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Abstract—The possibility for market participants to place their
bids in all the markets of an interconnection irrespective of where
they are physically connected is investigated in this paper. A
mechanism is proposed for managing the resulting congestion.
It consists in iteratively sharing the transmission line capacities
between the different market operators based each time on their
present schedules. The algorithm is applied on a small test system.
The results are assessed in terms of their property of being
Nash equilibria and of their distance of the set of Pareto optimal
operating points.

Index Terms—overlapping markets, congestion management,
decomposed optimization, pareto efficiency

I. INTRODUCTION

In recent years, significant discussions and engineering
effort have been concentrated on the need and the development
of tools to couple individual areas of an interconnection to
approach operation as a single electrical market. A driving
force behind this integration is enhancing the global economic
efficiency for the participants. Specially in the case of Day-
Ahead Markets, which is addressed in this paper, efficient
coupling of the interconnected markets can furthermore assure
adequate market liquidity to each region [1], [2], [3].

For interconnections like those in Europe and North Amer-
ica, merging into a single large market seems for the mo-
ment practically impossible. Hence, developing methods of
inter-regional coordination that allows separate control, but a
seamless market from the participant’s perspective, becomes
a critical aspect in market design [4], [5]. In this respect, for
instance, ETSO (European Transmission System Operators)
and EuroPEX (Association of European Power Exchanges)
have joined their efforts trying to set up a framework and
come up with some applicable algorithms towards creating
the Internal Electricity Market in Europe [1], [2], [3].

This paper investigates an approach so that market partici-
pants (generators, large consumers) are allowed to participate
into the market of their choice, irrespective of where they are
geographically located in an interconnection. This is similar
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to the situation in California, where market participants may
choose the scheduling coordinator who will dispatch them [6].

Having different electrical markets operating within an inter-
connection brings up interaction issues between them, related
either to the dispatching of the available energy resources or to
the managing of transmission lines congestion. In this paper,
an entity named Market Operator (MO) is considered to be
responsible for clearing one particular market (i.e. dispatching
the generators and loads that bid in this market). Furthermore,
the superposition of all the MOs dispatches, that is the power
injections on all buses of the interconnection, should result in
line flows that do not violate any line limit. The set of line
constraints is considered to bring a global set of constraints;
MOs are not responsible for a specific set of lines each (i.e.
there is no geographical jurisdiction for the MOs in terms of
transmission infrastructure).

The paper is organized as follows. In Section II a general
framework for approaching the problem is discussed. Section
III presents the proposed algorithm, which then, in Section IV,
is applied and assessed to a test system. Finally, the work is
summarized in the Conclusion.

II. OPTIMIZATION BY MULTIPLE PLAYERS OBEYING
COMMON CONSTRAINTS

A. Problem statement

Typically, the market clearing problem is formulated as
an optimization problem where the objective is to minimize
the social cost (i.e. maximize the social welfare), with each
generator and load announcing a bid corresponding to their
marginal cost and benefit, respectively [7]. The optimization
problem considered by the i-th MO (i = 1, . . . , n) takes on
the form:

min
ui

fi(ui) (1a)

subject to hi(ui) = 0 (1b)
umin

i ≤ ui ≤ umax
i (1c)

where the control variables ui are the generator active power
productions and the load active power consumptions. The
equality constraint denotes the power balance within the
market.

A set of constraints should be respected at the system
operating point resulting from the combined clearings of the
several markets. Calling u the vector made up of all the control
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vectors ui, we assume that those constraints can be expressed
as a set of linear inequalities

Au− pmax ≤ 0 (2)

where each individual constraint corresponds to a transmission
line active power flow limit (pmax is the vector containing
all lines limits 1). In this , a DC model is used to represent
the entire network. The matrix A contains Power Transfer
Distribution Factors (PTDF) linking bus power injections with
the resulting line power flows [16].

Each MO’s objective depends only on its allocated partici-
pating generators and loads, not on the allocation of the other
MOs. In the long-term, the various MOs may compete for
attracting the market actors to bid into their dispatch. In the
short-term however, each market participant “belongs” to an
MO, i.e. its production or consumption is a control variable
of the MO.

Yet, the MOs cannot use their controls as they wish,
irrespective of each other, because the results of their decisions
interact through the power flow equations. Managing this con-
gestion problem indirectly makes the value of each objective
fi dependent on the values of the other control variables ui− ,
where ui− contains the generator productions and the load
consumptions dispatched by all MOs but the i-th one.

