Pages ## **Table of Contents** | Face Page i Copyright ii Editor's Note 2008 iii Table of Contents iv-xxxviii Oral Session Papers in 1-1149 Poster Session Papers in 1150-2236 Author Index in 2237-2247 Appendix A to L SESSIONS | | | |---|--|--| | | | | | 1A. Blood Flow Measurements | 2A-1 Signed Echo Imaging of Carotid Arteries17 | | | 1A-2 A Bi-Directional, Real-Time Blood Flowmeter Using an Implantable CMUT Array1 M. Wang, J. Chen, X. Cheng, T. Zhang, X. Liu | SI. Umemura, T. Azuma 2A-2 Viscoelasticity of Lung Tissue with Surface Wave Method21 X. Zhang, R. Kinnick, J. Greenleaf | | | 1A-3 Duplex Scanning Using Sparse Data Sequences | 2A-3 Texture Analysis of Ultrasound Liver Images with Contrast Agent to Characterize the Fibrosis Stage24 O. Basset, F. Duboeuf, B. Delhay, E. | | | 1A-4 Systematic Validation of the Echo Particle Image Velocimetry Technique Using a Patient Specific Carotid Bifurcation Model9 F. Zhang, C. Lanning, L. Mazzaro, B. Rech, J. Chen, S.J. Chen, R. Shandas, R. Shandas | 2A-4 Computer Aided Detection of Prostate Cancer Based on GDA and Predictive Deconvolution | | | 1A-5 Monitoring X-Ray Contrast Agent Injections with Doppler Ultrasound ·······13 L. Hoff, K. Brabrand, N. Berard-Andersen, G.F. Olsen, S. Medhus | 2A-5 Improving the Quality of QUS Imaging Using Full Angular Spatial Compounding32 R.J. Lavarello, J.R. Sanchez, M.L. Oelze | | | 2A-6 Using Resolution Enhancement Compression to Reduce Variance of Scatterer Size Estimates from Ultrasonic Backscattered Signals36 J.R. Sanchez, D. Pocci, M.L. Oelze | 4A-6 PZT Piezoelectric Thick Film with Enhanced Electrical Properties for High Frequency Ultrasonic Transducer Applications70 B. Zhu, D. Wu, Q. Zhou, K.K. Shung | |---|---| | 3A. Imaging Systems and Methods | 5A. Material Properties I | | 3A-1 3-D Laparoscopic Imaging40 M. Zipparo, C. Oakley, R. Denny, S. Azim, V. Balannik, S. Soferman, M. Berman, R. Nechushtai, D. Kopelman | 5A-2 High Frequency Propagation
Measurements in Microstructured Solids ··· 74
A. Dawson, P. Harris, R. Young, G. Gouws | | 3A-2 An Inertial-Optical Tracking System for Portable, Quantitative, 3D Ultrasound ···45 A.M. Goldsmith, P.C. Pedersen, T.L. Szabo | 5A-4 Applications of Sonic Waves in the Estimation of Petrophysical, Geophysical and Geomechanical Properties of Subsurface Rocks | | 3A-4 Magnitude, Origins, and Reduction of Abdominal Ultrasonic Clutter50 M. Lediju, M. Pihl, S. Hsu, J. Dahl, C. Gallippi, G. Trahey | 6A. Thin Film & Device
Characterization | | 3A-6 Ultrasound Breast Imaging Using Full Angle Spatial Compounding: In-Vivo Results54 | 6A-1 Analysis of Resonant SAW – Plate
BAW Interaction in Periodical Couplers ······ 86
V. Yantchev, V. Plessky, I. Katardjiev | | C. Hansen, M. Hollenhorst, N. Hüttebräuker,
A. Schasse, W. Wilkening, L. Heuser, G.
Schulte-Altedorneburg, H. Ermert | 6A-2 Pure-Shear Mode BAW Resonator Consisting of (11-20) Textured AIN Films ··· 90 T. Yanagitani, M. Kiuchi | | 4A. Transducer Materials Characterization 4A-2 Fundamental Performance Characterisation of High Frequency Piezocomposites Made with Net-Shape | 6A-3 Study on the Frequency Dependence of Lateral Energy Leakage in RF BAW Device by Fast-Scanning Laser Probe System | | Viscous Polymer Processing for Medical Ultrasound Transducers58 D. Maclennan, C. Demore, G. Corner, T. Button, J. Elgoyhen, H. Hughes, C. Meggs, S. Cochran | 6A-4 Improvement of Liquid-Phase SH-SAW Sensor Device on 36°Y-X LiTaO ₃ Substrate 98 T. Kogai, H. Yatsuda, S. Shiokawa | | 4A-3 Characterisation of an Epoxy Filler for Piezocomposite Material Compatible with Microfabrication Processes | 6A-5 Nanoparticle Patterning on 128-YX-LN Substrates: The Effects of Surface Acceleration and Boundary Layer Streaming | | 4A-4 Method for Curvature Measurements with Ultrasound | 6A-6 Wafer-Level Packaged SAW Filters with Resistance to Transfer Molding108 T. Fukano, Y. Okubo, J. Nishii, I. Obara | 1B. High-Frequency and Small | Animal Imaging | 2B-6 Propagation of Ultrasonic Longitudinal Wave in the Cancellous | |---|--| | 1B-1 Vital Observation and Featuring Techniques of Functional Cell-Surface | Bone Covered by the Subchondral Bone of Bovine Femur146 | | Proteins Using Acoustic Impedance Microscope112 | T. Koizumi, K. Yamamoto, Y. Nagatani, H.
Soumiya, T. Saeki, Y. Yaoi, M. Matsukawa | | S. Yoshida, S. Masaki, S. Iwasa, K.
Kobayashi, N. Hozumi | 3B. Ultrasonic Motors - Technology
Advances | | 1B-2 ECG-Gated Imaging of a Mouse | Advances | | Heart Using a 40-MHz Annular Array ·······116 J.A. Ketterling, O. Aristizabal, D.H. Turnbull | 3B-1 Configuration of a Screw-Shaped Ultrasonic Motor150 | | 1B-3 Micro-Ultrasound Takes Off (In the | A. Suzuki, Y. Nakamura, T. Ueoka, J.
Tsujino | | Biological Sciences)120 | 2D 2 The Macromore on Vibration | | F.S. Foster | 3B-3 The Measurement on Vibration Friction Coefficient of Ultrasonic Motor*·····154 J.Y. Liew, Y. Chen, T.Y. Zhou | | 1B-4 40 MHz Annular-Array in Utero Imaging of Mouse Embryos with Chirp | J. T. Liew, T. Chen, T. T. Zhou | | Coded Excitation126 | 3B-5 Design and Fabrication of a Linear | | O. Aristizábal, J. Mamou, D.H. Turnbull, J.A. | Ultrasonic Motor Using Push-Pull Type | | Ketterling | L-B Hybrid Langevin Transducer with Single Foot157 | | 1B-5 3D Small Animal Imaging with | S. Shi, W. Chen, Y. Liu, J. Liu, T. Xie | | High-Frequency Ultrasound (20 MHz) | 4D. Oin als Omintels I | | Using Limited-Angle Spatial | 4B. Single Crystals I | | Compounding130 J. Opretzka, M. Vogt, H. Ermert | 4B-2 Micromachined High-Frequency | | o. Oprotzka, W. Vogt, H. Efficit | PMN-PT Single Crystal Ultrasound | | 2B. Bone I | Transducer for Medical Imaging161 J. Peng, S.T. Lau, J. Dai | | 2B-1 Frequency Dependence of | | | Backscatter from Thin, Oblique, Finite- | 4B-3 Micromachined PMN-PT Single Crystal Composite Transducers 15-75 | | Length Cylinders Measured with a Focused Transducer – with Applications | MHz PC-MUT ·······164 | | in Cancellous Bone······134 | X. Jiang, K. Snook, A. Cheng, W. | | K. Wear, G. Harris | Hackenberger, X. Geng | | 2B-2 Measurement Artifacts in | 4B-4 Vibration Mode and Relevant | | Sonometry of Cancellous Bone: The | Ultrasonic Applications of Ferroelectric | | Relative Impact of Phase Cancellation | Single Crystals Pb(Mg1/3Nb2/3)O3- | | and Interference on Measurements of | PbTiO3 168 <i>H. Luo, D. Zhou</i> | | Phase-Distorting Phantoms | 11. Luo, D. 2110u | | A. Bader, O. Anderson, W. Honding, J. Willer | 5B. NDE Signal Processing | | 2B-5 Microstructural Simulation of | ED 4 Illtraggnio Signal Compression | | Ultrasonic Wave Propagation Through Vertebral Trabecular Bone Samples142 | 5B-1 Ultrasonic Signal Compression Using Wavelet Packet Decomposition | | L. Goossens, J. Vanderoost, S. Jaecques, | and Adaptive Thresholding171 | | S. Boonen, J. D'Hooge, G.H. van Lenthe, | E. Oruklu, N. Jayakumar, J. Saniie | | W Lauriks G Van Der Perre | | Table of Contents | 5B-2 Sparse Deconvolution of Ultrasonic NDE Traces A Preliminary Study176 G. Zhang, D. Harvey, D. Braden | Perovskite Compounds for MEMS213 K. Wasa, I. Kanno, H. Kotera, N. Yamauchi, T. Matsuhima, K. Wasa | |---|--| | 5B-3 Special Probe Waveforms for Flaw Detection at "Hot Spots" | 1C. Shear Wave and Shear Strain Imaging | | 5B-4 S-Transform Applied to Ultrasonic Nondestructive Testing184 M. Malik, J. Saniie | 1C-2 Rapid Shear Wave Measurement for SDUV with Broadband Excitation Pulses and Non-Uniform Sampling217 Y. Zheng, A. Yao, S. Chen, J. Greenleaf | | 5B-5 Ultrasonic Guided-Waves Characterization with Warped Frequency Transforms188 L. De Marchi, A. Marzani, S. Caporale, N. Speciale | 1C-3 Shear Wave Induced Resonance: A New Excitation Mode for Dynamic Elastography Imaging221 A. Hadj Henni, C. Schmitt, G. Cloutier | | 5B-6 Estimation of Chemical Reaction Kinetics Using Ultrasound192 J.E. Carlson, VM. Taavitsainen | 1C-4 Simultaneous Imaging of Artery-
Wall Strain and Blood Flow Realized by
High Frame Rate Acquisition of RF
Echoes225 | | 6B. Advances in Materials & Propagation | H. Hasegawa, H. Kanai 2C. Bone II | | 6B-1 Fabrication of SHF Range SAW Devices on AIN/Diamond-Substrate······196 T. Omori, A. Kobayashi, Y. Takagi, KY. Hashimoto, M. Yamaguchi | 2C-1 How Does Ultrasound Bidirectional Axial Transmission Reflect Geometry of Long Bones? 229 TL. Pham, M. Talmant, P. Laugier | | 6B-2 Large Q.f Product for HBAR Using Smart Cut [™] Reported LiNbO ₃ on LiNbO ₃ Substrate201 M. Pijolat, J.S. Moulet, A. Reinhardt, E. Defaÿ, D. Mercier, C. Dequet, D. Gachon, | 2C-2 Simulation of Propagation
Characteristics of Ultrasonic Guided
Waves in Fractured Long Bone 233
K. Xu, D. Ta, W. Wang, P. Moilanen | | S. Ballandras, M. Aïd, B. Ghyselen 6B-3 High Temperature
Stability of Langasite Surface Acoustic Wave Devices205 M. Pereira Da Cunha, R. Lad, T. Moonlight, G. Bernhardt, D. Frankel | 2C-3 A Theoretical and Experimental Study of Bone's Microstructural Effect on the Dispersion of Ultrasonic Guided Waves ———————————————————————————————————— | | 6B-4 SAW-Relevant Material Properties of Langasite in the Temperature Range from 25 to 750 °C: New Experimental Results 209 I. Shrena, J. Bardong, M. Schmitt, D. Eisele, E. Mayer, L.M. Reindl | 2C-5 A Minute Bone Bending Angle Measurement Method Using Echo- Tracking for Assessment of Bone Strength in Vivo | | 3C. Phononic Crystals I - Bandgap & Focusing | 5C-4 Novel Electrode Configurations of
Lateral Field Excited Acoustic Wave | |---|--| | 3C-3 Band Gap Analysis of Two-
Dimensional Phononic Crystals Based
on Boundary Element Method245 | Devices on (YxI)-58° LiNbO ₃ 276 W. Wang, C. Zhang, Z. Zhang, Y. Liu, G. Feng, G. Jing | | 7L. Li, YS. Wang 3C-4 Band Structure of Evanescent Waves in Phononic Crystals249 V. Laude, B. Aoubiza, Y. Achaoui, S. Benchabane, A. Khelif | 5C-5 More Comprehensive Model of Quartz Crystal Microbalance Response to Viscoelastic Loading280 R. Bruenig, M. Weihnacht, H. Schmidt, G. Guhr | | 3C-5 Negative Refraction of Transverse Waves in an Elastic Phononic Crystal253 | 6C. SAW Devices | | A-C. Hladky, J. Vasseur, B. Dubus, B. Djafari-Rouhani, B. Morvan, T. Alain, D. Ekeom | 6C-1 Ring Waveguide Resonator on SAW – Quality Factor vs Electrode Structure Properties ———————————————————————————————————— | | 3C-6 General Analytical Scheme for Determining the Characteristic Caustic Points in Phonon Focusing Patterns of Cubic Crystals 257 L. Wang | 6C-2 SAW Band Rejection Filters for Mobile Digital Television288 T. Bauer, M. Jungkunz, K. Wagner | | 4C. Single Crystal II | 6C-3 Low Loss SAW RF ID Tags for Space Sensor Applications292 N. Saldanha, D. Malocha | | 4C-2 Elastic, Piezoelectric and Dielectric Properties of PIN-PMN-PT Crystals Grown by Bridgman Method261 J. Luo, S. Zhang, T. Shrout, W. | 6C-4 Two-Finger (TF) SPUDT Cells296 G. Martin, S. Biryukov, H. Schmidt, B. Steiner, B. Wall | | 4C-3 Frequency Dependent Properties | 6C-5 SAW ID-Tag for Industrial Application with Large Data Capacity | | of High Permittivity PMNT Piezoelectric for Ultrasonic Transducer Applications265 | and Anticollision Capability300 G. Bruckner, R. Fachberger | | S. Zhang, H.J. Lee, X. Jiang, J. Luo, E.
