Qualitative Relational Mapping

Cornell University

Autonomous Systems Lab

Mark McClelland & Mark Campbell Autonomous Systems Laboratory Cornell University

> Tara Estlin Artificial Intelligence Group Jet Propulsion Laboratory

Motivation and Problem Statement

- How can we enable long-term autonomy for a robot operating in an unstructured, large scale space without a known global reference frame?
 - Required for exploration of outer planets and moons as time delay is too long for remote control
 - Complex coordination of multiple vehicles
 - Dynamic environments
 - Vehicle lifetimes may be short
 - Possible terrestrial applications when GNSS is unavailable: underwater, in urban disaster areas, etc
 - Martian exploration acts as a motivating problem as we know the challenges of operating semi-autonomous robots there

Common Components of Robotic Navigation

Common Components of Robotic Navigation

Common Components of Robotic Navigation

Qualitative Relational Mapping

- Extract visually distinctive landmarks from camera images
- Represent landmark locations using discrete qualitative statements
- Maintain relative position and orientation of landmarks rather than global positions

210° Panorama From Opportunity on Sol 270

Qualitative States: The Extended Double Cross

- The position of a landmark can be specified qualitatively in relation to other landmarks.
 - Define the triple AB:C to be the relation of point C with respect to the vector from A to B
 - Split space around AB using qualitative statements
 - Left/Right of AB
 - Front/Back of A
 - Front/Back of B
 - Closer to A/Closer to B
 - Closer/Further to A than |AB|
 - Closer/Further to B than |AB|

- Given relationship **AB:C**, we would like to reason about different views of the same landmark triple
 - The inverse BA:C

- Given relationship **AB:C**, we would like to reason about different views of the same landmark triple
 - The inverse BA:C

- Given relationship **AB:C**, we would like to reason about different views of the same landmark triple
 - The left-shifted permutation BC:A

- Given relationship **AB:C**, we would like to reason about different views of the same landmark triple
 - The left-shifted permutation BC:A

- Given relationship **AB:C**, we would like to reason about different views of the same landmark triple
 - The right-shifted permutation CA:B

- Given relationship **AB:C**, we would like to reason about different views of the same landmark triple
 - The right-shifted permutation CA:B

Qualitative Inference via Composition

- The Problem: What can we infer about landmark combinations we have not directly observed?
 - Constrain states of landmark triples never jointly observed
 - Update old observations with new constraints
- Solution: The composition operator
 - Given a state for AB:C and BC:D, we can determine a set of potential states for AB:D
 - Build a truth table for every possible combination of states
 - During operation, compositions are just table lookups

- A=(0,0)
- B=(1,0),
- C=(α, β)
- D=(γ, δ)
- **AB:C**=4 is then equivalent to the constraints

$$0 < \alpha$$

$$0 > 1 - \beta$$

$$0 < 2\beta - (\alpha^2 + \beta^2)$$

- A=(0,0)
- B=(1,0)
- C=(α, β)
- D=(γ, δ)
- BC:D=9 is then equivalent to the constraints

$$0 < (\alpha^{2} + \beta^{2} + \delta) - (\beta\delta + \alpha\gamma + \beta)$$

$$0 > (\alpha^{2} + \beta^{2} + 2\delta) - (\gamma^{2} + \delta^{2} + 2\beta)$$

$$0 < (2\alpha\gamma + 2\beta\delta + 1) - (\gamma^{2} + \delta^{2} + 2\beta)$$

- A=(0,0)
- B=(1,0)
- C=(α, β)
- D=(γ, δ)
- **AB:D**=16 is then equivalent to the constraints
 - $0 < \delta$
 - $0 < 1 2\delta$
 - $0>1-(\gamma^2+\delta^2)$