The fact that market participants are allowed, in our ap-
proach, to place their bids in whichever MO’s market makes
the congestion management problem (2) even more complex.

B. Nash equilibrium

The above situation can be generally described as one where
n different “players” operate a common system, and compete
for the allocation of some available resources. Each player has
its own strategy but the resulting overall decisions should obey
some common constraints corresponding to admissible opera-
tion of components, system security, etc. [8]. Clearly, in our
case, the common system is the interconnected transmission
network and the constraints relate at least to power flows in
individual lines or in aggregated sets of lines.

A solution defined by a control vector u?, is a Nash
equilibrium if all constraints (2) are satisfied, and no player can
further improve its objective by modifying its own controls,
given the control vectors of the other players [9], [10]. Thus,
u? results in a Nash equilibrium if :

∀i ∈ {1, 2, . . . , n} : u?
i = arg min

ui

fi(ui) (3)

subject to Aiui + Ai−u?
i− − pmax ≤ 0

and constraints (1b), (1c)

where u?
i− denotes the sub-vector of u? containing the controls

of all players but the i-th one, and Ai and Ai− are the
corresponding sub-matrices of A.

1Constraint (2) includes both maximum and minimum flow limits with
suitable adjustment of matrix A and vector pmax. Minimum flow limits are
included to take into account bidirectional power flows.

C. System-wide single multi-objective approach

A well-known, but different approach to market integra-
tion consists in combining the various players’ objectives
into a single multi-objective function F (f1(u1), . . . , fn(un)).
Minimizing simultaneously all the functions involved in F (·)
subject to the set of constraints (1b) and (2) is referred to here
as the system-wide multi-objective problem.

A solution ū of this problem is said to be Pareto optimal if it
is feasible and is not dominated by any other feasible solution.
This means that there is no other solution u′ yielding at least
one better objective function fi(u′) (i.e. fi(u′) < fi(ū))
without worsening any of the rest (i.e. fi−(u′) ≤ fi−(ū))
[8]. Solving the multi-objective problem can give only Pareto
optimal solutions. A common way to find such Pareto optimal
points is the weighted sum method [11], [12], where a pos-
itively weighted convex sum of all the objective functions is
minimized for different values of the weighting factors.

It is interesting to point out that a Nash equilibrium u?,
defined by (3), is generally not a Pareto optimal solution
of the system-wide multi-objective problem. This means that
there exist other settings for the controls, different from
u?, that improve at least some of the players’ objectives
without deteriorating none of the rest, making them preferable
operating points than the Nash equilibrium [8].

Quite often F is taken as a linear combination of the
individual objectives, thus yielding the single multi-objective
optimization problem:

min
u

∑

i

wifi(ui) subject to Au− pmax ≤ 0 (4)

where the wi’s are weighting factors. This optimization prob-
lem can be solved in the following two ways.

1) Centralized scheme: The problem is solved by a cen-
tral entity, applying some commonly agreed rules regarding
the allocation of the common resources. Besides the high
dimensionality issue, this approach has the drawback of not
respecting possible confidentiality restrictions that each player
wants to preserve regarding individual data and strategy.

2) Decentralized scheme: To deal with the above dimen-
sionality and confidentiality issues, decentralized algorithms
have been proposed such as those reported in [13], [14], [15].
Simply stated, the interconnected system being decomposed
into separate sub-systems, each controlled by a player, the
aim is to process the information of each sub-system locally,
while at the same time solving the system-wide problem (4).
To this purpose, a coordination entity is in charge of passing
information between players and possibly performing some
upper-level computation.

One practical issue when dealing with (4) is the choice
of the weighting factors wi. Indeed, the various players may
question the priorities assigned to their respective objectives
through these weighting factors. One option is to try differ-
ent weighting factors, but this may become computationally
intractable.

Normally, as far as market is of concern, all objectives
correspond to costs (i.e. they are expressed in the same unit)
and hence, a natural choice is to set all wi’s to 1, i.e. consider
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the objective:
F (u) =

∑

i

fi(ui) (5)

This leads to optimizing the total “social welfare of all par-
ticipants” within the interconnection. A decentralized Optimal
Power Flow (OPF) has been solved with this objective in [14],
[15].