Gerber, N. Smith, T. Shrout | 6C-6 The OmniSAW Device Concept: Omnidirectional Band Gap for SAW304 | | 4C-5 Improved Properties of Piezoelectric Crystals in the Lead Indium Niobate-Lead Magnesium Niobate-Lead | A. Khelif, A. Choujaa, JY. Rauch, V.
Petrini, H. Moubchir, S. Benchabane, V.
Laude | | Titanate269 J. Tian, P. Han, J. Carroll, D. Payne | 1D. Elasticity Imaging: Applications | | 5C. Bulk Acoustic Wave Sensors | 1D-1 Ablation Monitoring with a Regularized 3D Elastography Technique ···· 308 | | 5C-3 Lateral Field Excitation of Well Structures in Quartz | H. Rivaz, I. Fleming, M. Choti, G. Hager, E.
Boctor | | 1D-2 Comparison of Ultrasound Strain Images with Multi-Modality Imaging Techniques in Liver RF Ablation Assessment: Initial Ex Vivo and Clinical Results. 313 A. Fernandez, O. Kolokythas, T. Gauthier, D. Herzka, A. Patil, H. Xie | 2D-2 Ultrasound Activated Paclitaxel Delivery in Mice Using a Combined Therapy and Imaging Probe System337 W. Shi, M. Bohmer, M. Celebi, A. Van Wamel, C.T. Chin, C. Chlon, A. Klibanov, C. Hall | |---|--| | 1D-3 Assessment of the Elastic Properties of Heterogeneous Tissues Using Transient Elastography: Application to the Liver. Application to the Liver. 317 C. Bastard, Y. Mofid, J. Oudry, JP. Remenieras, V. Miette, L. Sandrin 1D-4 ShearWave™ Elastography: A New Real Time Ultrasound Imaging Mode for Assessing Quantitatively Soft Tissue Viscoelasticity. 321 J. Bercoff, A. Criton, C. Cohen-Bacrie, J. Souquet, M. Tanter, T. Deffieux, J.L. | 2D-4 Parameter Space for Microbubble Wall Interaction Estimated from Gel Phantom | | Gennisson, M. Fink, V. Juhan, A. Colavolpe, D. Amy, A. Athanasiou 1D-5 Ultrasound Displacement | Shevchuk, A. Kerschen, T. Matsunaga, R. Zutshi 3D. Medical Signal Processing I | | Estimation Combining Viterbi Processing and Phase Rotated Correlation Coefficient Filter325 L. Huang, Y. Petrank, C. Jia, SW. Huang, M. O'Donnell | 3D-1 Oriented Demodulation and Frequency Splitting for Directive Filtering Based Compounding353 P. Liu, D. Liu | | 1D-6 An Algorithm for Strain Reconstruction from Irregularly Sampled, Incomplete Measurements329 M. Danilouchkine, F. Mastik, A. Van Der Steen | 3D-2 A New Frequency Compounding
Technique for Super Harmonic Imaging ····· 357
G. Matte, P. van Neer, J. Borsboom, M.
Verweij, N. de Jong | | 2D. Contrast Agents: Targeting and Therapeutic | 3D-3 Segmentation of Speckle-Reduced
3D Medical Ultrasound Images361
P. Pedersen, J.D. Quartararo, T. Szabo | | 2D-1 Oil-Filled Polymeric Ultrasound Contrast Agent as Local Drug Delivery System for Lipophilic Drugs | 3D-4 Ultrasonic Molecular Imaging of Primordial Angiogenic Vessels in the Papilloma Virus Transgenic Mouse with □ _v □ ₃ -Integrin Targeted Nanoparticles Using Renyi Entopy-Based Signal Detection | | 3D-5 Multi-Frequency Processing for Lumen Enhancement with Wideband Intravascular Ultrasound371 W. Li, R. Carrillo, J. Yuan, TJ. Teo, L. (Tom) Thomas | 5D-2 PiQC - A Process Integrated Quality Control for Nondestructive Evaluation of Ultrasonic Wire Bonds402 S. Hagenkötter, M. Brökelmann, H.J. Hesse | |---|--| | 3D-6 Green's Function Method for
Modeling Nonlinear Three-Dimensional
Pulsed Acoustic Fields in Diagnostic
Ultrasound Including Tissue-Like | 5D-3 Evaluating Technology of Spot Weld Quality for Coated High Strength Steel Sheet Based on Ultrasonic Guide Wave406 Z. Chen, Y. Shi, H. Zhao | | Attenuation | 5D-4 Modeling and Measurement of | | 4D. cMUTs | Piezoelectric Ultrasonic Transducers for Transmitting Guided Waves in Rails410 | | | P. Loveday | | 4D-1 Analysis of Charge Effects in High | ED 5 1114man and a localistic of Oalist | | Frequency CMUTs379 K. Midtbø, A. Rønnekleiv | 5D-5 Ultrasonic Imaging of Solid Railway Wheels414 | | | M. Parrilla, P. Nevado, A. Ibáñez, J. | | 4D-2 Analysis of the Charging Problem in Capacitive Micro-Machined Ultrasonic | Camacho, J. Brizuela, C. Fritsch | | Transducers 383 | 5D-6 Making Screws as Axial Load and | | S. Machida, S. Migitaka, T. Kobayashi, H.
Tanaka, K. Hashiba, H. Enomoto, Y. Tadaki | Temperature Probes Using Integrated Ultrasonic Transducer418 | | ranaka, N. Hashiba, H. Enomoto, T. Tadaki | KT. Wu, M. Kobayashi, CK. Jen | | 4D-4 Single Chip CMUT Arrays with | • | | Integrated CMOS Electronics: Fabrication Process Development and | 6D. Bulk Wave Resonators I | | Experimental Results386 | 6D-1 Theory, and Experimental | | J. Zahorian, R. Guldiken, G. Gurun, M.S. | Verifications of the Resonator Q and | | Qureshi, M. Balantekin, P. Hasler, F.L.
Degertekin | Equivalent Electrical Parameters Due to Viscoelastic, Conductivity and Mounting Supports Losses422 | | 4D-5 Front-End CMOS Electronics for Monolithic Integration with CMUT | YK. Yong, M. Patel, M. Tanaka | | Arrays: Circuit Design and Initial | 6D-2 After 60 Years: A New Formula for | | Experimental Results390 | Computing Quality Factor Is Warranted 431 | | G. Gurun, M.S. Qureshi, M. Balantekin, R. | R. Parker, R. Ruby, D. Feld, P. Bradley, S. | | Guldiken, J. Zahorian, SY. Peng, A. Basu,
M. Karaman, P. Hasler, L. Degertekin | Dong | | | 6D-3 Constancy on Quality Factor of | | 4D-6 Fabrication and Characterization of Surface Micromachined CMUT with a | Dual-T Quartz Crystal Resonator Circuit ····· 437 | | Bossed Membrane ·······394 | T. Adachi, D. Akamatsu, K. Hirama, Y.
Nakagawa, T. Yanagisawa | | M. Wang, J. Chen, X. Cheng, C. Li, X. Liu | Nanagawa, 1. Tanagisawa | | - | 6D-4 Unique Properties of HBAR | | 5D. Industrial Measurement | Characteristics 439 G. Mansfeld, S. Alekseev, N. Polzikova | | 5D-1 Ultrasonic Velocity Measurement for Analysis of Brick Structure398 | • | | T. Kojima, H. Haya, K. Minegishi, R.
Nguyen, T. Kojima | | | 6D-5 Three Operation Modes of Acoustic Wave Devices with a Lateral Field Exictation Structure 443 W. Wang, C. Zhang, Z. Zhang, Y. Liu, G. Feng, G. Jing | 3E-4 Precision of Needle Tip
Localization Using a Receiver in the
Needle479
S.I. Nikolov, J.A. Jensen | |--|---| | 2E. Arrays and Therapeutic
Devices | 3E-6 2D Filter Design for the Reduction of Beamforming Artifacts in Coarsely-Sampled Imaging Apertures483 | | 2E-1 Electronically Steerable Large-
Scale Ultrasound Phased-Array for | Y. Wan, E. Ebbini | | Noninvasive Transcranial Therapy447 J. Song, K. Hynynen | 4E. cMUT Modeling | | | 4E-1 Finite Element Analysis of Stress | | 2E-2 Radiation Force Localization of HIFU Therapeutic Beams Coupled with MR-Elastography Treatment Monitoring – | Stiffening Effects in CMUTs······487 M. Kupnik, I.O. Wygant, B.T. Khuri-Yakub | | in Vivo Application to the Rat Brain451 | 4E-2 Calculation of Equivalent | | B. Larrat, M. Pernot, JE. Aubry, R. Sinkus,
M. Tanter, M. Fink | Parameters in CMUT 1-D Theoretical Model491 | | | W. Zhou, T. Yu, F. Yu | | 2E-3 Molecular Focusing of High-
Intensity Ultrasound: Time-Reversal
Focusing Applied to Targeted
Ultrasound Contrast Agents455 | 4E-3 Fast and Accurate CMUT Modeling Using Equivalent Circuits with Lumped Parameters496 | | O. Couture, M. Tanter, M. Fink | A. Rønnekleiv | | 2E-4 Design and Test of a Monolithic Ultrasound-Image-Guided HIFU Device Using Annular CMUT Rings | 4E-4 Beam Structure for CMUT with Desired Frequency Spectrum 500 H. Tanaka, T. Azuma, S. Machida, K. Hashiba, T. Kobayashi | | 2E-5 Space-Filling, Aperiodic Array Ultrasonic Therapy Transducers463 B. Raju, C. Hall | 4E-5 Optimum Design of Circular CMUT Membranes for High Quality Factor in Air…504 K.K. Park, H.J. Lee, P. Cristman, M. Kupnik, O. Oralkan, B.T. Khuri-Yakub | | 3E. Medical Signal Processing II | 5E. Flow Measurements | | 3E-1 Mirrored Motion-Compensation for Complementary-Coded Medical Ultrasonic Imaging467 | 5E-1 New Developments in Ultrasonic Gas Analysis and Flowmetering508 S. Jacobson | | C. Cannon, J. Hannah, S. Mclaughlin | EE 2 A New Calibration Mathed for | | 3E-2 3D Cardiac Motion Estimation Using RF Signal Decorrelation | 5E-2 A New Calibration Method for Ultrasonic Clamp-On Transducers517 O. Keitmann-Curdes, B. Funck | | | 5E-4 An Ultrasound-Actuated | | 3E-3 Reducing Peak Hopping Artifacts in Ultrasonic Strain Estimation with the Viterbi Algorithm 475 | Micropump That Uses Nanoporous One-
Way Membrane as Nozzle-Diffuser 521
C. Chao, CH. Cheng, Z. Liu, M. Yang, | | Y. Petrank, L. Huang, M. O'Donnell, Y. Petrank, L. Huang, M. O'Donnell | W.W.F. Leung | | 6E: Ultrasonic Wave Propagation I | 05 0 5 1 | |--|--| | 6E-2 The Acoustoelastic Effect of Love Waves in Elastic-Plastic Deformed Layered Rocks | 2F-3 Enhancement of Gene Therapy on Hepatocellular Carcinoma by Sonoporation Parameter Studies | | 6E-3 Diffraction Divergence of SH ₀ Wave in Thin Piezoelectric Plate of Lithium Niobate 529 B. Zaitsev, A. Teplykh, I. Kuznetsova 6E-4 High Frequency Wave Propagation | 2F-5 Noncavitational Nonporative Ultrasound Elicits Marked in Vivo Augmentation of Tumor Drug Delivery with Targeted Perfluorocarbon Nanoparticles | | in Structured Materials: Modelling Results532 | Wickline | | R. Young, P. Harris, A. Dawson, F. Lecarpentier | 3F. Photoacoustic Imaging | | 1F. 3-D Elasticity Imaging | 3F-3 Development of a Multi-Modal
Tissue Diagnostic System Combining
High Frequency Ultrasound and | | 1F-1 Three Dimensional Elastic Modulus
Reconstruction for Non-Invasive,
Quantitative Monitoring of Tissue
Scaffold Mechanical Property Changes ······536
M. Richards, C. Jeong, S. Hollister, J. | Photoacoustic Imaging with Lifetime Fluorescence Spectroscopy | | Rubin, K. Kim | 3F-4 Picosecond Ultrasonics in a Single Biological Cell574 | | 1F-2 Three-Dimensional Acoustic Radiation Force Impulse (ARFI) Imaging of Human Prostates in Vivo540 | M. Ducousso, C. Rossignol, B. Audoin, F. Guillemot, MC. Durrieu | | L. Zhai, J. Dahl, J. Madden, V. Mouraviev,
T. Polascik, M. Palmeri, K. Nightingale | 3F-6 Selective Detection of Cancer Using Multi-Wavelength Photoacoustic Imaging and Bioconjugated Gold | | 1F-4 3D Strain Imaging Method Adapted to Large Deformations and Freehand Scanning544 JE. Deprez, E. Brusseau, O. Basset | Nanoparticles | | 1F-5 Deconvolution and Elastography | | | R. Prager, A. Gee, G. Treece, N. Kingsbury, J. Lindop, H. Gomersall, HC. Shin | 4F-1 SAW and BAW Technologies for RF Filter Applications: A Review of the Relative Strengths and Weaknesses 582 R. Aigner | | 2F. Ultrasound Mediated Delivery of Therapeutic Agents | 4F-2 High Selectivity SAW Duplexer for W-CDMA Band VIII590 | | 2F-2 The Size of Sonoporation Pores on the Cell Membrane558 Y. Zhou, R. Kumon, J. Cui, C. Deng | A. Bergmann, A. Waldherr, HP. Kirschner,
