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Program 
Uncertainty 

–  Localisation 
–  Perception (incomplete & uncertain maps)  Traversability 
–  Control (uncertain outcomes)  Planning 

Anticipate (impact of) terrain deformation 
 

Outline: 
1.  Traversability estimation from incomplete 

exteroceptive sensing data via experimental learning 
2.  Motion planning and stochastic control with mobility 

prediction model learnt from experience 

Thierry Peynot | ICRA 2013 Planetary Rover Workshop 2 



Traversability Estimation for a 
Planetary Rover via Experimental 
Kernel Learning in a Gaussian 
Process Framework 

Ken Ho 
Thierry Peynot 
Salah Sukkarieh [ICRA 2013] 



Terrain traversability estimation 

•  Objective: Estimate attitude and configuration for a rover 
–  Indication of traversability 

•  Heterogeneous terrain 
•  Occlusion/missing data in perception 

–  Field of view/sensor placement 
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Previous work 

•  Kinematic modeling on 
geometric terrain model 
(Lacroix et. al.) 
–  Dependent on geometry of 

vehicle and terrain 
–  All 6 wheels contact ground 

•  Need data on all 6 wheels 
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Previous work (cont.) 

•  Classifying terrain types and predicting slip based on 
terramechanic model (Iagnemma et. al., Helmick et. al.) 

•  Improving geometric terrain model (Vasudevan et. al.) 
–  Using GP estimates in areas with little/no data 
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à This work generates a complete representation of 
terrain traversability with uncertainty 



Proposed Framework – Kin-GPVE 
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Learning Phase 

Prediction Phase 



Motivation for Learning Covariance 
Function 

•  Learning a covariance function suitable to problem at hand 
–  Learn from real data 
–  Better representation of vehicle configuration evolution 
–  Propagation of uncertainty 

•  Benefit: Explicitly considering vehicle state evolution and 
propagation of uncertainty in learning framework 
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(Image source: Vasudevan et. al., JFR 2009) 



Overview of Learning Process 

1.  Estimate the covariance 
matrix using Regularized 
Expectation Maximization 

2.  Combining covariance 
matrices using Maximum 
Entropy Covariance Selection 
(MECS) 

3.  Generalise the covariance 
matrix into a function for use 
in GP framework 
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Experimental Setup 

•  Marsyard at Powerhouse 
Museum, Sydney 
–  Mars Analogue Terrain 

•  Platform 
–  Rocker-bogie chassis 
–  Sensors: 

•  Kinect RGB-D camera 
•  IMU 
•  Hall effect encoders 
•  Intersense IS-1200 

tracking system 

•  Experiments conducted 
at slow speed 
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Validation Strategy 
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Validation Part 2 

Validation Part 1 



Validation Part 1: Estimating Vehicle 
Configuration Using Proprioceptive Data 
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•  Performance of learnt kernel function vs. state-of-the-art 
kernel functions 
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Validation Part 2: Estimating Vehicle 
Configuration Using Exteroceptive Data 

•  Incomplete DEM from exteroceptive data 
–  Areas with no data are white 
–  Occlusions in elevation map ≠ Occlusions in vehicle config. 

•  At least 1 wheel touches the ground with no data 
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Validation Part 2 (cont.) 
•  Prediction comparison of different methods 
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Kin-GP-VE Summary 

•  Consistent improvements in estimating vehicle configuration 
over state-of-the-art kernel functions 
–  Learning kernel function most suitable for problem at hand 

•  Still restricted by simplifications and assumptions in 
kinematic model 
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Deformable Terrain… 

•  Need method for predicting vehicle configuration 
angles of the rover on deformable terrain 
–  Refine estimate from Kin-GP-VE to account for terrain 

deformation 
–  Include dynamic influences towards vehicle configuration 
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A Near-to-Far Non-Parametric 
Leaning Approach for Estimating 
Traversability in Deformable 
Terrain 

Ken Ho, Thierry Peynot, Salah Sukkarieh 

[Submiitted to IROS 2013] 



Different Approaches 
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•  Rigid Terrain Traversability Estimation (R-TTE) 

•  Rigid to Deformable Terrain Traversability Estimation 
(R2D-TTE) 



Learning correlations in R2D-TTE 

1.  Predicting vehicle configuration on rigid terrain (R-TTE) 
2.  Learning correlations between prediction made in (1) 

and vehicle experience, which include vehicle 
configuration and terrain deformation from experience 
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Learning correlations between R-TTE 
and vehicle experience 

•  Multiple input GP regression by automatic relevance 
determination (ARD) 
–  Sq-exp, separate length-scale for each input 

•  Multi-task GP regression 
–  Heteroscedastic noise 

–  Between 2 outputs 
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Validation Results 
•  Predicting vehicle roll over 500 validation points 
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Validation Results (cont.) 
•  Predicting deformation over 500 validation points 
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Validation Results (cont.) 

•  Predicting vehicle roll 
and left bogie angle 
over areas with higher 
deformation than that 
experienced during 
training 
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Validation Results (cont.) 