While this seems desirable from a global system perspec-
tive, a market operator could argue that it would have better
market opportunities (higher social welfare for the market it
clears) if it was not incorporated into the overall optimization.
Even more, it goes with the freedom and independence of each
market to be cleared separately from the others, incorporating
maybe its particular rules and operating strategies. The above
justify the existence of several markets, instead of a single
integrated one.

D. Independent optimizations with a Coordinator

In the previous approach, a central entity is in charge of
either solving the system-wide multi-objective optimization or
coordinating the decentralized computations aimed at solving
that problem. Alternatively, a central entity may be responsible
for monitoring and correcting multiple independent optimiza-
tions performed by the n players according to certain rules.
These rules will reflect a pre-defined policy to share the
available resources among the players.

Contrary to the single system-wide optimization approach
previously considered, the idea is to preserve the operational
independence of the players. The players are not constrained
to adopt a common objective. On the contrary, they may
formulate their operational strategies in different ways. Thus,
the players’ independence is preserved, but with additional
rules applied by the coordinator to reconcile the players’
decisions.

This approach is developed in the remaining of this paper.
The method consists in decoupling the optimization problems
tackled by the different players by dividing the constraints
among the players in such a way that each one of them
respecting its part of the constraints will result in the whole,
original set of constraints being satisfied. Formally, the i-th
player will solve an optimization problem of the type:

min
ui

fi(ui) (6a)

subject to Aiui − pmax
i ≤ 0 (6b)

where Ai is the sub-matrix of A containing the columns
corresponding to the sub-vector ui of u, while new pmax

i

limits have to be found so that:

Aiui−pmax
i ≤ 0, ∀i ∈ {1, . . . , n} ⇒ Au−pmax ≤ 0 (7)

The vectors pmax
i should be adjusted by the coordinator in

such a way that a well defined and transparent policy is
followed to share the available resources, allowing the players
to check the coordinator decisions.

These vectors could be assigned ex ante by the coordinator,
to have the players perform n completely independent opti-
mizations. Another option, however, is to construct “dynami-
cally” the vectors pmax

i while observing the evolution of the

successive optimizations performed by the players, allowing in
some sense the coordinator to intervene in its evolution. This
second option has been used since it combines flexibility of
the coordination policy with an as large as possible operational
freedom for the players. In this spirit, a procedure is presented
in this paper where after a number of iterations between
the players and the coordinator, the whole original set of
constraints is satisfied by the final solution of the individual
optimization problems.

III. APPLICATION TO MARKET CLEARING

The above discussed general idea is now applied to the
congestion management problem of the overlapping markets.

A. Problem model

1) Market clearing problem: The i-th MO clears its market
by solving the following economic dispatch problem:

min
gi,di

cT
i gi − bT

i di (8a)

s. t. 1T gi = 1T di (8b)
0 ≤ gi ≤ gmax

i (8c)
0 ≤ di ≤ dmax

i (8d)

where ci, gmax
i and respectively bi, dmax

i are the vectors
of bids and quantities placed in market i by respectively the
generators and consumers, and 1 denotes a unit vector.

Equation (8a) is the social cost of the participants in market
i, while (8b) preserves the power balance. Constraints (8c)
and (8d) make sure that no generator will be asked to produce
more than the capacity it declared and no load to consume
more than it asked for.

2) Linear network model: In the linear network model (2),
matrix A is obtained from the bus-to-bus PTDFs [16] by using
a slack bus and expressing all bus-to-bus transactions as a
pair of two: one towards and another from the slack bus. To
this purpose, let us denote by PTDFl,mn the fraction of a
1 MW transaction from bus m to bus n that flows over a
line l 2. Furthermore, let us consider the matrix A′ such that
A′l,m = PTDFl,mn, where n is the slack bus. Multiplying A′

with the vector of bus power injections g−d gives the vector
of line power flows p. Matrix A is nothing but a suitable
permutation of A′ in order to be consistent with the order of
the elements in vector u and to account for both the positive
and negative direction of flow in a line. In other words, the
vector of line active power flows produced by the allocated
generation and loads (contained in the overall vector u) is
given by:

p = Au (9)

2This PTDF coefficient can be computed as:

PTDFl,mn =
Xim −Xjm −Xin + Xjn

xl

where i is the origin of line l, j its extremity, xl its reactance and Xim the
entry in the i-th row and m-th column of the bus reactance matrix X.
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and must obey the inequality p ≤ pmax (this inequality
considers both positive and negative flows, as already com-
mented), which we rewrite as:

Au− pmax ≤ 0 (10)

In Section III-B the decomposition of the line flow con-
straints (10) is presented, while in Section III-C the way the
coordinator adjusts the so decomposed constraints among the
MOs is developed. Then, in Section III-D a specific congestion
management policy is proposed.