K. Wagner | χij | 4F-3 Suppression of Transverse Mode Spurious of SAW Resonator on an SiO₂/Al/LiNbO₃ Structure for Wideband CDMA Applications | 6F-2 Droplets Generation by a Torsional Bolt-Clamped Langevin-Type Transducer and Micropore Plate | |---|---| | Resonators | 6F-4 FE Analysis and Experimental Characterization of a High Torque Travelling Wave Ultrasonic Motor | | Dumont 5F. Acoustic Imaging and Microscopy | 6F-6 Structure Design Method of Bar-
Structure Linear Ultrasonic Motors639
Z. Yao, D. Yang, X. Wu, C. Zhao | | 5F-1 Probabilistic Mud Slowness Estimation from Sonic Array Data | 1G. Visco-elasticity 1G-1 Dynamic Micro-Elastography Applied to the Viscoelastic Characterization of a Mimicking Artery and a Porcine Aorta 643 C. Schmitt, A. Hadj Henni, G. Cloutier | | Ultrasonic Material Characterization System611 JI. Kushibiki, M. Arakawa, K. Otsu, S. Yoshida | 1G-2 Investigating the Effects of Viscosity on Focused, Impulsive, Acoustic Radiation Force Induced Shear Wave Morphology647 | | 5F-4 Scanning Acoustic Microscopy an Application for Evaulating Varnish Layer Conditions Non-Destructively615 S. Brand, P. Czurratis, K. Raum | M. Wang, M. Palmeri, N. Rouze, M. Hobson, K. Nightingale 1G-3 Skin Viscoelasticity with Surface | | 5F-5 Ultrasonic Phased Array Device for Real-Time Acoustic Imaging in Air619 S. Harput, A. Bozkurt, F.Y. Yamaner | Wave Method | | 6F: Ultrasonic Motors & Droplet Processing | 1G-4 Quantification of Liver Stiffness and Viscosity with SDUV: <i>In Vivo</i> Animal Study 654 S. Chen, M. Urban, Y. Zheng, A. Yao, J. | | 6F-1 Initial Growth of Ultrasonically Vaporized Perfluorocarbon Microdroplets | Greenleaf 1G-5 Measuring Viscoelastic Properties with in-Situ Ultrasonically Induced Microbubbles 658 R. Asami, T. Ikeda, T. Azuma, H. Yoshikawa, KI. Kawabata | | 2G. Therapeutic Ultrasound | 4G. Acoustic MEMS Devices | |--|---| | 2G-1 Optimum Protocols in the Design of 2-D Spherical-Sectioned Phased-Array for 3-D Focused Ultrasound Surgery662 <i>M. Lu, M. Wan, X. Wang</i> | 4G-1 A Review of the Recent Development of MEMS and Crystal Oscillators and Their Impacts on the Frequency Control Products Industry 694 C.S. Lam | | 2G-2 Thermal Efficiency in Sonotherapy Array Design666 D.N. Stephens, D.E. Kruse, CY. Lai, A.S. Ergun, S. Barnes, K.W. Ferrara | 4G-2 Internal Phase Inversion Narrow Bandwidth MEMS Filter705 J. Yan, A. Seshia, K. Le Phan, J. Van Beek | | 2G-3 Modulating Tumor Blood Flow with Pulsed Low Intensity Ultrasound and Microbubbles670 D. Goertz, R. Karshafian, K. Hynynen | 4G-3 A Layered SAW Device Using Phononic-Crystal Reflective Gratings 709 TT. Wu, WS. Wang, JH. Sun | | 2G-4 A Prototype Design of a Low-
Frequency Hemispherical Ultrasound
Phased-Array System for Transcranial
Blood-Brain Barrier (BBB) Disruption674 | 4G-4 Fully-Differential Mechanically-Coupled PZT-On-Silicon Filters713 H. Chandrahalim, S. Bhave, R. Polcawich, J. Pulskamp, D. Judy, R. Kaul, M. Dubey | | HL. Liu, HW. Chen, ZH. Kuo, IH.
Chen, WC. Huang | 4G-5 Piezoelectrically Transduced
Single-Crystal-Silicon Plate Resonators ····· 717
A. Jaakkola, O. Holmgren, K. Kokkonen, P. | | 3G. High Frequency Transducers 3G-1 Stiffness Controlled SU-8-Based | Rosenberg, S. Asmala, J. Dekker, A.
Nurmela, T. Pensala, T. Riekkinen, T. | | Nanocomposites: Application for Matching Layer for 1 GHz Ultrasonic | Mattila, A. Alastalo 5G. NDE Phased Arrays | | Transducer Conception678 SX. Wang, J. Carlier, A. Ndieguene, P. | 5G-1 Reduction of Grating Lobes in | | Campistron, D. Callens-Debavelaere, S. Caroline, B. Nongaillard, XZ. Zhao | SAFT Images | | 3G-2 60MHz PMN-PT Based 1-3 Composite Transducer for IVUS Imaging ···· 682 J. Yuan, S. Rhee, X. Jiang 3G-3 Development of High Frequency | 5G-2 Influence of SAFT Activation
Sequence in 2D Arrays Performance ·········725
C. Martín, O. Martínez, A. Octavio, F.
Montero, L. Gómez-Ullate | | Linear Arrays Using Interdigital Bonded Composites686 | 5G-4 Non-Crosstalk Real-Time | | J. Cannata, J. Williams, CH. Hu, K.K.
Shung | Ultrasonic Range System with Optimized Chaotic Pulse Position-Width Modulation Excitation729 | | 3G-5 High-Frequency (50MHz - 100MHz) Medical Ultrasound Transducer Arrays | ZJ. Yao, QH. Meng, GW. Li, P. Lin | | Produced by Micromachining Bulk PZT Materials690 | 5G-6 Application of a Pseudo-3D Modeling to Lamb Waves Generation by | | C. Liu, D. Wu, Q. Zhou, F. Djuth, K. Shung | a Surface-Bonded Apodized
Transducer: Experimental Results | | 6G. Material Properties II - Crystals & Composites | 2H. Cavitation Therapy | |--|--| | 6G-1 Study on Acoustical Physical | 2H-1 Histotripsy for the Treatment of BPH: Evaluation in a Chronic Canine Model765 | | Constants of ZnO Single Crystal Using the Ultrasonic Microspectroscopy Technology737 | T. Hall, C. Hempel, B. Fowlkes, C. Cain, W.
Roberts | | T. Tanaka, Y. Ohashi, M. Arakawa, JI. | | | Kushibiki, N. Sakagami | 2H-2 The Role of Inertial Caviation in Acoustic Droplet Vaporization768 | | 6G-5 Determination of the Absolute Orientation of Langatate Crystals Using | M.L. Fabiilli, K.J. Haworth, O.D. Kripfgans,
P.L. Carson, J.B. Fowlkes | | X-Ray Diffraction | 2H-3 Cavitation Detection with | | B. Startovarit, in. i orona da Garria, it. Lad | Subharmonic Emissions by Low | | 6G-6 Viscosity Tensor Components of | Intensity Sustaining Ultrasound772 | | the Langatate and Langasite745 S. Fedor, G. Mansfeld, S. Alekseev, N. | S. Yoshizawa, SI. Umemura, Y.
Matsumoto | | Polzikova, I. Kotelyanskii | 2H-5 Mean Echo Power as a Measure of | | 1H. Cardiac Imaging | Flow Reduction for Bubble Occlusion Therapy776 | | 1H-1 Cardiac Monitoring Using | K. Haworth, M. Fabiilli, J.B. Fowlkes, M. | | Transducers Attached Directly to the Heart749 | Zhang, O. Kripfgans, W. Roberts, P. Carson | | L. Hoff, A. Espinoza, H. Ihlen | 2H-6 Cavitation Assisted HIFU with Phase-Change Nano Droplet ······780 | | 1H-2 Adaptive Dynamic Grid | KI. Kawabata, R. Asami, T. Azuma, H. | | Interpolation: A Robust, High- | Yoshikawa, SI. Umemura | | Performance Displacement Smoothing Filter for Myocardial Strain Imaging753 S. Bu, T. Shiina, M. Yamakawa, H. | 3H. Transducer Modeling and Design | | Takizawa | 3H-1 Finite Element Modeling of
Ultrasonic Transducer by Utilizing an | | 1H-4 Mapping Cardiac Currents Using | Inverse Scheme for the Determination of | | Ultrasound Current Source Density | Its Material Parameters ······784 | | Imaging757 | F. Wolf, T. Lahmer, L. Bahr, A. Hauck, A. | | R. Olafsson, R.S. Witte, C. Jia, SW.
Huang, K. Kim, M. O'Donnell | Sutor, M. Kaltenbacher, R. Lerch | | Truang, N. Nini, W. O Donneil | 3H-2 A Comparison of Array Element | | 1H-5 3D Cardiac Strain Estimation Using | Surface Vibration Calculated by FEM | | Spatio-Temporal Elastic Registration: In- | Modelling and Laser Interferometer | | Vivo Application 761 | Measurements788 | | A. Elen, D. Loeckx, A. Horvath, J. Ganame,
B. Amundsen, JU. Voigt, P. Claus, F. | P. van Neer, G. Matte, P. Gatta, M.
Pappalardo, N. De Jong | | Maes, J. D'hooge | 3H-3 Development of 1.5D Cylindrical | | | HIFU Phased Array792 | | | GS. Chen, R. Liu, H. Chang, K.K. Shung | | and Technique for Breathing Monitoring ····795 Y. Ono, D. Mohamed, M. Kobayashi, CK. Jen | 5H-5 Defect Detection in Helical and Central Wires of Steel Strands Using Advanced Ultrasonic Guided Wave Technique with New Type Magnetostrictive Transducers832 | |--|---| | 3H-5 Design and Fabrication of a 40MHz Transducer with Enhanced Bandwidth799 | Z. Liu, Y. Zhang, C. He, B. Wu | | JH. Liu, SY. Chen, PC. Li | 5H-6 Measurement of Lubricant Film
Thickness Using Normal Incidence | | 4H. Device Modelling | Ultrasound·······836
J. Jiao, Q. Zhang, B. Wu, C. He | | 4H-2 Simulation of Waveguiding in SAW Devices on Substrates with Anisotropic Slowness and Excitation803 | 6H. Optical & RF Ultrasonic Effects | | M. Mayer, A. Bergmann, G. Kovacs, K.
Wagner | 6H-2 Sound Pressure Measurement Utilizing Light Refractive Tomography 840 L. Bahr, R. Lerch | | 4H-3 Quasi-2D COM Model for Diffraction Calculation in Slanted Finger SAW Devises 807 E. Chilla, B. Steiner, R. Gruenwald, A.V. Osetrov, A.G. Hodkin, A. Jaffer | 6H-3 A New Fiber-Optic Switch- Multiplexer Based on 2D High Efficiency Multi-Frequency Acousto-Optic Deflection844 V. Proklov, S. Antonov, A. Vainer, Y. | | 4H-4 Two-Dimensional Grid Method for
the Synthesis of SAW Filters811
P. Ivanov, V. Makarov, J. Dai | Rezvov 11. Cardiovascular Imaging | | 4H-5 FEM/BEM Analysis of Infinite Periodic Grating Covered with an SiO2 Overlay | 1I-1 Rapid 3D Transesophageal Echocardiography Using a Fast-Rotating Multiplane Transducer848 K. Nathanail, M. Van Stralen, C. Prins, F. Van Den Adel, P. J. French, N. De Jong, A. F.W. Van Der Steen, J. G. Bosch | | Pt/LGS for High Temperature SAW Sensor | 1I-2 Improvement of 3D Ultrasound Computer Tomography Images by Signal Pre-Processing852 N. Ruiter, G. Schwarzenberg, M. Zapf, H. Gemmeke | | Characterization 5H-1 Laser Ultrasonic Detection of Corrosion and Adhesive Disbond Using Zero-Group Velocity (ZGV) Lamb Modes·····824 D. Clorennec, C. Prada, M. Yoshida, D. Royer | 1I-4 Non-Invasive Ultrasonic Measurement of the Relative Volume Change of the Arterial Wall – First in Vivo Trial | | 5H-3 Ultrasonic Imaging of Thin Layers Within Multi-Layered Structures828 F. Hägglund, J. Martinsson, J.E. Carlson | 1I-5 Pulse Wave Imaging of Human Abdominal Aortas in Vivo859 J. Luo, WN. Lee, S. Wang, E. Konofagou | | | | | 2I. Therapeutic Monitoring and Guidance | 3I-4 A Fabrication Procedure for
Airborne Ultrasonic Phased Arrays | |---|--| | 2I-1 A Backscatter-Based Method for the | Based on Cellular Electromechanical Film891 | | Guidance of High Intensity Focused Ultrasound Treatment······863 X. Zheng, S. Vaezy | J. Ealo, J. Camacho, C. Fritsch, F. Seco, J. Roa | | 2I-3 Quantitative Image Feedback for Pulsed Cavitational Ultrasound Therapy- | 4I. BAW Materials & Devices | | Histotripsy867 TY. Wang, Z. Xu, F. Winterroth, T. Hall, | 4I-1 Thermally Stable Oscillator at 2.5 GHz Using Compensated BAW | | J.B. Fowlkes, E. Rothman, W. Roberts, C. | Resonator and its Integrated Temperature Sensor895 | | Cain | D. Petit, E. César, P. Bar, S. Joblot, G. | | 2I-4 Use of Passive Arrays for Characterization and Mapping of | Parat, O. Berchaud, D. Barbier, JE. Carpentier | | Cavitation Activity During HIFU | ALC A LIMITS OOD FRAR Dumlover 900 | | Exposure | K. Wang, D. Clark, L.H. Camnitz, P. Bradley | | | 4I-3 Advanced Determination of | | 2I-6 Energy-Based Adaptive Focusing of Waves: Application to Ultrasonic | Piezoelectric Properties of AIN Thin Films on Silicon Substrates903 | | Imaging and Therapy875 | JL. Sanchez-Rojas, J. Hernando, A. | | E. Herbert, M. Pernot, B. Larrat, G.
