered.

Terrain representations built from onboard sensor data
are often incomplete due to occlusions and sensor limita-
tions. Therefore, the resulting traversability map is often
incomplete. For safety, the commonly accepted recommen-
dation has been to consider non-observed areas as non
traversable [5]. However, relatively small gaps in the terrain
data can be frequent. Therefore, in practice, existing rover
navigation algorithms usually avoid large gaps (which may
not always be necessary) but ignore those that are small [3]
(which might be dangerous). Instead, the method we propose
can provide an accurate estimate of traversability in these
occluded areas with associated uncertainty.
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Fig. 1. Planetary rover “Mawson” used for experimental validations, shown
in the Mars yard at the Powerhouse Museum in Sydney, Australia.
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Fig. 2. Comparison of techniques to predict vehicle configuration.

In this work, we predict the rover’s attitude and con-
figuration angles by learning the vehicle response on un-
structured terrain from experience [6]. The approach focuses
on exploiting the explicit correlation in vehicle attitude and
configuration during operation. We propose an architecture
for estimating the kernel function based on vehicle ex-
perience in a manner that better represent the evolution
of vehicle states and propagation of uncertainty. Gaussian
Process (GP) regression, using exteroceptive data as training
input, then provides a continuous representation of vehicle
attitude and configuration over the terrain, with uncertainty in
the output estimates, and accurate estimation of traversability
in areas with little or no exteroceptive data. Fig. 3 shows the
architecture of the approach, named (Kin-GP-VE).

We provide an extensive experimental validation of
Kin-GP-VE on our planetary rover prototype (Fig. 1). We
show the improvement in the estimation performance gained
by kernel learning compared with results obtained using
standard kernels We also show the improvement obtained
compared to the prediction of the angles made using kine-
matic modeling on terrain models built via state-of-the-art
GP techniques (Fig. 2).

As most of the state of the art, Kin-GP-VE estimates
terrain traversability under the assumption that the terrain
is rigid. However, terrain deformation during vehicle traver-
sals is a relatively common phenomenon, which can have
a significant impact on actual traversability. Therefore, in
most recent work, we propose a new approach that can
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Fig. 3. System Architecture of Kin-GP-VE. In red: offline kernel learning.
In green: online initial configuration estimation. In yellow: GP regression..

estimate traversability on unstructured terrain, including on
potentially deformable terrain. Using the vehicle’s attitude
and conguration predicted from Kin-GP-VE as an input to
learning, we propose to learn the corresponding response
of the vehicle on terrain deformation. To this end, we
correlate rigid terrain inputs from Kin-GP-VE, along with
local variations of predicted vehicle states, with observations
from experiments in a multi-task GP framework. We present
the implementation of the approach and initial results of
traversability estimation in non-rigid terrain.

II. MOTION PLANNING WITH LEARNT CONTROL
UNCERTAINTY

Motion planning for mobile robots must consider various
forms of uncertainty, including control uncertainty, partic-
ularly in environments that expose the robot to the risk of
serious mechanical damage. Robots such as planetary rovers
are designed for mobility in unstructured environments, but
in such challenging and variable terrains, control uncertainty
can highly affect the execution of any planned path and
jeopardise the safety of the platform. Accurately predicting
executed behaviour in response to a given control input is
difficult for planetary rovers due to complex terramechan-
ics [2]. For previously unobserved terrain, prior models of
terrain properties may not be available. It is thus important to
model control uncertainty with a method that can be feasibly
executed online during operation of the robot, and to validate
such a model experimentally.

Our approach is to build a statistical mobility model from
experience, represented as a Gaussian process (GP) [7]. We
learn GP models for terrain traversal that map environment
features to a distribution of resulting rover configurations
(in state space) for a set of control actions. We consider
uncertainty in the heading of the platform and in distance
travelled. The GP models are used to build a stochastic
transition function for use in motion planning. The planning
goal is to compute a policy that allows the robot to reach
a given goal location while maintaining the safety of the
platform. Platform safety is represented by a cost function
over a DEM, which is constructed a priori using an on-board
3D sensor. We compute the policy using dynamic program-
ming (DP), where the resolution of discretised geometric
states is equal to that provided in the elevation map. Fig. 4
shows an overview of the system.

We consider two alternative approaches to learn the mo-
bility prediction model. In the first method, the distributions

Fig. 4. System Outline. Colours indicate perception (red), offline learning
(yellow), estimation (blue) and planning (green).

of expected outcomes of each action are learnt from proprio-
ceptive data: the measured variations of configuration angles
of the platform during the course of action execution. In
the second method, they are learnt from exteroceptive data:
the variations of configuration angles during the action, as
predicted using the kinematics model of the rover and the
DEM built from exteroceptive data.

The two variants of our proposed approach for mo-
tion planning with stochastic control are implemented on
the planetary rover, and validated experimentally on Mars-
analogue terrain (Fig. 1). We report results from over 1000
simulated and 300 experimental runs. We compare rover
performance in executing policies constructed with and with-
out control uncertainty. Our results show empirically that
planning with control uncertainty improves the rover’s ability
to navigate safely on unstructured terrain. We also compare
the performances obtained using the two alternative ways
to learn the mobility prediction model. The results show
that the method learning from exteroceptive data provide the
rover with the ability to navigate safely even on deformable
terrain. This work demonstrates the value of planning under
uncertainty for planetary rovers, using a real platform in a
realistic environment.
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