B. Constraint decomposition

For the sake of presentation simplicity, we refer here to a
case with two MOs, denoted MO1 and MO2 respectively. The
generalization to more MOs is straightforward.

After partitioning the control vector, (10) is rewritten as:

A1u1 + A2u2 − pmax ≤ 0 (11)

It is easily seen that if the following constraints are satisfied:

by MO1: A1u1 − pmax
1 ≤ 0 (12a)

by MO2: A2u2 − pmax
2 ≤ 0 (12b)

where: pmax
1 + pmax

2 = pmax (12c)

then the overall constraints (11) are also satisfied. The con-
straints (12a) and (12b) are of the type (7).

Consider now the j-th constraint in (11), with the
corresponding components pmax

1j , pmax
2j and pmax

j of the
pmax

1 ,pmax
2 and pmax vectors, respectively. Clearly, pmax

1j +
pmax
2j = pmax

j . It can be guessed that the values of pmax
1j and

pmax
2j determine how much of the resource (transmission line

capacity) is being allocated to MO1 and MO2 respectively.
For instance, for a higher value of pmax

1j , MO1 may be less
constrained and a higher control effort will be put on MO2 to
satisfy the j-th constraint, and conversely. Thus, the coordina-
tor may implement the agreed congestion management policy
by suitably choosing the values pmax

ij for a congested line j.
Furthermore, the coordinator should share the limited resource
in a transparent way, that is, its choice should be justified by
information that can be made public to all involved MOs.

Note that a solution (u1,u2) which satisfies (12) will satisfy
the original constraints (11). However, the converse is not true:
it is possible to find controls u1 and u2 satisfying (11) but not
both (12a) and (12b). Thus the use of (12) somewhat reduces
the feasible space of the original optimization problem. This
is a price to pay for the convenience of the decomposition into
independent optimizations.

This reduction of the feasible space, however, should be
as low as possible. To this purpose, a procedure is proposed
that iteratively adjusts the values of pmax

1 and pmax
2 , while

converging towards a solution satisfying (10).

C. Adjustment of constraints by the coordinator

Assume that, in a first step, the two MOs optimize their
objective functions without taking care of the constraints; let

û1 and û2 be the corresponding controls. Assume furthermore
that the j-th constraint in (10) is violated by these settings, i.e.

a1jû1 + a2jû2 − pmax
j − δj = 0 (13)

where a1j and a2j are the j-th rows of matrices A1 and A2,
respectively, and δj > 0 is the amount by which line j is
overloaded. New controls u1 and u2 are sought, such that:

a1ju1 + a2ju2 − pmax
j ≤ 0 (14)

Subtracting (13) from (14) gives:

a1j(u1 − û1) + a2j(u2 − û2) + δj ≤ 0 (15)

Let the amount δj be shared over the two MOs according to:

δj = α1δj + α2δj with α1 + α2 = 1 (16)

where the choice of the α1 and α2 coefficients reflects the
coordinator’s policy regarding the treatment of the constraint.
Introducing (16) into (15) yields:

a1ju1 + α1δj − a1jû1 + a2ju2 + α2δj − a2jû2 ≤ 0 (17)

This inequality suggests the following decomposition of the
j-th constraint in accordance with (12):

for MO1: a1ju1 + α1δj − a1jû1 ≤ 0 (18a)
for MO2: a2ju2 + α2δj − a2jû2 ≤ 0 (18b)

This is equivalent to setting:

pmax
1j = a1jû1 − α1δj (19a)

pmax
2j = a2jû2 − α2δj (19b)

It is easily checked that pmax
1j + pmax

2j = pmax
j .