Montaldo, M. Tanter, M. Fink | Ababneh, U. Schmid, J. Olivares, M. Clement, E. Iborra | | 3I. Polymers for Transducers | 4I-4 Growth Study of AIN on Amorphous Films with Defined Roughness907 | | 3I-1 Customizable Field Aiborne Ultrasonic Transducers Based on | A. Artieda, P. Muralt | | Electromechanical Film879 | 5I. Wave Propagation | | J. Ealo, F. Seco, C. Prieto, A. Jiménez, J.
Roa, A. Koutsou, J. Guevara | 5I-3 Guided Waves in Cylindrical Multi- | | 3I-2 Low-Acoustic Attenuation and High- | H. Cui, B. Zhang | | Mechanical Strength Silicone Rubber Lens Doped with ZnO Nano-Powder for | 5I-4 Plunging of Metal Pins Using a 20 | | Medical Array Probe883 | KHz Ultrasonic Vibration System 916 | | Y. Yamashita, Y. Hosono, N. Yamamoto, K. Itsumi, Y. Makita, T. Takeuchi, K. | J. Tsujino, T. Ueoka, T. Sakurai, Y.
Haraguchi, E. Sugimoto | | Shibamoto, M. Aoki, H. Shikata | 5I-5 Development of Temperature Stable | | 3I-3 Optoacoustic Sensor Based on Self-
Assembled Arrays of Polystyrene
Microspheres887 | Acoustic Line Based on Piezoelectric Plate and Nanocomposite Polymeric Film • 920 I. Kuznetsova, B. Zaitsev, A. Kuznetsova, A. | | X. Guo, M. Churgin, T. Buma | Shikhabudinov, V. Kolesov, N. Petrova | 1J-6 In Vivo Validation of 2D Myocardial | 6I. | Ultraso | nic MEMS | |-----|---------|----------| |-----|---------|----------| | 6I-1 Piezoelectric MEMS for Audio Signal Transduction, Microfluidic Management, Resonant Mass Sensing, and Movable Surface Micromachined | Elastography at Variable Levels of Ischemia962 WN. Lee, J. Provost, S. Wang, K. Fujikura, J. Wang, E.E. Konofagou | |--|---| | Structures924 E. Kim | 2J. Beam Forming Algorithms and Strategies | | 6I-2 Concentration and Mixing of Particles in Microdrops Driven by Focused Surface Acoustic Waves930 J. Friend, L. Yeo, M. Tan, R. Shilton | 2J-2 Synthetic Aperture Sequential Beamforming966 J. Kortbek, J.A. Jensen, K. Løkke Gammelmark | | 6I-3 Theoretical Study of Acoustic
Streaming Induced Cooling Effect in the
Microscale934
H. Guo, H. Sun | 2J-4 Rocking Convex Array Used for 3D Synthetic Aperture Focusing970 H. Andresen, S. Nikolov Ivanov, M.M. Pedersen, D. Buckton, J. Arendt Jensen | | 6I-4 Electric Power Generation Using a Vibration of a Polyurea Piezoelectric Thin Film938 D. Koyama, K. Nakamura | 2J-5 Effects of Data Density of Echo
Fourier Domain on Quality of High Frame
Rate Imaging974
JY. Lu | | 6I-5 Experimental Investigations on the Collapse of Cavity Cluster in High Power Ultrasound Fields942 L. Bai, W. Xu, Y. Zhang, Y.
Li, D. Huang | 2J-6 The Effect of Cross-Correlation Method on the Dual Apodization with Cross-Correlation Algorithm978 C.H. Seo, J.T. Yen | | 1J. Cardiovascular Elastography 1J-1 Non-Invasive Quantitative Imaging of Arterial Wall Elasticity Using | 3J. Microbubbles: Theory and Characterization | | Supersonic Shear Imaging946 M. Couade, M. Pernot, M. Tanter, C. Prada, E. Messas, M. Fink | 3J-1 Oscillation of Single Microbubbles at Room Versus Body Temperature 982 H. Vos, M. Emmer, N. De Jong | | 1J-2 BiPlane Cardiac Strain Imaging: A Study on Valvular Aortic Stenosis950 R.G.P. Lopata, M.M. Nillesen, I.H. Gerrits, L. Kapusta, J.M. Thijssen, C.L. De Korte | 3J-3 A 3D FEA Model for Transient Analysis of Microbubble Behavior985 A.V. Patil, P. Reynolds, D. Milner, J.A. Hossack | | 1J-4 Fundamental Performance Assessment of 2-D Myocardial Elastography in a Phased Array Configuration954 J. Luo, WN. Lee, E. Konofagou | 3J-4 Spectral and Temporal Signal Modifications Occuring Between Stable and Transient Inertial Cavitation989 M. Santin, A. Haak, L. Bridal, W.D. O'Brien | | 1J-5 2D Speckle Tracking vs DTI-Derived Elasticity Imaging on an Isolated Rabbit Heart958 C. Jia, R. Olafsson, K. Kim, T.J. Kolias, J.M. Rubin, H. Xie, M. O'Donnell | 3J-5 Statistical Corrections for the Precise Estimation of Cyanoacrylate Microbubble Concentration in Targeted Imaging 993 M. Siepmann, M. Palmowski, F. Kiessling, G. Schmitz | xviii | Shelled Microbubble | Technology for Acoustic Chemical Sensor Arrays Based on CMUTs1030 Y. Li, R. Lucklum, P. Hauptmann 5J-6 A Design of High-Sensitivity | |---|---| | 4J-1 Piezoelectric Boundary Acoustic Waves: Their Underlying Physics and | Micromachined Capacitive Ultrasonic Mass Resonators1034 LF. Ge | | Applications | 6J. Energy Harvesting & Magnetoelectrics | | 4J-3 Temperature Compensation of Longitudinal Leaky SAW Waves with Silicon Dioxide Overlay1006 M. Patel, K. Bhattacharjee, J. Reed, S. | 6J-1 A Magnetoelectric Transducer
Consisting of Magnetostrictive and
Piezoelectric Composite Array1038
P. Li, Y. Wen | | Zhgoon 4J-4 Study on SAW Characteristics of Amorphous-TeO2/36?Y-X LiTaO3 Substrates | 6J-2 Magnetoelectric Transducer of Ferromagnetic Alloy with Constant Elasticity and Piezoelectric Ceramic for Wireless Power Transmission | | X. Gong, X. Shang, D. Zhang 4J-5 Optimal Cut of Lithium Niobate with Suppressed Rayleigh-Type Mode for Application in Resonator SAW Filter1013 N. Naumenko, B. Abbott | 6J-3 The Physical Acoustics of Energy Harvesting1046 S. Sherrit 1K. Vector Velocity Imaging | | 5J. Liquid and Gas Sensing 5J-1 Inductively Coupled Sensing Using a Quartz Crystal Microbalance | 1K-1 Automatic Angle Tracking Method for Dual-Beam Vector Doppler Applications | | 5J-2 Frequency Response of a Micromachined Doubly-Clamped Vibrating Beam for the Measurement of Liquid Properties | 1K-2 In-Vivo Evaluation of Three Ultrasound Vector Velocity Techniques with MR Phase Contrast Angiography 1060 K.L. Hansen, J. Udesen, N. Oddershede, L. Henze, C. Thomsen, J.A. Jensen, M.B. Nielsen | | 5J-4 Clamp-On Ultrasonic Transducers with Improved Dynamics for Flow Mesuring Applications1026 V. Hamidullin, R. Malakhanov, K. Degterev, D. Kryisin | 1K-3 Double-Beam Diffraction-Grating Transducers for Improved Blood Flow Measurement1064 D. Vilkomerson | | 1K-4 Fast Blood Vector Velocity Imaging Using Ultrasound: In Vivo Examples of Complex Blood Flow in the Vascular System. ———————————————————————————————————— | 3K-5 Tissue Harmonics Cancellation Using Time-Reversal | |---|---| | 2K-1 Sensitivity of Minimum Variance Beamforming to Tissue Aberrations1072 A. Austeng, T. Bjastad, JF. Synnevaag, S E. Masoy, H. Torp, S. Holm 2K-2 Adaptive Imaging Using Principal- | 5K. Acoustic Wave Sensors 5K-1 SAW Wireless, Passive Sensor Spread Spectrum Platforms | | Component-Synthesized Aperture Data ······1076 <i>ML. Li</i> 2K-3 Investigation of Sound Speed Errors in Adaptive Beamforming·······1080 <i>I.K. Holfort, F. Gran, J.A. Jensen</i> | 5K-2 Wireless Sensor System Based on SAW Coded Passive Devices for Multiple Access —————————————————————————————————— | | 2K-4 Low-Complexity Data-Dependent Beamforming1084 JF. Synnevåg, S. Holm, A. Austeng | 5K-3 A Study of Love Wave Sensors with SU8 Guiding Layer1120 J. Zhao, C. Jiang, Y. Chen, H. Li, S. He | | 2K-6 Adaptive Beamforming for Photoacoustic Imaging Using Linear Array Transducer 1088 S. Park, A. Karpiouk, S. Aglyamov, S. Emelianov | 5K-4 Application of Lithium Niobate Etch Stop Technology to SAW Pressure Sensors | | 3K. Contrast Agent Imaging: Methods and Applications 3K-1 Acoustic Characterisation of Individual Targeted Microbubbles with | 5K-6 Electrically Isolated Thickness Shear Mode Liquid Phase Sensor for High Pressure Environments1128 J. Andle, R. Haskell, M. Chap | | High-Frequency Ultrasound1092 M.R. Sprague, D.E. Goertz, E. Chérin, R. Karshafian, F.S. Foster | 6K. Medical Arrays 6K-1 Comprehensive Design Considerations for 2D Matrix Arrays | | 3K-2 In Vitro Measurement of Ambient Pressure Changes Using a Realistic Clinical Setup | 6K-3 A PZT-P[VDF-TrFE] Dual-Layer Transducer for 3-D Imaging1138 J. Yen, C.H. Seo, S. Awad, J. Jeong | | 3K-3 Enhancement of Static Bubble Signal in Large Vessels Using Composite Dual Frequency Pulses·······1100 A.V. Patil, J.J. Rychak, A.L. Klibanov, J.A. Hossack | 6K-4 Piezocomposite and CMUT Arrays Assessment Through in Vitro Imaging Performances··································1142 M. Legros, C. Meynier, R. Dufait, G. Férin, F. Tranquart | 6K-5 Recent Results Using a 256 × 256 2-D Array Transducer for 3-D Rectilinear Imaging1146 C.H. Seo, J.T. Yen ## **Poster Sessions** | Puster sessions | PS009-09 Image-Guided Refocusing of | |--|---| | PS. Student Competition Finalists | Dual-Mode Ultrasound Arrays(DMUAs)1183 J. Ballard, A. Casper, E. Ebbini | | PS001-01 Design of Catheter for Combined Intravascular Photoacoustic and Ultrasound Imaging1150 B. Wang, A. Karpiouk, S. Emelianov | PS010-10 The Detection of Chemical and Biological Analytes Using a Monolithic Spiral Coil Acoustic Transduction Sensor | | PS002-02 Intra-Vascular Ultrasound
Mediated Delivery of DNA Via | D.F McCann, M. Wark, P. Millard, D.