0

- So the table entry for {AB:C=4, BC:D=9, AB:D=16} is true if there is some point (α, β, γ, δ) satisfying the system of nonlinear inequalities
- This is equivalent to nonconvex global optimization
- Solve by branch-andbound over a sufficiently large search space

$$< \begin{cases} \alpha \\ \beta - 1 \\ \beta - (\alpha^2 + \beta^2) \\ (\alpha^2 + \beta^2 + \delta) - (\beta\delta + \alpha\gamma + \beta) \\ (\gamma^2 + \delta^2 + 2\beta) - (\alpha^2 + \beta^2 + 2\delta) \\ (2\alpha\gamma + 2\beta\delta + 1) - (\gamma^2 + \delta^2 + 2\beta) \\ \delta \\ 1 - 2\delta \\ (\gamma^2 + \delta^2) - 1 \end{cases}$$

Feasibility Search via Branch-and-Bound

```
1 add rectangle r_0 = [l_b, u_b] to search queue S;
 2 while S \neq 0 do
        pop rectangle r from S;
 3
        if DEPTH(r) > maxDepth then
 \mathbf{4}
            return FALSE;
 5
        else
 6
            choose random x^* \in r;
 \mathbf{7}
            evaluate constraints q(x)_i = x^T A_i x + c_i^T x + d_i;
 8
            if q(x^*)_j < 0, \, \forall j \in \{1, M\} then
 9
                return TRUE;
10
            else
11
                 for j \leftarrow 1 to M do
12
                  find \underline{\mathbf{q}}_i which lowerbounds q(x)_i on r;
13
                if \underline{q}_j < 0, \ \forall j \in \{1, M\} then
14
                     split r into r_l and r_u;
15
                     add r_l and r_u to S;
16
                 else
17
                     continue;
\mathbf{18}
19 return FALSE:
```


EDC Compositions

- 8000 element table too large for handcomputation
- Solve feasibility given
 C=(α, β), D=(γ, δ)
- A table element is true iff a feasible solution exists

Expression	Interpretation of Expression < 0
$-\alpha$ $-\beta$ $1-\beta$ $1-2\beta$ $1-(\alpha^2+\beta^2)$ $2\beta-(\alpha^2+\beta^2)$	C is to the right of \overline{AB} C is in front of A wrt \overline{AB} C is in front of B wrt \overline{AB} AC > BC AC > AB BC > AB
$(\alpha\delta + \gamma) - (\alpha + \beta\gamma)$ $(\beta + \delta) - (\beta\delta + \alpha\gamma + 1)$ $(\alpha^2 + \beta^2 + \delta) - (\beta\delta + \alpha\gamma + \beta)$ $(\alpha^2 + \beta^2 + 2\delta) - (2\beta\delta + 2\alpha\gamma + 1)$ $(\alpha^2 + \beta^2 + 2\delta) - (\gamma^2 + \delta^2 + 2\beta)$ $(2\alpha\gamma + 2\beta\delta + 1) - (\gamma^2 + \delta^2 + 2\beta)$	D is to the right of \overline{BC} D is in front of B wrt \overline{BC} D is in front of C wrt \overline{BC} BD > CD BD > BC CD > BC
$-\gamma \\ -\delta \\ 1 - \delta \\ 1 - 2\delta \\ 1 - (\gamma^2 + \delta^2) \\ 2\delta - (\gamma^2 + \delta^2)$	D is to the right of \overline{AB} D is in front of A wrt \overline{AB} D is in front of B wrt \overline{AB} AD > BD AD > AB BD > AB

Qualitative Relational Mapping

Qualitative Relational Mapping

- Qualitative states represent constraints on landmark
 relative positioning
 - Graph edges link sets of three landmarks
 - Each edge defines relations **AB:C**, **BC:A**, **CA:B**
 - Every state corresponds to a set of 2 or 3 nonlinear inequalities
- Generate measurements from unknown robot positions that can observe at least 3 landmarks
- Update appropriate graph edge

Extracting State Estimates from Images

- Assumptions:
 - Landmarks can be uniquely identified
 - Cameras provide exact angles to landmarks
 - Low-level image processing gives an ordering of landmark distances from camera position
- For any three points seen, the angles and range order restrict the possible qualitative states
 - Write qualitative states as sets of nonlinear inequalities
 - Use branch-and-bound algorithm to determine satisfiability of each potential qualitative state
- Edge updates are intersections of sets of qualitative states