Generalizing, irrespective of the number of MOs, for each
overloaded line corresponding to a constraint j, the coordinator
should choose the coefficients αij , with

∑
i αij = 1. As a

result, the line capacity will be shared among the MOs, the i-th
one receiving a modified bound pmax

ij , with
∑

i pmax
ij = pmax

j .
Now, if the i-th MO solves its market clearing problem (8)

with the additional constraint:

aijui − pmax
ij ≤ 0 (20)

then, the new overall solution û will be such that the j-th
constraint will be satisfied. Now, other constraints may be
found violated by the new solution. If so, the coordinator will
in the same way share their transmission capacities among the
MOs which, in their turn, will clear their markets incorporating
the new constraints. In order not to get violated again in the
remaining of the procedure, each constraint j found violated
once should remain in the set of constraints decomposed by
the coordinator and incorporated into the MOs’ clearings at
subsequent iterations. If a constraint is no longer violated, δj

will obviously be negative (or equal to zero) but this does
not affect the validity of the formula used for sharing the
transmission capacity.

In summary, at every iteration k of the algorithm, the
coordinator collects the MOs’ control vectors u(k)

i , identifies
the resulting line overloads needing corrections δ

(k)
j and the

remaining available capacities of lines that have been over-
loaded in a previous iteration, and, decides the coefficients
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α
(k)
i that define the next share of the line capacities by the

various MOs.
Note that as long as a line does not get overloaded, the

coordinator does not impose any constraint to the MOs.
As already mentioned, the above decoupling method re-

duces the space searched for possible solutions of the system-
wide problem. On the other hand, the decoupling does not only
seek to separate the constraints in a consistent way that allows
independent market clearings, but also implements a specific
policy for the sharing of the available transmission capacity
among the MOs. The iterative procedure sequentially enforces
constraints based on the congestion management policy.

D. Congestion management policy

The policy proposed and tested in this paper consists in
sharing the effort needed to alleviate a line overload in
proportion to the responsibility that each MO has for the
existence of the overload.

Due to the linear model used for the representation of the
network, this responsibility is easily derived from the power
flow equation (9) after decomposing the vector u. Indeed (9)
can be rewritten as:

p =
∑

i

Aiui (21)

which gives the power flows caused by the i-th MO:

pi = Aiui (22)

So, if at some step of the procedure, the present solution û
causes a flow p̂j > pmax

j ( and hence δj = p̂j − pmax
j >

0), then the i-th MO, which creates a flow p̂ij according to
(22), can considered responsible for the fraction p̂ij/p̂j of the
overload.

Thus, the coefficient that the coordinator will use for the
i-th MO when decomposing the constraint will be:

αij =
p̂ij

p̂j
(23)

Substituting (23) into (19) gives:

pmax
ij = p̂ij − p̂ij

p̂j
(p̂j − pmax

j ) (24)

or pmax
ij =

p̂ij

p̂j
pmax

j (25)

This means that the policy of attributing the correction effort
according to the responsibility of the MO is equivalent to
sharing the line capacity proportionally to the use each MO is
making of the line.

E. Graphical representation

In this subsection, the described decomposition of the set
of linear constraints, as well as the iterative adjustment of
the decomposed constraints are illustrated in a graphical way.
To this purpose, a two-MO case with one control variable per
MO (u1 and u2 respectively) is assumed. Each constraint j is a
linear combination of the two controls: a1ju1+a2ju2+bj ≤ 0.
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Fig. 1: Graphical illustration

In Fig. 1 the feasible region corresponding to five such
constraints is presented (non colored area). It is not possible
to construct the same region by constraints that involve either
only u1 or only u2.

Let us assume that the solution resulting from the indepen-
dent market clearings violates two of the constraints (point
S0 and constraints A and B in Fig. 1). This infeasibility
initiates the iterative algorithm and each of the two constraints
is decomposed following the congestion management policy.
This results into two constraints being communicated to each
MO, one for each overloaded line: a1Au1 + b1A ≤ 0 to
MO1 and a2Au2 + b2A ≤ 0 to MO2 for line A (vertical and
respectively horizontal dashed lines starting from a point on
A), a1Bu1+b1B ≤ 0 to MO1 and a2Bu2+b2B ≤ 0 to MO2 for
line B (similarly, dashed lines starting on B). Each pair of these
constraints guarantees that at the next iteration the original
constraint will be satisfied while they share the corresponding
available transmission capacity between the two MOs. Note
that the non violated constraints remain “invisible” to the MOs;
the searched space is not reduced unless a constraint violation
is encountered. In fact, the searched space for the next solution
is the intersection of the above decomposed constraints and is
highlighted with horizontal lines in the figure.