•  Overall RMSE from experiments 
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Conclusions and Future Work 
•  Novel method for predicting vehicle configuration 

angles of a planetary rover over deformable terrain. 

•  Will consider terrain descriptors other than geometry 
that would contribute towards discerning deformable 
terrain, such as color and texture. 

•  Require more accurate measurements of the changes 
in terrain geometry as the rover traverses over it.  
–  Can be obtained from an external observation setup, such as 

a geo-referenced LIDAR or a multi-camera system. 
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Motion Planning and Stochastic 
Control with Experimental 
Validation on a Planetary Rover 
Angela Lui, Rowan McAllister, Thierry 
Peynot, Robert Fitch and Salah Sukkarieh 
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Objective:  
to traverse unstructured terrain towards a goal reliably and safely 
 
Motion planning needs to takes into account uncertainty 

 • localisation 
 • mapping 
 • control 

 
Our approach considers uncertainty in control and is practical for real 
platform on realistic unstructured terrain 

Motion Planning in Unstructured 
Terrain 



Most approaches use a deterministic motion planner (A*, RRT, PRM) to 
compute candidate paths, assess control uncertainty along each one, execute 
the “best” candidate. 
  
 
Using this method, control uncertainly modelled by either: 

 • expected feedback controller's deviations,   
  [Berb 2010][Bry 2011][Greytak 2009][Ishigami 2007][Platt 2010][Patil 2011] 
 • terramechanics,   
  [Ishigami 2010] 

 
 
Limitations:  

 • Planning and control are decoupled. 
 • LQG: assumes homogeneity of control uncertainty. 
 • Terramechanics: difficult to model non-homogeneous terrain locally 

Related Work 



Stochastic Mobility Prediction Model 
•  Uncertain outcomes of control action executions: deviations in yaw, 

heading and distance 
•  Unstructured terrain: given one action, outcomes depend on profile of 

terrain traversed 
•  Learn a model of control uncertainty by experience (learn stochastic 

mobility prediction) 
 
Implementation: 
•  Learning: Train Gaussian Processes (GP) with multiple action 

executions and observed terrain profiles during traversals.  
•  Use GP regression to obtain a stochastic transition function in motion 

planning (ability to query a predictive distribution of outcomes for any 
action and terrain profile) 

•  Prediction: use DEM and kinematics model to predict pitch and roll 
evolution that will be mapped to action outcomes distribution.  



 
•  Stochastic model of mobility 

prediction (stochastic 
transition model learnt from 
experience) 

•  Compute policies using 
Dynamic Programming (DP) 

 
 
 
 
 
 

Planning Algorithm 

Bellman Eq. for optimal policy: 



Implementation 

•  Action set:  
•  CRAB actions (8 directions)    
•  ROTATE actions (Clockwise, Anti-Clockwise) 

•  Digital Elevation Map (DEM) 
•  Method to predict traversability (rover configuration angles, e.g. 

Kinematic Modelling) 
•  Cost map: penaliser per action + terrain cost (difficulty) 
 
 
 



 
 
 
 
   

Framework 



 
 
 
 
   

Learning Mobility 
Prediction from 
Proprioception  
(LfP) 



 
 
 
 
   

Learning Mobility 
Prediction from 
Proprioception  
(LfP) 



Training 
•  Multiple executions of each action (total 500+) on 

large variety of terrain profiles 
–  Logging localisation, vehicle attitude & configuration, DEM 

•  Features λ better representing the terrain profiles 
(evolution of vehicle attitude and chassis 
configuration during action execution), determined 
using PCA on the training data 
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LfP - Training Data 

Training data: heading outcomes (radians) marginalised by action  



LfP - Training Data (2) 

Training data: distance travelled (m) marginalised by action  



Example of Policies 
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Policy yaw = 0 



Results: Rigid Terrain Traversal 



Results: Rigid Terrain Traversal 



Results: Rigid Terrain Traversal 



Results: LfP - Rigid Terrain 
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Results: LfP - Deformable Terrain 
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LfP: Conditions/Limitations 
•  DEM (sufficiently) accurate  

–  (accuracy vs. resolution of DEM/state space) 

•  Correct kinematic model  
–  Low speeds 

•  Terrain before rover traversal (as seen by 
exteroceptive sensors, i.e. DEM) corresponds to 
terrain during rover traversal (when observed via 
proprioception) 
–  i.e. no terrain defomation (rigid terrain) 
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Learning Mobility 
Prediction from 
Exteroception 
(LfE) 



 
 
 
 
   

LfP  
(reminder) 



Results: LfE – Rigid Terrain 
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Results: LfE – Deformable Terrain 
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Motion Planning with Stochastic Control 

Summary: 
•  The proposed approach learns a model of control uncertainty 

directly from experience, which is used explicitly in the 
computation of a motion policy. 

•  Experimental validation shows increased reliability (reduced 
failures) and safety (reduced cost) 

 
Future Work: 
•  Explicitly account for terrain deformation 
•  Integrate other types of uncertainty (perception, localisation...) 
•  Online GP learning & real-time DP (policy updates) 
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