Neivandt, J.F Vetelino | | Microbubble Carriers to an Injured Porcine Artery In Vivo1154 L.C. Phillips, A.L. Klibanov, D.K. Bowles, D.K. Bowles, B.R. Wamhoff, J.A. Hossack | PS011-11 Improving the Bandwidth of Air Coupled Capacitive Ultrasonic Transducers Using Selective Networks 1191 S. Mc Sweeney, W.M.D Wright | | PS002-03 Quantitative Bladder Volume Assessment on the Basis of Nonlinear Wave Propagation·······1158 E.J.W. Merks, N. Bom, N. De Jong, A.F.W. Van Der Steen | PS012-12 Dynamic Focusing Through
Arbitrary Geometry Interfaces1195
M. Parrilla, J. Brizuela, J. Camacho, A.
Ibañez, P. Nevado, C. Fritsch | | PS004-04 Microbubble Dynamics in
Microvessels: Observations of
Microvessel Dilation, Invagination and | PS013-13 Wireless Drive of a Piezoelectric Plate by Dipole Antenna 1199 S. Bhuyan, J. Hu | | Rupture ·······1163
H. Chen, A.A. Brayman, T.J. Matula | PS014-14 Towards Thin Film Complete Characterization Using Picosecond Ultrasonics1203 | | PS005-05 Non-Invasive Thrombolysis Induced by Histotripsy Pulsed Cavitation | PA. Mante, A. Devos, JE. Robillard | | Ultrasound Therapy1167 A. Maxwell, C. Cain, H. Gurm, J.B. Fowlkes, Z. Xu PS006-06 Reaching the Optimal | PS016-16 Temperature Compensation of Thin AIN Film Resonators Utilizing the Lowest Order Symmetric Lamb Mode 1207 G. Wingqvist, L. Arapan, V. Yantchev, I. Katardjiev | | Focusing and Steering Capabilities of Transcranial HIFU Arrays Based on Time Reversal of Acoustically Induced Cavitation Bubble Signature1171 J. Gateau, L. Marsac, M. Pernot, JE. Aubry, M. Tanter, M. Fink | PS017-17 A Full-Wave Analysis of Surface Acoustic Waves Propagating on a SiO ₂ Overlay/Metal Grating/Rotated YX-LiNbO ₃ Substrate Structure | | PS007-07 High Frame Rate Adaptive Imaging Using Coherence Factor Weighting and the MVDR Method ·······1175 SL. Wang, PC. Li | PS018-18 PMBAR - Shear Mode TFBAR Based on (001)AIN Thin Film1215 E. Milyutin, P. Muralt | | PS008-08 Quantification of Valvular Regurgitation Area and Geometry Using 3D HPRF Doppler····························1179 T. Hergum, T.R. Skaug, K. Matre, H. Torp | PS019-19 Investigation of Charge Diffusion in CMUTs Using Optical Interferometry | | PS020-20 High-Frequency Piezoelectric PZT Film Micromachined Ultrasonic | P1B029-02 A Modified Synthetic Aperture Imaging Approach with Axial | |--|--| | Arrays ······1222 D. Wu, Q. Zhou, C. Liu, F. Djuth,
K.K. Shung | Motion Compensation | | PS021-21 1-D CMUT Imaging Arrays Fabricated Using a Novel Wafer Bonding Process1226 A. Logan, J. Yeow | P1B030-03 A New Ultrasonic Synthetic Aperture Tissue Harmonic Imaging System | | P1A. Photoacoustic Imaging | 7. C. Tum | | P1A023-01 <i>In Vivo</i> Photoacoustic Micro-
Imaging of Microvascular Changes in
Achilles Tendon of Mice1230
PH. Wang, JJ. Luh, ML. Li | P1B031-04 Optimization of Beams with Nonspherical Extended Depths of Focus for Reconfigurable 2D Arrays | | P1A024-02 Experimental Evaluation of a High-Speed Photoacoustic Tomography System Based on a Commercial Ultrasound Unit | P1B032-05 Design of a 64-Channel Digital High Frequency Linear Array Ultrasound Imaging Beamformer on a Massively Parallel Processor Array | | X. Wang, L. Mo, J. Fowlkes, P. Carson P1A025-03 Investigating Large 2D Arrays for Photoacoustic and Acoustic | Platform | | Imaging Using CMUT Technology1238 | P1B033-06 Sigma-Delta Dynamic | | S. Vaithilingam, TJ. Ma, Y. Furukawa, O. Oralkan, A. Kamaya, K. Torashima, M. Kupnik, I. Wygant, X. Zhuang, R.B. Jeffrey | Receive Beamforming | | Jr, B.T. Khuri-Yakub | P1B035-08 Ultrasound Breast Imaging Technique Using Two Opposing Array | | P1A026-04 Simulation Study of Photoacoustic Coded Excitation Using Golay Codes1242 M.P. Mienkina, A. Eder, CS. Friedrich, | Transducers | | N.C. Gerhardt, M.R. Hofmann, G. Schmitz | P1B036-09 Evaluation of Aberration Parameters Estimated from a Low | | P1A027-05 Photoacoustic Measurement of Optical-Transport Green Functions in Turbid Media Using Progressive Optical-Source-Acoustic Focus Separations1246 | Frequency Transmission for Medical Acoustic Imaging1278 H. Taki, T. Matsuda, T. Sato | | R. Zemp, X. Chen, H. Lu, Y. Jiang, K. Mathewson | P1B037-10 Abersim: A Simulation
Program for 3D Nonlinear Acoustic Wave
Propagation for Arbitrary Pulses and | | P1B. Medical Beamforming | Arbitrary Transducer Geometries | | P1B028-01 A New Ultrasonic Synthetic
Aperture Tissue Doppler Imaging System ··1250
MH. Bae, HW. Lee, S.B. Park, JH.
Ham, K.B. Lee, MK. Jeong, YG. Kim | Måsøy | | Bone Isoplanatic Patch Sizes for Transcranial Phase Aberration Correction | P1C046-08 Comparison of the Performance of Different Tools for Fast Simulation of Ultrasound Data | |--|--| | P1C. Medical Imaging | P1C047-09 Estimating Frequency Dependent Attenuation to Improve Autmatic Time Gain Compensation in B- | | P1C039-01 Influence of the Transducer
Geometry on the Phase of the Signal
Used for Reducing Second Harmonic | Mode Imaging1322 S.R. Snare, H. Torp | | During Ultrasound Propagation | P1C048-10 Analysis of the Difference-
Frequency Wave Generated by the
Interaction of Two Axisymmetric and Co-
Focused Ultrasound Beams1326 | | P1C040-02 Motion Detection in
Ultrasound Image-Sequence Using | G. Silva, F. Mitri, M. Fatemi | | S. Guo, H. Fan, M. Inba, Y. Tamura, H. | P1C049-11 Image-Based ECG Sampling of IVUS Sequences | | Yanagida | A. Hernàndez-Sabaté, D. Rotger, D. Gil | | P1C041-03 Two Approaches for Tomographic Density Imaging Using | P1C050-12 Optimum Design of Echogenic Needles for Ultrasound | | Inverse Scattering 1298 R.J. Lavarello, M.L. Oelze | Guided Nerve Block ·······1334
Y. Jing, R. Bocala, A. Oberai, P. Bigeleisen | | P1C042-04 Spectroscopic Imaging of Nano-Particle Distribution in Biological Tissue Using Optically Assisted Ultrasonic Velocity-Change Detection1302 S. Kawakami, N. Nakamura, T. Mukaiyama, | P1C051-13 Parametric Imaging of Blood
Perfusion with Low-Cost Diagnostic
Ultrasound Equipment1338
X. Gu, H. Zhong, M. Wan, X. Hu, D. Lv, L.
Shen, X. Zhang | | S. Ishibashi, K. Wada, T. Matsuyama, T.
Matsunaka, K. Kono, H. Horinaka | P1C052-14 Compact Ultrasound Scanner with Simultaneous Parallel | | P1C043-05 Attenuation Measurements for Ultrasonic Breast Imaging: Comparisons of Three Approaches1306 CH. Chang, SW. Huang, PC. Li | Channel Data Acquisition Capabilities 1342 L. Mo, D. Debusschere, G. Mclaughlin, X. Wang, J.B. Fowlkes, P. Carson, D. Napolitano, W. Bai, K. Fowkes, A. Irish | | P1C044-06 Comparison of Regularization Methods for 2D Myocardial Strain Estimation in the Mouse | P1C053-15 A Mobile Medical Device for Point-Of-Care Applications 1346 SW. Yang, HC. Yoon, J. Cho, SB. Kye, TK. Song | | D'Agostino, P. Claus, J. D'Hooge | P1C054-16 Interactive Training System for Medical Ultrasound1350 | | P1C045-07 Feasibility of Non-Linear Simulation for Field II Using an Angular Spectrum Approach 1314 | C. Banker, P. Pedersen, T. Szabo | | P1C055-17 Phase Corrected Scattering Integral and the Acoustic Field in | P1D064-06 Pulse Wave Velocity in the Carotid Artery1386 | |--|---| | Biomedical Tissue with Speed of Sound and Density Variations1355 R. Thompson, W. Padden, C. Macaskill | G. Laura Sørensen, J. Brinck Jensen, J.
Udesen, I. Kraglund Holfort, J. Arendt
Jensen | | P1C056-18 Transcranial Shear-Mode Ultrasound Imaging: Characterization of Point Spread Function and Assessment of Excitation Techniques1359 A. Yousefi, K. Hynynen | P1D065-07 Semi-Implicit Scheme Based
Nonlinear Diffusion Method in
Ultrasound Speckle Reduction1390
B. Wang, D.C. Liu | | P1C057-19 An Intraoperative Transcranial Ultrasound Monitor (ITUM): Preliminary Results with Human Subjects | P1D068-10 A New Dynamic Decimation
Filter Using Polyphase MACs for Medical
Ultrasound Imaging1394
TW. Kim, C. Lee, JJ. Kim, TK. Song | | P.J. White, S. Whalen, S.C. Tang, G.T.
Clement, F.A. Jolesz, A.J. Golby | P1E. Transducer Modelling | | P1D. Medical Signal Processing | P1E069-01 Energy Harvesting with Piezoelectric Cantilever Transducer 1397 JB. Yuan, T. Xie, WS. Chen | | P1D059-01 Range Measurement Using Ultrasound FMCW Signals1366 M. Kunita, M. Sudo, T. Mochizuki | P1E070-02 Acoustic Waves in LiNbO3/SiO2/Water/Silicon Rubber Structures·······1401 | | P1D060-02 Three-Dimensional Segmentation of High-Frequency | A. Darinskii, M. Weihnacht, H. Schmidt | | Ultrasound Echo Signals from Dissected Lymph Nodes1370 A. Coron, J. Mamou, M. Hata, J. Machi, E. Yanagihara, P. Laugier, E.J. Feleppa | P1E071-03 Optimal Design of a Wideband Multi-Mode Ring Transducer ······ 1405 Z. Tian, Y. Roh, W. Kim, C. Joh | | P1D061-03 Spectral Analysis of Ultrasound Rf Image Data to Monitor Cavitation and Thermal Bubble Formation in HIFU Treatment | P1E072-04 A Theoretical Model of a New Electrostatic Transducer Incorporating Fluidic Amplification ———————————————————————————————————— | | P1D062-04 A Correction Scheme for Refraction and Time-Of-Flight Artifacts in Limited-Angle Spatial Compound Imaging with High-Frequency Ultrasound1378 | P1E073-05 Finite Element Analysis of a Piezoelectric Acoustic Levitator | | J. Opretzka, M. Vogt, H. Ermert | P1E074-06 Testing of a One Dimensional Model for Field II Calibration1417 | | P1D063-05 Statistical Spectral Analysis for Echo Signals from Microbubbles and Solid Spheres | D. Bæk, J. Arendt Jensen, M. Willatzen P1E075-07 Geometry Effect on Piezo- Composite Transducer with Triangular Pillars | | | | | P1E076-08 Modelling of the Electro-
Acoustic Behaviour in Integrated
Piezoelectric Structures Under External
Mechanical Stress | P1H089-03 Genetic Algorithm Optimization for a Surgical Ultrasonic Transducer | |---|---| | P1F. Piezoelectric & Ferroelectric Materials | P1H090-04 Rotation Phase Analysis of Surface Particle Motion of Coiled Waveguide Caused by Flexural Ultrasound Wave1461 | | P1F079-02 Stable Resonance
Characteristics in CuO-Modified Lead-
Free 0.94(K0.5Na0.5)NbO3-0.06LiNbO3 | K. Tomoda, M. Ishiguro, M. Tanabe, K.
Okubo, N. Tagawa | | Ceramics Sintered at Optimal Temperature | P1H091-05 A Tiny Ultrasonic Motor Used in an OCT Endoscope*1465 T. Zhou, Y. Chen, P. Xue, T. Liu | | P1F082-05 PIN-PMN-PT Single Crystal | P1I. Phononic Crystals II | | High Frequency Ultrasound Transducers for Medical Applications1433 Q.F. Zhou, B.P. Zhu, D.W. Wu, C.H. Hu, J.M. Cannata, J. Tian, P.D. Han, K.K. Shung | P1I092-01 Finite Element Method for
Analysis of Band Structures of Three
Dimensonal Phononic Crystals1468
J. Li, Y. Wang, C. Zhang | | P1G. Sonar Propagation and Detection | P1I093-02 Influence of Heterogeneous
External Fields on Propagation of Bulk
Acoustic Waves in Crystals1472 | | P1G083-01 Simulation Model of Bottom
Reverberation Signals for Horizontal | B. Sorokin, A. Marushyak, K. Aleksandrov | | Bistatic Receiving Array1437 Z. Minghui, S. Hui, C. Wenjian | P1I094-03 Essential Role of Material Parameters on the Band Gaps of Phononic Crystals1476 | | P1G085-03 The Investigation on Measuring the Coefficient of Sound | X. Zhou, Y. Wang, C. Zhang | | Absorption at 20-60 KHz in Turbid Seawater1441 | P1I095-04 Study on Band Structures and Localization Phenomenon of 2D | | Y. Liu, D.J. Shang, Q. Li, F. Chi | Phononic Crystals with 1D Quasi-
Periodicity1480 | | P1G086-04 A Method for Detecting of the Target Echo in Reverberation Noise 1445 | A. Chen, Y. Wang | | C. Wenjian, S. Hui, Z. Jianjun, Z.