Let the point S1 in Fig. 1 be the new solution that results
from the next iteration. As this solution happens to be feasible,
it could be chosen to be actually implemented and the proce-
dure could stop here. However, in order to give the MOs the
opportunity to improve their schedules, constraints A and B
are once more decomposed, based on the present operating
point (S1), again according to the congestion management
policy. The dashed-dotted lines in Fig. 1 indicate this new
decomposition. One can see that the searched space for the
new solution has now been enlarged by the area shown with
vertical lines in the figure. This results in a new solution (point
S2). The procedure continues like this, finally converging to
the point SF where one of the two initially violated constraints
is active.

It is noteworthy that the coordinator has not as objective
to guarantee the feasibility of the next iteration’s solution. It
just checks for convergence and shares the capacity of the
already overloaded lines. If at any step of the algorithm a
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new line gets overloaded, the corresponding constraint will
be also subsequently decomposed among the MOs. Coming
back to the example of Fig. 1, if S1b had been the solution
after iteration 1, then constraint D would have been also
decomposed and communicated to the MOs, obliging them
to provide solutions above (for MO-2) and on the left (for
MO-1) of the two new decomposed constraints, making the
searched space be a rectangle.

F. Iterating between market operators and coordinator

The procedure by which the coordinator iteratively enforces
constraints to the MOs, based on its congestion management
policy, can be summarized as follows:

1) the MOs solve their optimization problems without
taking into account any common constraints and come
up with their individual controls;

2) the resulting flows are computed by the coordinator;
3) for those line flows exceeding their limits, decomposed

constraints are constructed according to (20), (25);
4) the MOs clear again their individual markets, incorpo-

rating the constraints received from the coordinator;
5) when new constraints are violated, new decomposed

constraints are added to the MO problems, while all
previously violated constraints are decomposed again,
each time based on the present solution;

6) the procedure terminates when an equilibrium is
reached.

G. Nash equilibrium property of the solution

It is important for the algorithm to provide solutions that
are Nash equilibria of the original uncoordinated problem,
defined by each MO clearing independently its market as in
(3). The reason is that this makes the final point acceptable
by everybody, since nobody has the power to modify it (for
its own profit) by its own means only.

This can be visualized in Fig. 1, where point SF denotes
the final solution of the algorithm. No MO can, modifying
its control, improve its objective (assuming that MO-1 tries
to decrease u1 and MO-2 t increase u2 as suggested by the
example) without violating the problem’s original constraints
(in particular constraint A). This makes SF a Nash equilibrium.

This is, indeed, a general property of the algorithm as will
be briefly explained in the sequel.

Let us recall that even if no line is overloaded at a given
iteration (no δj > 0) the procedure continues, sharing to the
MOs the remaining capacities of the previously overloaded
lines according to the congestion policy, until no change
in flows is encountered between two subsequent iterations.
Hence, at the final solution, all lines fall into one of the
three categories: 1. they have never been overloaded; 2. their
capacity is totally used (δj = 0); or 3. they have been
overloaded but, finally, their capacity is not fully used (δj < 0).
The third case may happen if a line flow is limited as a side
effect of the effort to unload another line.

For the fully used lines, it can be shown using (13) and
(19) that the corresponding inequality constraint in (3) is the
same as the constraint (20) at the equilibrium of the proposed

coordinated algorithm. The other constraints in (3) do not
affect the solution obtained at the last iteration of the proposed
algorithm, since they are not binding. So, they should not
affect the solution of problem (3) either. As a result, the
solution obtained by each MO when solving (3) with the
other controls fixed to the values of the final solution of the
algorithm, is to keep itself the same control settings. This
by definition makes this solution a Nash equilibrium of the
original uncoordinated problem.

IV. RESULTS AND DISCUSSION

A. Test system

The iterative algorithm has been tested on a small 15-
bus system, divided into 3 areas-markets, each of which is
supposed to be cleared by a different MO (see Fig. 2). The
costs-bids of the generators have been adapted to create areas
with cheap and others with more expensive generation. The
load of each area is assumed inelastic and, thus, the MOs
compete for the allocation of the most interesting generators.
All areas have the same amount of load to serve (600 MW).
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Fig. 2: 3-area test system

In Fig. 2, each area is denoted by a letter (A, B and C). Next
to each generator, its maximum production capacity (in MW)
as well as its bid (in euros/MWh) are shown. Each generator
capacity has been divided by three, i.e. each generator bids
one third of its capacity to every MO. For the sake of clarity,
the same bid per generator has been placed to all the MOs.
Generally, it is the choice of each generator how much of its
capacity it offers to every market and at what price (a generator
may bid differently to different markets).