EDC Measurements

EDC Measurement Constraints

- Write EDC states as sets of nonlinear inequalities in (r, l) given known angles
- EDC state is consistent with measurement if there is a feasible solution
- Solve feasibility by branch-and-bound

Expression	Interpretation of Expression < 0
$(\sin(\phi)\cos(\theta)) = \cos(\phi)\sin(\theta))l_{\pi} = \sin(\phi)l_{\pi} + \sin(\theta)\pi$	C is to the night of \overline{AP}
$-(\sin(\phi)\sin(\theta) + \cos(\phi)\cos(\theta))lr + \sin(\phi)l + \sin(\theta)r - (\sin(\phi)\sin(\theta) + \cos(\phi)\cos(\theta))lr + \cos(\phi)l + \cos(\theta)r - 1$	C is to the right of AB C is in front of A wrt \overline{AB}
$r^{2} - (\sin(\phi)\sin(\theta) + \cos(\phi)\cos(\theta))lr + \cos(\phi)l - \cos(\theta)r$	C is in front of B wrt \overline{AB}
$r^2 - 2(\sin(\phi)\sin(\theta) + \cos(\phi)\cos(\theta))lr + 2\cos(\phi)l - 1$	BC < AC
$l^2 - r^2 - 2\cos(\phi)l + 2\cos(\theta)r$	AC < AB
$l^2 - 2(\sin(\phi)\sin(\theta) + \cos(\phi)\cos(\theta))lr + 2\cos(\theta)r - 1$	BC < AB
1-l	A is closer than C
1-r	A is closer than B
r-l	B is closer than C

Test Case: JPL Mars Yard

Mars Yard Mapping Results

- 30 Landmarks (Tagged Manually)
- 4060 Edges
- Max of 243,600 states before first measurement (Not shown)

Qualitative Relational Navigation

The Voronoi Diagram / Delaunay Graph

Finding the Relative Neighborhood

- The EDC graph does not contain enough information to find the Delaunay Triangulation
- But, we can find the Relative Neighborhood Graph (RNG)
 - Connected subgraph of the Delaunay graph
 - Points are linked if no third point lies in the lune of circles of radius AB centered at A and B
- We can also find the convex hull
 - Also a subgraph of the Delaunay

The Relative Neighborhood Graph

Building a Relational Map

Navigating with the RNG

Navigating with the RNG

Current Limitations and Future Work

- Deductive reasoning leads to map inconsistency after a data-association mistakes
 - Track multi-hypotheses for delayed information fusion
 - Move to a probabilistic framework with discrete distributions
- Graph scales as n³ with the number of landmarks
 - Hierarchical maps: cluster landmarks into local groups
 - Reason over extended meta objects (rock clusters, craters, etc)
- Dependence on observing most landmarks in each image
 - Improve simulation system to handle mixtures of local and distant features
 - Implement automatic rock detection to check visibility of mars yard landmarks
 - Run algorithm on data gathered by MER

Conclusions

- Qualitative Relational Mapping
 - Builds a network of geometrical constraints on possible landmark positions
 - Measurements rely only on knowing angles to landmarks and relative range ordering
 - Mapping requires no information about imaging locations
 - For any set of landmarks there is a guaranteed finite image sequence generating a fully constrained graph
 - Maps can be used for simple long-distance navigation using relative neighborhood graphs

Acknowledgements

- Advisors
 - Mark Campbell
 - Tara Estlin
- The Cornell Autonomous Systems Lab
 - Nisar Ahmed
 - Jon Schoenberg

- The JPL AI Group
 - Steve Schaffer
 - Daniel Gaines
 - Ben Bornstein
 - David Thompson
 - Steve Chien
- Funding Sources:
 - NASA GSRP Program
 - JPL Education Office