Guangping, Z.
Minghui | P1I096-05 Research on Two-
Dimensional Phononic Crystal with | | P1H. Ultrasonic Motor Applications | Magnetorheological Material ·······1484 B. Wu, R. Wei, C. He, H. Zhao | | P1H087-01 Study of a Hollow Ultrasonic Rotary Motor | P1I097-06 Electromechanical Coupling Coefficient of Semiconducting Hexagonal Crystal Measured by Brillouin Scattering1487 | | P1H088-02 Performance Simulation of Ultrasonic Motors for Compression Cardiac Assist | T. Yanagitani, T. Yoshida, M. Matsukawa | | in Time-Varying Phononic Crystals1491 D. Wright, A. Yu, R. Cobbold | Receiver for Through-Transmission Determination of Elastic Constants of Composite Materials1524 | |---|--| | P1J. NDE Signal Processing | J. Adamowski, M.A. Andrade, N. Perez, F.
Buiochi | | P1J100-01 Time of Flight Ultrasonic CT Based on ML-EM for Wooden Pillars ········1495 H. Fan, S. Guo, Y. Tamura, H. Yanagida, T. Takahashi, K. Adachi P1J101-02 Analysis of Hilbert-Huang | P1K109-06 Implicit Calibration of Simulation Models for Ultrasonic Transducers | | Transform for Ultrasonic Nondestructive Evaluation1499 | | | Y. Lu, E. Oruklu, J. Saniie | P1K112-09 Welding of Flat Copper Braid Wires Using Ultrasonic Complex Vibration - Direct Machining of Terminal | | P1J102-03 An Efficient Sparse Signal Decomposition Technique for Ultrasonic | Parts on Flat Braided Wires1532 J. Tsujino, T. Ueoka, E. Sugimoto | | Signal Analysis Using Envelope and Instantaneous Phase1503 R. Demirli, J. Saniie | P1L. BAW Modeling | | P1J103-04 Improved Support Vectors Machine for Signal Detection in Non- Reverberation | P1L113-01 Piezo Thermo Elastic Model for the Design Optimization of Resonant Beams | | P1K. NDE Applications | P1L114-02 An Eigenmode Superposition Model for Lateral Acoustic Coupling Between Thin Film BAW Resonators1540 | | P1K104-01 Progress of Matching
Network for Passive Remote Hybrid | T. Pensala, J. Meltaus, M. Ylilammi | | Sensor Based on SAW Resonator1512 Q. Fu, J. Wang, W. Luo, D. Zhou | P1L115-03 Modelling of 2-D Lateral Modes in Solidly-Mounted BAW Resonators1544 | | P1K105-02 NDE Using Laser Generated Ultrasound and Integrated Ultrasonic | J. Meltaus, K. Kokkonen, T. Pensala | | Transducer Receivers ·······1516 CK. Jen, KT. Wu, M. Kobayashi, A. Blouin | P1L116-04 Green's Function Analysis of Lamb Wave Resonators1548 J. Kuypers, A. Pisano | | P1K107-04 Design Method for Large 2-D Ultrasonic Arrays with Controlled Grating Lobes Levels1520 J.R. Villazón Terrazas, A. Ibáñez Rodríguez, M. Parrilla Romero, P. Nevado | P1L117-05 Effect of Size and Shape on the Performances of BAW Resonators: A Model and Its Applications1552 C. Muller, MA. Dubois | | Carvajal | P1L118-06 Nonlinear Distributed Model for IMD Prediction in BAW Resonators 1557 E. Rocas, C. Collado, A. Padilla, J. Mateu, J.M. O'Callaghan | | | | | Mounted ZnO BAW Resonators1561 A. Nurmela, H. Salminen, T. Mattila, M. Ylilammi | with Wide Duplex Gap on a SiO ₂ /Al/LiNbO ₃ Structure by Using Novel Rayleigh-Mode Spurious Suppression Technique | |---|---| | P1L120-08 Thermoelastic FEM-BEM Model for Solidly Mounted Resonator ·······1564 D. Ekeom, B. Dubus | H. Nakanishi, H. Nakamura, Y. Hamaoka,
Y. Iwasaki, H. Kamiguchi | | | P1M128-07 Compact Ladder Type SAW | | P1L121-09 A Convolution-Perfectly Matched Layer (C-PML) Absorbing Boundary Condition for Elastic Wave | Resonator Filter ···································· | | Propagation in Piezoelectric Solids – Application to Surface and Lamb Waves Propagation1568 | P1M129-08 Study on SAW Devices Having Face to Face Aligned Packaged Structure······1596 | | L. Yifeng, B.M. Olivier, P. Vladimir, P. Philippe | Y. Terao, T. Yamazaki, K. Koh, K. Hohkawa | | | P1M130-09 Switchable Low Loss SAW | | P1M. Microwave Acoustic Devices for | Filter Bank with SAW Notch Filters 1600 | | Wireless Front Ends | J. Liu, J. Liu, S. Li, S. He, Y. Liang, H. Li | | P1M122-01 Novel MMS SAW Filter | P2A. Blood Flow | | Structure with a New Type of Chirping for High Load Impedance Applications1572 | P2A023-01 Doppler Ultrasound and | | A. Loseu, J. Rao | Numerical Analysis for the Assessment | | 71. 20004, 0. 7140 | of Hemodynamic Disturbances in | | P1M123-02 Design of Narrow Bandwidth | Ulcerated Carotid Arteries1603 | | Ladder-Type Filters with Sharp | E. Wong, J. Milner, M. Thorne, H. Nikolov, | | Transition Bands Using Mutually | D. Steinman, R. Rankin, T. Poepping, D. | | Connected Resonator Elements1576 T. Komatsu, Y. Tanaka, KY. Hashimoto, T. | Holdsworth | | Omori, M. Yamaguchi | P2A024-02 Ultrasonic Doppler | | - | Measurements of Blood Flow Velocity of | | P1M124-03 Surface Acoustic Wave | Rabbit Retinal Vessels with High- | | Duplexer Composed of SiO2 Film with | Frequency Angled Needle Transducer 1607 | | Convex and Concave on Cu- | R. Chen, DG. Paeng, N. Matsuoka, H. | | Electrodes/LiNbO3 Structure1580 | Ameri, Q. Zhou, M. Humayun, K.K. Shung | | Y. Nakai, T. Nakao, K. Nishiyama, M. | D2A025 02 An Improved Method for | | Kadota, M. Kadota | P2A025-03 An Improved Method for
Estimating the Blood Flow Velocity | | P1M125-04 Surface Acoustic Wave Filter | Vector Using Aperture Domain Data1611 | | in High Frequency with Narrow | A. Yu, H. Peng | | Branchy | P2A026-04 In-Vivo Validation of Fast | | M. Kadota, T. Nakao, T. Murata, K. Matsuda | Spectral Velocity Estimation Techniques - Preliminary Results1615 | | | K.L. Hansen, F. Gran, M.M. Pedersen, I.K. Holfort, J.A. Jensen, M.B. Nielsen | | | | xxviii | P2A027-05 Transverse Correlation: An Efficient Transverse Flow Estimator - Initial Results | P2B036-07 Image Processing Algorithms for Cumulative Maximum Intensity Subharmonic Ultrasound Imaging: A Comparative Study in the Breast | |--|---| | P2A028-06 A Comparison of Two-
Dimensional Flow Estimation | Fernandes, T. Fox, L. Leodore, A. Hall | | Techniques Based on Computational Fluid Dynamics: Speckle Tracking Versus Vector-Doppler1623 A. Swillens, L. Lovstakken, H. Torp, P. Segers | P2B037-08 Molecular Imaging of Thrombus and Ultrasound-Assisted Thrombolysis Using Targeted Ultrasound Contrast Agents | | P2A029-07 Developing an Arterial Bleed Detection Algorithm for Diagnostic Ultrasound1627 A. Wang, F. Bech, J. Lee, C. Taylor, D. Liang | P2B038-09 Monodisperse Microbubble Populations Via Microfluidic Chip Flow- Focusing 1663 Y. Cui, P. Campbell | | P2B. Improvements in Contrast
Imaging | P2B039-10 Ultrasound Contrast Imaging Based on a Novel Algorithm Combined Pulse Inversion with Wavelet Transform····· 1667 | | P2B030-01 Microbubble Detection by Dual-High-Frequency Ultrasound Excitation 1631 SY. Su, CC. Shen, CC. Yeh | X. Zhao, M. Wan, H. Zhong, L. Shen P2C. Contrast Agents: Modeling and Characterization | | P2B031-02 Transmit Phase Tuning for Wideband Harmonic Detection of Contrast Agents1635 CC. Shen, YC. Hsieh | P2C041-01 Monitoring and Modeling of Microbubble Behavior During Ultrasound Mediated Transfection of Cell Monolayers ———————————————————————————————————— | | P2B032-03 Radial-Modulation Chirp
Imaging for High-Resolution Contrast | K. Hensel, M. Siepmann, A. Maghnouj, S.
Hahn, G. Schmitz | | Detection | P2C042-02 Characterization of Bubble
Liposomes by Measurements of
Ultrasound Attenuation: Effects of Shell | | P2B033-04 Contrast Resonance Imaging with Microbubble Resonance Enhancement and Suppression1643 W. Shi, C. Hall, P. Rafter | Materials | | P2B034-05 Singular-Value-
Decomposition Investigation of the Sub-
Harmonic Response of Contrast Agents 1647
J. Mamou, J.A. Ketterling | P2C043-03 Ultrasound Induced Deflation: A Method to Study the Behavior of Single Bubbles with Varying Radius | | P2B035-06 Ultrasonic Contrast Detection with Third Harmonic Transmit Phasing1651 CC. Shen, HW. Wang | | | P2C044-04 Comparison of the Acoustic
Response of Attached and Unattached
BiSphere [™] Microbubbles1683
M. Butler, D. Thomas, S. Pye, C. Moran,
W.N. Mcdicken, V. Sboros | P2D055-08 Simulated and Experimental Analysis of PVDF Membrane Hydrophone Low-Frequency Response for Accurate Measurements of Lithotripsy Shockwaves | |--|--| | P2C045-05 An Experimental Setup for the Determination of the Inertial | A. Maxwell, O. Sapozhnikov, Y. Pishchalnikov, M. Bailey | | | DODOES 44 The Diseffects of | | Cavitation Threshold of Ultrasound | P2D058-11 The Bioeffects of | | Contrast Agents1686 M. Mleczko, G. Schmitz | Nanoparticles Using Ultrasound Stimulation in Endothelial Cell1718 PH. Hsu, RP. Chen, HY. Yang, CC. | | P2C046-06 In-Vivo Perfusion | Juan, H.K. Chiang | | Quantification by Contrast | | | Ultrasound:Validation of the Use of | P2E. High Frequency Techniques | | Linearized Video Data vs. Raw RF Data······1690 | | | N. Rognin, P. Frinking, M. Costa, M. Arditi | P2E059-01 Comparative Study Between Ultrasound Biomicroscopy and | | P2C047-07 Applying
Real-Time | Histopathology of Diversion Colitis on | | Noninvasive Pressure Estimation | Rats1721 | | Obtained from Subharmonic Contrast | R. Pacheco, K. Alves, C. Espósito, M. | | Microbubble Signals······1694 | Soldan, L. Quintella, V. Chagas, A. | | F. Forsberg, J. Dave, V. Halldorsdottir, L. | Schanaider, J. Machado | | Leodore, F. Lin, A. Hall, K. Thomenius | | | DOD Diseffects | P2E060-02 Characterising the | | P2D. Bioeffects | Performance of a High Resolution | | POPO 40 04 Impropries and the | Ultrasound Scanner for Pre-Clinical | | P2D048-01 Investigation on the | Ultrasound Imaging | | Usefulness of the Infrared Image for | C. Moran, B. Ellis, S. Smart, S. Pye | | Measuring the Temperature Developed | P2F064 02 Development of Disapportie | | by Transducer ······1698 S. Yamazaki | P2E061-03 Development of Diagnostic | | S. Falliazaki | Imaging System for Regional Lymph Node Micrometastasis with High- | | P2D040 02 Delivery of Elucroceant | Frequency Ultrasound1728 | | P2D049-02 Delivery of Fluorescent Dextrans Through the Ultrasound- | N. Tomita, S. Horie, F. Oosawa, C. Rui, Y. | | Induced Blood-Brain Barrier Opening in | Watanabe, K. Ohki, H. Morikawa, M. | | Mice1702 | Fukumoto, S. Mori, T. Kodama | | S. Wang, B. Baseri, J. Choi, YS. Tung, B. | Takamoto, S. Mon, T. Nodama | | Morrison, E. Konofagou | P2E062-04 Improved High-Frequency | | Monison, E. Ronoragoa | High Frame Rate Duplex Ultrasound | | P2D050-03 Safety Radius for Algae | Linear Array Imaging System1730 | | Eradication at 200 KHz - 2.5 MHz······1706 S. Kotopoulis, A. Schommartz, M. Postema | L. Zhang, X. Xu, C. Hu, L. Sun, J.T. Yen,
J.M. Cannata, K.K. Shung | | P2D053-06 Focused-Ultrasound Modifications on the Conduction Properties of Toad's Sciatic Nerve1710 Y. Wen-Li, W. Su-Pin, Z. Nan, S. Yuan, W. Ming-Xi | P2E063-05 A Novel Scan Method Using Angled High Frequency Single Element Needle Transducers | | P2E064-06 Longitudinal Study of Adult
Zebrafish Heart Regeneration Using High
Frequency Echocardiography1738
L. Sun, CL. Lien, Q. Wu, J.H. Chang, K.K.
Shung | P2G073-02 Novel Biomedical Imaging That Combines Intravascular Ultrasound (IVUS) and Optical Coherence Tomography (OCT) 1769 HCh. Yang, J. Yin, C. Hu, Q. Zhou, J. Cannata, Z. Chen, K.K. Shung | |--|---| | P2E065-07 Contrast-Enhanced High-Frequency Ultrasound Imaging of Liver Metastases in Preclinical Models | P2G074-03 A 100-MHz 32-Array Transducer Using Lithographically-Made Electrodes and Vapor-Deposited Polyurea Film | | P2F. 3D / Cardiac Imaging | D2C075 04 Fundamental and Third | | P2F067-02 Cardiac Output Estimation in Non-Standard 3D Echocardiographic Images | P2G075-04 Fundamental and Third
Harmonic Operation of a Medical Phased
Array Transducer | | Gerrits, H. Huisman, H. Thijssen, L.