B. Schedules by system-wide and proposed algorithm

It took 9 iterations for the algorithm to converge to the
final solution. This is presented in Tables I and II, where the
generation schedules per MO and the resulting flows in the
congested and tie-lines are shown, respectively. At the final
solution no line is overloaded, but the capacities of some of
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TABLE I: Final point; generation chosen by each MO
Gen bid MO-A MO-B MO-C Total
gA1 5 134 99 17 250
gA2 4 96 59 95 250
gA4 15 94 0 0 94
gA5 8 150 80 0 230
gB1 11 26 100 124 250
gB2 10 100 100 50 250
gB4 20 0 12 0 12
gB5 18 0 150 114 264
gC1 30 0 0 28 28
gC2 30 0 0 100 100
gC4 40 0 0 0 0
gC5 35 0 0 72 72

TABLE II: Final point; resulting flows
Line pA pB pC p pmax

A1A3 21 85 44 150 150
A2A3 9 73 68 150 150
B1B3 52 0 98 150 150
B2B3 74 0 76 150 150
A3B3 -112 178 -42 24 200
A4C4 -14 60 154 200 200
B4C3 14 -60 246 200 200

them are fully used. In Table II, the participation of each MO’s
schedule to the line flows is also detailed (columns 2-4).

In Tables III and IV, the schedules and the flows resulting
from a system-wide common market clearing are presented. It
has been obtained by optimizing the social cost (5) of the entire
interconnection, subject to the constraints (2), as well as three
equality constraints of the type (8b), each of them ensuring
the power balance in the corresponding MO’s market.

The congestion management policy is highlighted by com-
paring Tables I, II with Tables III, IV. During the iterations,
MO-C is forced to allocate more expensive generation into its
own area in order to alleviate, proportionally to its responsibil-
ity (Eq. (25)), the congestion appearing in the tie-lines A4C4
and B4C3 (both importing into area C). On the contrary, when
the problem is solved as a single optimization, the allocation
of generators is made in such a way that, by properly creating
some counterflows, the use of more expensive generators in
area C is decreased. Table V shows the impact on the costs
of the MOs. In the case of the system-wide clearing, the cost
of MO-C is smaller than its cost at the final solution of the
proposed algorithm, while the costs of MO-A and MO-B are
larger. This however results in an overall smaller total cost.

C. Assessing the final solution

It is of interest to examine the properties of the operating
point finally reached by the algorithm, in particular whether it
is a desirable one to operate at.

In subsection III-G, this operating point was shown to be
Nash equilibrium of the original uncoordinated problem. In
order for the participants to adhere to such an algorithm, they
have to be convinced that the final result will be fair and will
exploit in the best possible way the transfer capacity of the
electric network. Thus, let us here examine the quality of this
Nash equilibrium.

TABLE III: System-wide market clearing
Gen bid MO-A MO-B MO-C Total
gA1 5 150 50 50 250
gA2 4 100 100 50 250
gA4 15 0 0 0 0
gA5 8 150 150 0 300
gB1 11 0 100 150 250
gB2 10 50 100 100 250
gB4 20 0 0 0 0
gB5 18 150 0 150 300
gC1 30 0 0 0 0
gC2 30 0 100 100 200
gC4 40 0 0 0 0
gC5 35 0 0 0 0

TABLE IV: System-wide market clearing; resulting flows
Line pA pB pC p pmax

A1A3 33 67 50 150 150
A2A3 17 83 50 150 150
B1B3 17 0 133 150 150
B2B3 33 0 117 150 150
A3B3 -133 225 -92 0 200
A4C4 67 -175 308 200 200
B4C3 -67 75 192 200 200

TABLE V: Costs comparison
Cost: MO-A MO-B MO-C Total

system-wide clearing 5550 6950 8800 21300
proposed algorithm 4950 6412 10740 22102

To this purpose, the Pareto efficiency of the final point has
been checked. Given an operating point defined by the gener-
ation schedules gA,gB ,gC , with resulting costs CA, CB , CC ,
a way to check whether this is Pareto optimal is to solve the
system-wide market clearing problem described in the previ-
ous subsection, with the following three additional constraints:

cT
i gi ≤ Ci , i ∈ {A,B,C} (26)

Let us call this the Pareto Efficiency Optimization Problem
(PEOP).

