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Motivation and Problem Statement 
• How can we enable long-term autonomy for a robot 

operating in an unstructured, large scale space without a 
known global reference frame? 
– Required for exploration of outer planets and moons as time 

delay is too long for remote control 
‣ Complex coordination of multiple vehicles 
‣ Dynamic environments 
‣ Vehicle lifetimes may be short 

– Possible terrestrial applications when GNSS is unavailable: 
underwater, in urban disaster areas, etc 

– Martian exploration acts as a motivating problem as we know the 
challenges of operating semi-autonomous robots there 
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Common Components of Robotic Navigation 
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Common Components of Robotic Navigation 
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Common Components of Robotic Navigation 
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Qualitative Relational Mapping 
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• Extract visually distinctive landmarks from camera images 
• Represent landmark locations using discrete qualitative 

statements 
• Maintain relative position and orientation of landmarks 

rather than global positions 
210⁰ Panorama From Opportunity on Sol 270 



Qualitative States: The Extended Double Cross 
• The position of a landmark can 

be specified qualitatively in 
relation to other landmarks. 
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– Define the triple AB:C to be the 
relation of point C with respect to 
the vector from A to B 

– Split space around AB using 
qualitative statements 
– Left/Right of AB 
– Front/Back of A 
– Front/Back of B 
– Closer to A/Closer to B 
– Closer/Further to A than |AB| 
– Closer/Further to B than |AB| 



Qualitative State Permutation Operators 
• Given relationship AB:C, we would like to reason about 

different views of the same landmark triple 
– The inverse BA:C 

8 

AB:C 



Qualitative State Permutation Operators 
• Given relationship AB:C, we would like to reason about 

different views of the same landmark triple 
– The inverse BA:C 

9 
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Qualitative State Permutation Operators 
• Given relationship AB:C, we would like to reason about 

different views of the same landmark triple 
– The left-shifted permutation BC:A 
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Qualitative State Permutation Operators 
• Given relationship AB:C, we would like to reason about 

different views of the same landmark triple 
– The right-shifted permutation CA:B 
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Qualitative State Permutation Operators 
• Given relationship AB:C, we would like to reason about 

different views of the same landmark triple 
– The right-shifted permutation CA:B 
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AB:C CA:B -> 



Qualitative Inference via Composition 
• The Problem: What can we infer about landmark 

combinations we have not directly observed? 
– Constrain states of landmark triples never jointly observed 
– Update old observations with new constraints 

• Solution: The composition operator 
– Given a state for AB:C and BC:D, we can determine a set of 

potential states for AB:D 
– Build a truth table for every possible combination of states 
– During operation, compositions are just table lookups 
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Geometrical Interpretation of Compositions 
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Geometrical Interpretation of Compositions 
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Geometrical Interpretation of Compositions 
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Geometrical Interpretation of Compositions 



Algebraic Interpretation of Compositions 
• A=(0,0) 
• B=(1,0),  
• C=(α, β) 
• D=(γ, δ) 
• AB:C=4 is then 

equivalent to the 
constraints 
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Algebraic Interpretation of Compositions 
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• B=(1,0) 
• C=(α, β) 
• D=(γ, δ) 
• BC:D=9 is then 

equivalent to the 
constraints 
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Algebraic Interpretation of Compositions 
• A=(0,0) 
• B=(1,0) 
• C=(α, β) 
• D=(γ, δ) 
• AB:D=16 is then 

equivalent to the 
constraints 
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Algebraic Interpretation of Compositions 
• So the table entry for 

{AB:C=4, BC:D=9, 
AB:D=16} is true if there 
is some point (α, β, γ, δ) 
satisfying the system of 
nonlinear inequalities 

• This is equivalent to non-
convex global optimization 

• Solve by branch-and-
bound over a sufficiently 
large search space 
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Feasibility Search via Branch-and-Bound 
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EDC Compositions 
• 8000 element table 

too large for hand-
computation 

• Solve feasibility given 
C=(α, β), D=(γ, δ) 

• A table element is 
true iff a feasible 
solution exists 
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Qualitative Relational Mapping 
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Qualitative Relational Mapping 
• Qualitative states represent constraints on landmark 

relative positioning 
– Graph edges link sets of three landmarks 
– Each edge defines relations AB:C, BC:A, CA:B 
– Every state corresponds to a set of 2 or 3 nonlinear inequalities 

• Generate measurements from unknown robot positions 
that can observe at least 3 landmarks 

• Update appropriate graph edge 
• Use compositions to generate “new” measurements for 

the edges of all connected nodes (AB:C ∩ BC:D=AB:D) 
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Extracting State Estimates from Images 
• Assumptions: 

– Landmarks can be uniquely identified 
– Cameras provide exact angles to landmarks 
– Low-level image processing gives an ordering of landmark 

distances from camera position 

• For any three points seen, the angles and range order 
restrict the possible qualitative states 
– Write qualitative states as sets of nonlinear inequalities 
– Use branch-and-bound algorithm to determine satisfiability of 

each potential qualitative state 

• Edge updates are intersections of sets of qualitative states 

28 



EDC Measurements 
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EDC Measurement Constraints 
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• Write EDC states as sets of nonlinear inequalities in (r, l) 
given known angles 

• EDC state is consistent with measurement if there is a 
feasible solution 

• Solve feasibility by branch-and-bound 



Test Case: JPL Mars Yard 
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Mars Yard Mapping Results 
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• 30 Landmarks (Tagged Manually) 
• 4060 Edges 
• Max of 243,600 states before first measurement (Not shown) 



Qualitative Relational Navigation 
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The Voronoi Diagram / Delaunay Graph 
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Finding the Relative Neighborhood 
• The EDC graph does not 

contain enough information to 
find the Delaunay Triangulation 

• But, we can find the Relative 
Neighborhood Graph (RNG) 
– Connected subgraph of the 

Delaunay graph 
– Points are linked if no third point 

lies in the lune of circles of radius 
AB centered at A and B 

• We can also find the convex hull 
– Also a subgraph of the Delaunay 
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The Relative Neighborhood Graph 
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Building a Relational Map 
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Navigating with the RNG 
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Navigating with the RNG 
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Current Limitations and Future Work 
• Deductive reasoning leads to map inconsistency after a 

data-association mistakes 
– Track multi-hypotheses for delayed information fusion 
– Move to a probabilistic framework with discrete distributions 

• Graph scales as n3 with the number of landmarks 
– Hierarchical maps: cluster landmarks into local groups 
– Reason over extended meta objects (rock clusters, craters, etc) 

• Dependence on observing most landmarks in each image 
– Improve simulation system to handle mixtures of local and distant 

features 
– Implement automatic rock detection to check visibility of mars 

yard landmarks 
– Run algorithm on data gathered by MER 
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Conclusions 
• Qualitative Relational Mapping  

– Builds a network of geometrical constraints on possible landmark 
positions 

– Measurements rely only on knowing angles to landmarks and 
relative range ordering 

– Mapping requires no information about imaging locations 
– For any set of landmarks there is a guaranteed finite image 

sequence generating a fully constrained graph 
– Maps can be used for simple long-distance navigation using 

relative neighborhood graphs 
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