Kapusta, C. de Korte | P2G076-05 Fabrication of MEMS Diaphragm Transducer Array Based on Epitaxial PZT Thin Film for 2-D | | P2F068-03 Automatic Coupled
Segmentation of Endo- And Epicardial
Borders in 3D Echocardiography1749
F. Orderud, G. Kiss, H.G. Torp | Hydrophone Application | | P2F069-04 A Four-Dimensional Model-Based Method for Assessing Cardiac Dyssynchrony in Mice1753 Y. Li, P. Helm, C. Garson, B. French, J. Hossack | P2G077-06 Symmetric ReflectorPlates Doubling Transducer Efficiency | | Hossack | Lens Design for a Broadband | | P2F070-05 Improving Ejection Fraction Estimation for 2D Ultrasound Using a Computer-Generated Cardiac Model1757 | Transducer with Varying Thickness1789 SY. Chen, JH. Liu, PC. Li | | M. Khoshniat, T. Szabo, P. Pedersen, D. | P2H. Nonlinear Propagation | | P2F071-06 Tangential Oscillations for Motion Estimation in Echocardiography ·····1761 H. Liebgott, A. Basarab, S. Marincas, O. Bernard, D. Friboulet | P2H079-01 Acoustic Radiation Force on
Objects and Power Measurements of
Focusing Source (HIFU) 1793
Z.W. Qian, Z. Zhu, S. Ye, W. Jiang, H. Zhu,
J. Yu, Y. Yuan, Y. Yang, L. Xiao, X. Wu | | P2G. Medical Imaging Transducers | P2H081-03 Using Swept Frequency | | P2G072-01 Evaluation of Inline
Transmitter/Receiver System for
Intravascular Ultrasound Imaging Using | Acoustic Interferometry for Spherical
Resonator Characteristics Determination ••• 1797
I. Ali Bláhová, J. Plocek | | Pb(Zn _{1/3} Nb _{2/3})O ₃ –PbTiO ₃ Single Crystal and Polyvinylidene Fluoride ·······1765 <i>M. Tanabe, K. Okubo, N. Tagawa, T. Moriya</i> | P2H082-04 Nonlinear Planar Forward and Backward Projection 1800 G. Clement | | P2H084-06 Subharmonic Vibrations in Plates Excited by High-Intensive Ultrasonic Pulses·······1804 | P2J098-08 A Wear Evaluation of Friction Materials Used for Rotary Ultrasonic Motors1838 | |---|---| | ZJ. Chen, SY. Zhang, K. Zheng, T. Zhang, FM. Zhou | W. Zheng, C. Zhao | | P2I. Ultrasonic Wave Propagation II | P2J099-09 Predictive Control of Piezoelectric Actuators with Friction Drive Mechanism1842 | | P2I085-01 Development of General Solution of Cumulative Second | S. Hashimoto, T. Kondo, S. Goka | | Harmonic by Lamb Wave Propagation1808 M. Deng | P2K. Acoustic Wave Sensors | | DOLOGO OO haftaanaa af tha Eutamaal | P2K100-01 Development of a New Love | | P21087-03 Influence of the External | Wave Liquid Sensor Operating at 2GHz | | Waves in Thin Piezoelectric Sheets ·······1812 S. Burkov, O. Zolotova, B. Sorokin | with an Integrated Micro-Flow Channel 1846 P. Kirsch, B. Assouar, P. Alnot | | | P2K102-03 SAW Gas Sensors with | | P2I088-04 Method of Extracting | Carbon Nanotubes Films ······1850 | | Unloaded Q Applied Across Different | M. Penza, R. Rossi, M. Alvisi, P. Aversa, G. | | Resonator Technologies1815 | Cassano, D. Suriano, M. Benetti, D. | | R. Ruby, R. Parker, D. Feld | Cannatà, F. Di Pietrantonio, E. Verona | | P2I089-05 Love Wave Propagating in | P2K103-04 Passive and Remote | | Functionally Graded Magneto-Electro- | Polymer-Coated Love Wave Chemical | | Elastic Material Structure1819 | Sensor1854 | | J. Du, W. Chen, J. Wang | W. Wang, S. He | | P2J. Ultrasonic Motor Innovations | P2K104-05 Experimental Study on Love- | | | Wave Sensors with SiO ₂ /LiTaO ₃ | | P2J091-01 Adaptive Control of | Structures 1858 | | Ultrasonic Motors Using the Maximum | FM. Zhou, Z. Li, T. Zhang, W. Lin, L. Fan, | | Power Point Tracking Method1823 M. Flueckiger, J.M. Fernandez, Y. Perriard | X. Gong, SY. Zhang | | ivi. I lueckiger, 5.ivi. I emanuez, T. Femaru | P2K105-06 Simulation of Wireless | | P2J093-03 Control of Multiple Ultrasonic | Passive SAW Sensors Based on | | Motors with Robust Parameter Design1827 | FEM/BEM Model1861 | | Z. Sun, H. Li, W. H | Q. Fu, W. Luo, Y. Wang, J. Wang, D. Zhou | | P2J094-04 Design and Optimization of a | P2K107-08 Development of a Calibration | | Novel Annular Sector Curvilinear | Procedure for Torque and Temperature | | Ultrasonic Motor1831 | Sensors Based on SAW Resonators 1865 | | S. Li, M. Yang, H. Wei | V. Kalinin, R. Lohr, A. Leigh | | | | | P2J097-07 Experimental Study on Non- | P2K108-09 Assessment of Fatigue | | Contact Linear Motors Driven by Surface | Damage in Solid Plates Using Ultrasonic | | Acoustic Waves1835 HH. Gu, LP. Cheng, SY. Zhang, FM. | Lamb Wave Spectra ······1869 J. Pei, M. Deng | | Zhou, XJ. Shui | J. I GI, IVI. Delig | | , | P2K109-10 A Novel Ultrasonic Sensing | | | Based Human Face Recognition 1873 | | | Z. Miao, W. Ji, Y. Xu, J. Yang | | P2K111-12 New Measurement Method to Characterize Piezoelectric SAW Substrates at Very High Temperature 1877 P. Nicolay, O. Elmazria, F. Sarry, T. Aubert, L. Bouvot, M. Hehn | P2M122-05 Towards a Simple Acoustic Method to Evaluate the Nonlinear Parameter B/A of Fluids1908 F. Vander Meulen, L. Haumesser | |--|--| | P2L. Acoustical Imaging and Signal Processing | P2M123-06 The Reflection and Transmission of Lamb Waves Across a Rectangular Crack as a Function of the Crack Geometry | | P2L113-01 Recursive Filters for Subband Decomposition Algorithms in Ultrasonic Detection Applications1881 | Y. Roh, B. Kim P2N. Thin Film & Device Fabrication | | E. Oruklu, J. Weber, J. Saniie P2L114-02 A New Lossy Compression Algorithm for Ultrasound Signals1885 M. Freitas, H. Dos Santos, M. Jimenez, J.P. Von Der Weid | P2N126-01 Development of a 6GHz Resonator by Using an AIN Diamond Structure | | P2L115-03 Resolution Improvement of Shallow Underground Imaging Using Super-Magnetstriction Vibrator and Pulse Compression Method1889 T. Sugimoto, H. Kawasaki | P2N127-02 Development of 4GHz Bulk
Acoustic Wave Resonators by Sputtered
Pb(Mn,Nb)O3-Pb(Zr,Ti)O3 Thin Films 1920
T. Matsushima, N. Yamauchi, T. Shirai, T.
Yoshihara, Y. Hayasaki, I. Kanno, K. Wasa | | P2L116-04 Non-Contact Observation of Cultured Cells by Acoustic Impedance Microscope | P2N128-03 Surface Acoustic Wave Devices on AlN/Single-Crystal Diamond for High Frequency and High Performances Operation | | P2M. NDE Methods | | | P2M118-01 Study on Feasibility of Pressure Pipe Guided Wave NDT Based on Magnetostrictive Effect1897 LH. Shen, YM. Wang, FR. Sun | P2N129-04 Single Phase Transducer Consisting of AlGaN/GaN Film | | | P2O. SAW Simulation | | P2M120-03
Ultrasonic and Optical Characterization of Forming Colloidal Films1901 | P2O130-01 3D Finite Element Modeling of Real Size SAW Devices and | | T. Karppinen, H. Pajari, J. Haapalainen, I.
Kassamakov, E. Hæggström | Experimental Validation | | P2M121-04 A Simple Maxwell Based Model in Order to Represent the Frequency-Dependent Viscosity Measured by Ultrasound | P2O132-03 COM Analysis for LSAW Filters | | P2P. Sensors and ID-Tags Based on SAW | P3A026-04 Ultrasound Backscattering by Three-Dimensional Distributions of | |--|--| | P2P135-01 High Frequency Lamb Wave Device Composed of LiNbO3 Thin Film1940 M. Kadota, T. Ogami, K. Yamamoto, Y. | Aggregated Red Blood Cells: A Monte Carlo Study1971 R.K. Saha, G. Cloutier | | Negoro, H. Tochishita P2P136-02 Feasibility of Ultra-Wideband | P3A027-05 Assessment of Red Blood
Cell Aggregation Using Normalized | | SAW Tags ······1944 S. Harma, V. Plessky, X. Li | Power Spectrum of High Frequency Ultrasound 1975 N. Saitoh, H. Hasegawa, H. Kanai | | P2P138-04 A Surface Acoustic Wave
Sensor for Detection of Cell Adhesion ·······1948
G. Guhr, R. Brünig, M. Jäger, R. Poll, H.
Schmidt, M. Weihnacht | P3A028-06 Strain Estimation with Center Frequency Correction and Reliable Displacement Selection. ———————————————————————————————————— | | P2P139-05 The Effect of Parallelism of CMUT Cells on Phase Noise for Chem/bio Sensor Applications1951 H. Lee, K. Park, P. Cristman, O. Oralkan, M. | P3A029-07 Biomedical Application of Acoustic Microscopy - Diagnosis, Assessing Echogenecity and | | Kupnik, B. (Pierre) Khuri-Yakub P2P140-06 Errors of Phase and Group | Biomechanics ···································· | | Delays in SAW RFID with Phase Modulation1955 | P3B. Tissue Characterization - In Vivo | | T. Han, W. Lin, J. Lin, W. Wang, H. Wu, Y.