The proposed method provides a feasible solution, where:

cT
i gi = Ci , i ∈ {A,B,C} (27)

So, if the outcome of PEOP satisfies Eq. (27) (this may happen
even with a schedule different than (gA,gB ,gC)), then the
equilibrium point of the proposed algorithm is a Pareto optimal
one. Otherwise, at the solution g of PEOP, at least one of the
inequalities in (26) is a strict one (cT

i gi < Ci), which means
that there exists (at least) one solution that decreases at least
one of the cost functions without increasing any of the others;
so the equilibrium point is not a Pareto optimal one.

Figure 3 illustrates this discussion, in a two-dimensional
example. A solution inside the colored area dominates the
Nash equilibrium, since both objectives are better off there. On
the contrary, a solution outside that area cannot be considered
“better” than the Nash equilibrium, since there one of the
involved MOs is worse off than at the Nash solution.

It turned out that the final solution of the iterative procedure
is not a Pareto optimal point. In Table VI the resulting costs
are compared. Obviously, if that PEOP solution could be
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Fig. 3: Nash equilibrium compared to the Pareto set

TABLE VI: Cost comparison with a Pareto point
Cost: MO-A MO-B MO-C Total
PEOP 4900 6348 10052 21300

proposed algorithm 4950 6412 10740 22102

TABLE VII: Pareto points
wA wB wC cT

AgA cT
BgB cT

CgC Total Cost
1.0 0.0 0.0 4450 6348 10633 21431
0.4 0.3 0.3 4450 6348 10502 21300
0.3 0.4 0.3 4900 5767 10633 21300
0.0 1.0 0.0 4900 5767 10633 21300
0.3 0.3 0.4 4900 6348 10052 21300
0.0 0.0 1.0 4900 6348 10052 21300

implemented, it would be for the profit of all MOs, since it
dominates the solution of the proposed algorithm. However,
finding this point has been made possible only after assembling
together, into a single problem, all the private information of
the MOs, which would not preserve the independence of the
different markets.

The system-wide market clearing solution (see Table V) is
also Pareto optimal. However, it cannot be judged “better”
than the outcome of the proposed algorithm because it is not
a simultaneous improvement of all the MOs’ social costs.

Finally, using (4) as an objective instead of (5) and varying
the factors wi, gave more points dominating the equilibrium
solution. However, the one presented in Table VI turned out
to be the only one where all three MO social costs are
simultaneously decreased. In order to find more generation
schedules that improve all three objectives, Eq. (26) has been
modified to the following:

cT
i gi ≤ αCi, with α < 1 (28)

For α < 0.99 the optimization problem turned out to be
infeasible. This shows how close to the Pareto set is the
solution of the proposed algorithm. In Table VII some results
for α = 0.99 are presented for different weighting factors wi.
A minimum reduction of 1% is guaranteed for all costs in all
cases, while, depending on the relative values of the weighting
factors, some costs may be further decreased.

V. CONCLUSION

The possibility for market participants to place their bids
into the market of their choice, irrespective of where they
are geographically located in an interconnection, has been
investigated in this paper. Different approaches to face the
situation have been presented, while an iterative algorithm

has been proposed to deal with the resulting congestion
management problem, keeping at the same time the operational
independence of the different markets. The algorithm imple-
ments a specific policy for managing congestions, according
to which the involved MOs are asked to participate to the
overload alleviation in proportion to their participation on the
line loading.

The outcome of the procedure has been illustrated on a small
system. The resulting solution has been assessed in two ways.
First, its property of being a Nash equilibrium has been shown,
and, second, its proximity to the set of Pareto optimal solutions
has been checked with satisfactory results, since it turned out
that, even by assembling all the originally private information
together and solving a single optimization problem, the MOs
social costs can be improved simultaneously by only 1%.

Further research is ongoing, addressing the possibility of
replacing the DC model with a full AC model of the in-
terconnection and including N − 1 security considerations
in the algorithm. Alternative congestion management policies
could also be envisaged and tested. Finally, the possibility of
shifting unused generators from one MO to another during the
execution of the algorithm could be contemplated.
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