Shui, X. Du, Y. Ding, L. Cao, T. Qin | Applications P3B030-01 Non-Invasive Staging of | | P3A. Tissue Characterization - Technologies | Hepatic Steatosis Using Computer-Aided Ultrasound Diagnosis1987 J. Thijssen, G. Weijers, A. Starke, A. | | P3A023-01 Combining Edge Detection with Speckle-Tracking for Cardiac Strain | Haudum, K. Herzog, J. Rehage, C. de Korte | | Assessment in 3D Echocardiography ·······1959 F. Orderud, G. Kiss, S. Langeland, E.W. Remme, H.G. Torp, S.I. Rabben | P3B031-02 A Compound Ultrasound Imaging Strategy in Carpel Tunnel Syndrome Diagnosis | | P3A024-02 Parametric Imaging of Specular Reflections and Diffuse | P3B033-04 Accurate Ultrasonic | | Scattering of Tissue from Multi-
Directional Ultrasound Echo Signal Data ····1963
M. Vogt, J. Opretzka, H. Ermert | Measurement of Myocardial Regional
Strain Rate at High Temporal and Spatial
Resolutions1995
Y. Honjo, H. Hasegawa, H. Kanai | | P3A025-03 50 MHz Ultrasound Characterization of Colitis on Rats, in Vitro | P3B034-05 Flow-Mediated Change in Viscoelasticity of Radial Artery Noninvasively Measured by 22-MHz Ultrasound | | Machado | K. Ikeshita, H. Hasegawa, H. Kanai | P3C048-12 Quantitative Elastography, ## P3C. Elastography | P3C037-01 Comparison of Multiple Beam Sequences in Arterial ARFI Imaging, Ex Vivo2003 R. Behler, T. Nichols, E. Merricks, C. Gallippi | Solving the Inverse Elasticity Problem Using the Gauss-Newton Method 2040 M. Sette, J. D'Hooge, H. Van Brussel, J. Vander Sloten | |---|--| | P3C038-02 Acoustic Radiation Force Based Quantification of Tissue Shear | P3C049-13 Viscoelastic Characterization of Soft Tissues by Dynamic Micro-Elastography (DME) in the Frequency | | Modulus Within the Region of Excitation ···· 2009 M. Palmeri, D. Xuo, L. Zhai, K. Nightingale | Range of 300-1500 Hz2044 C. Schmitt, A. Hadj Henni, G. Cloutier | | P3C039-03 A Combined ARFI Sequence for 2D Displacement Imaging and Shear Wave Velocity Mapping2013 | P3D. Therapeutic Ultrasound Applications | | L. Zhai, S. Hsu, R. Bouchard, K. Nightingale | P3D050-01 Standing Waves Suppression in Transcranial Ultrasound | | P3C041-05 Improvement on the Elastic | Therapy Using Random-Signal- | | Visualization of Thermal Lesion Using Block Wavelet Shrinkage2017 D. Zhang, M. Wan, H. Zhang, S. Wang | Modulation Excitation2048 S.C. Tang, G. Clement | | | P3D051-02 Cavitation Enhanced | | P3C042-06 Robust Strain Estimation Using Adaptive Dynamic Grid- | Ultrasound Thrombolysis ·······2052
S. Xu, X. Li, Y. Liu, C. Xu, M. Wan | | Interpolation Model2021 M. Yamakawa, S. Bu, T. Shiina | P3D052-03 A Pre-Treatment Planning Strategy for High-Intensity Focused | | P3C043-07 Reverberation Reduction in | Ultrasound (HIFU) Treatments: | | Vibro-Acoustography Using Channel | Optimized Source Placement2056 | | Y. Zheng, A. Yao, J. Lin, R. Kinnick, J. Greenleaf, M. Fatemi | P.J. White, B. Andre, N.J. Mcdannold, G.T.
Clement | | Greenical, W. Faterii | P3D053-04 A Nonlinear Method for High- | | P3C044-08 Maximal Accumulative | Intensity Focused Ultrasound (HIFU) | | Respiration Strain for the Assessment of | Aberration Reduction2059 | | Hepatic Fibrosis: Preliminary Studies ·······2029 J. Shao, X. Hu, J. Wang, L. Qian, K. Liu, J. Bai | P.J. White, P. Von Pattenberg, G.T. Clement | | | P3D055-06 Contrast Agent Kinetics in | | P3C045-09 Computer-Aided Diagnosis | the Rabbit Brain During Exposure to | | of Diffuse Disease Based on Ultrasound | Focused Ultrasound2062 | | Elasticity Images2033 M. Yamazaki, H. Takizawa, T. Shiina | D. Goertz, C. Wright, K. Hynynen P3D056-07 Characterization of | | P3C046-10 An Ultrasound Imaging | Sonicated Breath Films by Atomic Force | | Method for in Vivo Measurement of Tracheal Elasticity2036 | Microscopy 2066 T. Saliev, M. Mullan, Y. Cui, P. Campbell | | CY. Chen, CL. Wu, S.C. Chu, H.K.
Chiang | • | P3E. Therapeutic Ultrasound | Technologies | P3F066-03 The Design and | |--|--| | | Characterization of Capacitive | | P3E057-01 Progress in CMUTs for HIFU | Micromachined Ultrasonic Transducers | | Ablation of Lower Abdominal Cancer 2068 | (CMUTs) for Generating High-Intensity | | S. Wong, R. Watkins, M. Kupnik, K. Butts | Ultrasound for Transmission of | | · · · · · · · · · · · · · · · · · · · | Directional Audio2100 | | Pauly, B.T. Khuri-Yakub | I. Wygant, M. Wochner, M. Kupnik, W. | | | Wright, M. Hamilton, B. Khuri-Yakub | | P3E058-02 Development of a Reliable | Wright, W. Hamilton, B. Khun-Yakub | | Ultrasound Power Source for | | | Metrological Applications2072 | P3F067-04 Co-Optimization of CMUT | | E. Alves, R. Costa-Felix | and Receive Amplifiers to Suppress | | · | Effects of Neighbor Coupling Between | | P3E059-03 A Harmonic Cancellation | CMUT Elements2103 | | Technique for an Ultrasound Transducer | S. Berg, T. Ytterdal, A. Rønnekleiv | | | | | Excited by a Switched-Mode Power | D3E069 05 Accurate Medaling of | | Converter2076 | P3F068-05 Accurate Modeling of | | S.C. Tang, G. Clement | Capacitive Micromachined Ultrasonic | | | Transducers in Pulse-Echo Operation 2107 | | P3E060-04 A Model-Based Displacement | M. Balantekin, L. Degertekin | | Outlier Removal Algorithm for Ultrasonic | | | Temperature Estimation2080 | P3F069-06 Analytically Calculating | | G. Ye, J.A. Noble, P. Probert Smith, CY. | Membrane Displacement and the | | | Equivalent Circuit Model of a Circular | | Hsieh | CMUT Cell2111 | | | | | P3E061-05 A Novel Ultrasonic-Imaging | I. Wygant, M. Kupnik, B. Khuri-Yakub | | Based Temperature Estimation | | | Approach by Instantaneous Frequency | P3F070-07 New Technique for | | Detection2084 | Fabrication of High Frequency | | HL. Liu, SM. Huang, ML. Li, KC. Ju | Piezoelectric Micromachined Ultrasonic | | TI. E. Ela, G. W. Haarig, W. E. El, K. G. Ga | Transducers2115 | | P3E062-06 Thermal Imaging with | T. Pedersen, R. Lou-Moeller, K. Hansen, T. | | | Zawada, E. V. Thomsen | | Ultrasound Reflex Transmission | Zawada, E. V. Momsen | | Methods2088 | P3G. Material Characterisation and | | C.H. Farny, G.T. Clement | | | | Fabrication Technology | | P3F. MUT Transducers | | | | P3G071-01 An Improved Sandwich | | P3F064-01 Curvilinear Capacitive | Dipole Transducer for High Temperature | | Micromachined Ultrasonic Transducer | Environment2119 | | (CMUT) Array Fabricated Using a | L. Zheng, W. Lin, D. Wang, J. Shen, H. | | | Zhang, X. Wang | | Reverse Process 2092 | Zhang, A. Wang | | A. Caronti, A. Coppa, A. Savoia, C. Longo, | | | P. Gatta, B. Mauti, A. Corbo, B. Calabrese, | P3G073-03 Effect of Surface | | G. Bollino, A. Paz, G. Caliano, M. | Modification of Titanium Substrate by | | Pappalardo | Anodic Oxidation on Hydrothermally | | • • | Synthesized PZT Poly-Crystalline Film 2122 | | P3F065-02 Dual-Electrode CMUT | T. Uchida, T. Kikuchi, T. Murakami, N. | | Optimization for CMUTs with Uniform | Kawashima, S. Takeuchi | | | nanaonina, o. ranoaoni | | and Non-Uniform Membranes2096 | | | R. Guldiken, J. Zahorian, M. Balantekin, L. | | | Degertekin | | | P3G074-04 Screen Printed Thick Film Based PMUT Arrays2126 T. Hedegaard, T. Pedersen, R. Lou-Moeller, K. Hansen, T. Zawada, E.V. Thomsen | P3I086-02 Reflection and Refraction of Bulk Acoustic Waves in Piezoelectric Crystals Under the Action of Bias Electric Field and Uniaxial Pressure | |---
--| | P3G075-05 Characterization of PZT | B. Sorokin, S. Burkov, K. Aleksandrov, A. Karpovich | | Ferroelectric Thin Films Prepared by a | Naipovicii | | Modified Sol-Gel Method2130 | P3I087-03 Wireless Energy | | H. Guo, D. Bao, Y. Zhang | Transmission Through a Thin Metal Wall by Shear Wave Using Two Piezoelectric | | P3G077-07 Investigations on the Effects | Transducers 2165 | | of Ultrasonic Vibrations in the Wire Drawing2134 | H. Hu, Y. Hu, C. Chen | | HQ. Qi, JB. Yuan, T. Xie | P3I088-04 Acoustic Resonance | | 🔾 . 🤼 | Spectroscopy of Nanoceramics2169 | | P3G078-08 Model-Based Dynamic | N. Polzikova, G. Mansfeld, S. Alekseev, I. | | Characteristics Investigation of Ultrasonic Transducers for MEMS | Kotelyanskii, S. Fedor | | Packaging ·······2138 | P3I089-05 The Analysis of the Third- | | F. Wang, X. Zhao, D. Zhang, Y. Wu | Order Thickness-Shear Overtone Vibrations of Quartz Crystal Plates with | | P3G079-09 A Design of Ultrasonic | Mindlin Plate Theory2173 | | Compaction Tools for Metal Powder | J. Wang, R. Wu, J. Du, H. Wang | | Magnetic Core of Motors 2142 | o. Trang, 11. Tra, c. Da, 11. Trang | | S. Kikuchi, D. Koyama, K. Nakmura | P3I090-06 A Theoretical Time-Course Model of Acoustic Tweezers: Pulse-Wave | | P3H. Material Properties III | Mode2177 | | DOLLOGO O4 Consetel Orientation and | ST. Kang, CC. Yeh | | P3H080-01 Crystal Orientation and | P3J. BAW & MEMS Materials & | | Stress in AC Reactively Sputtered AIN | | | Films on Mo Electrodes for Electro- Acoustic Devices2146 | Devices | | V. Felmetsger, P. Laptev, S. Tanner | D2 1004 04 Diamodostricolly Actuated | | | P3J091-01 Piezoelectrically Actuated Micromechanical BAW Resonators2181 | | P3H081-02 High Temperature Elastic | P. Rosenberg, A. Jaakkola, J. Dekker, A. | | Constants of Langatate from RUS | Nurmela, T. Pensala, S. Asvala, T. | | Measurements Up to 1100°C2150 | Riekkinen, T. Mattila, A. Alastalo | | P. Davulis, A. Shyam, E. Lara-Curzio, M. | D0 1000 00 D : 10 | | Pereira Da Cunha | P3J092-02 Design of Computer | | D2U002 02 Investigation of Ligh | Experiments: A Powerful Tool for the | | P3H082-03 Investigation of High-
Pressure Phase Transitions in Castor Oil | Numerical Design of BAW Filters 2185 | | Using SH Surface Acoustic Waves2154 | A. Reinhardt, S. Giraud, F. de Crecy, S. | | P. Kielczynski, M. Szalewski, A. Rostocki, J. | Bila, E. Iborra, M. Aïd | | Gladysz | P3J093-03 BAW Resonators with Iridium | | Olady32 | | | P3I. Bulk Wave Effects & Devices | Electrodes for Digital Wireless Transmissions2189 | | | E. Iborra, M. Clement, J. Olivares, S. | | P3I085-01 Optimal Electrode Shape and | González-Castilla, J. Sangrador, N. | | Size of Plate Thickness-Shear Mode | Rimmer, A. Rastogi, B. Ivira, A. Reinhardt | | Piezoelectric Resonators2158 | Mininer, A. Nastoyi, D. Wila, A. Nellillalut | | Z. Yang, S. Guo, J. Yang | | | P3J094-04 Spurious Vibration Suppression by Film Thickness Control for FBAR2193 S. Tanifuji, Y. Aota, H. Oguma, S. Kameda, | |---| | T. Takagi, K. Tsubouchi P3J095-05 AIN Film Using Low | | Temperature MOCVD Process for FBAR ·····2197 Y. Aota, S. Tanifuji, H. Oguma, S. Kameda, T. Takagi, K. Tsubouchi | | P3J096-06 Lithium Niobate Surface Structuration for Phononic Crystal Fabrication | | P3J097-07 Picosecond Ultrasonics: The Prefered Tool for BAW Characterization ·····2205 P. Emery, A. Devos, P. Ancey | | P3J098-08 Wireless Temperature
Sensing Using a Passive RFID Tag with
Film Bulk Acoustic Resonator2209
J.H. Lin, Y.H. Kao | | P3J099-09 Anchor Limited Q in Flexural Mode Resonators 2213 J. Lee, J. Yan, A. Seshia | | P3K. Thin-Film & Propagation | | P3K100-01 Zero LSAW Propagation
Loss in a SiO₂/Periodic Grating/LiTaO₃
Structure······2217
S. Biryukov, M. Weihnacht | | P3K101-02 Propagation of the Anisimkin Jr.' Plate Modes in LiNbO ₃ and Te Single Crystals2221 Y. Gulyaev | | P3K102-03 Piezoelectric and Elastic
Properties of SNGS and STGS Single
Crystals at Elevated Temperatures2225
A. Sotnikov, H. Schmidt, K. Suschke, M.
Weihnacht, M. Hengst, J. Götze | | P3K103-04 Leaky-SAW Properties on Reverse-Proton-Exchanged LiNbO ₂ 229 | S. Kakio, H. Shimizu, Y. Nakagawa P3K104-05 Application of Compound Matrices to the Study of SAW and PSAW Propagation in Layered Structures......2233 V.I. Fedosov, Y.V. Gulyaev, I.I. Chusov, M. Benetti, D. Cannatà, F. Di Pietrantonio, E. Verona