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Abstract—The aim of this work is to design intra-daily recourse
strategies which may be used by operators to decide in real-
time the modifications to bring to planned generation schedules
of a set of units in order to respond to deviations from the
forecasted operating scenario. Our aim is to design strategies
that are interpretable by human operators, that comply with
real-time constraints and that cover the major disturbances that
may appear during the next day. To this end we propose a
new framework using supervised learning to infer such recourse
strategies from simulations of the system under a sample of
conditions representing possible deviations from the forecast.
This framework is validated on a realistic generation system of
medium size.

Index Terms—Mixed integer linear programming, generation
planning, uncertainty management, machine learning.

I. INTRODUCTION

In the electricity generation management context, the nu-

merous sources of uncertainty imply that the problems related

to different time horizons are treated as multistage decision

problems with recourses. In this work we focus on the design

of very short term (intra-daily) recourse strategies. These

strategies are used by operators to decide in real-time the

modifications to bring to the generation schedules of a set of

units in order to respond in a safe and economically efficient

way to deviations from the forecasted operating scenario. To

be useful, such recourse strategies must be interpretable by

human operators and comply with real-time constraints. At the

same time, they should cover all the major likely or unlikely

disturbances that may appear during the day, such as the

loss of any generating unit and/or significant deviations from

forecasted demand conditions. In current practice, a reference

schedule (unit commitment) of all power plants is typically

computed one day ahead for the next 24 hours, by using a

detailed model of the generation system and an appropriate

dynamic optimization algorithm (see, e.g., [1] for more details

about a formulation and solution method for this problem),

while the intra-daily recourse strategies are pre-determined by

experts during off-line studies.

Within this context, the purpose of our work is to develop

a systematic and essentially automatic approach to (re)design

intra-daily recourse strategies compatible with real-time con-

straints and interpretable by human operators, so as to allow

them to respond to an a priori defined set of disturbances in
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a near-optimal way. The proposed approach consists in pre-

computing the day ahead optimal adjustments of the genera-

tion schedule for the time slots where these adjustments can

be made and for a representative set of disturbance scenarios.

The resulting database is then fed to a supervised learning

algorithm which interprets the information and computes

decision rules for the intra-daily recourses. The decisions

are further post-processed in order to comply with real-time

feasibility constraints and validated on an independent set

of disturbance scenarios, before they are handed over to the

operators. An interesting byproduct of supervised learning is

to help understanding the influences of the different sources

of uncertainty on these operating strategies.

The rest of the paper is organized as follows. Section II

describes the different steps of the proposed approach and pro-

vides background information about supervised learning and

intra-daily generation management tools. Section III reports

on a detailed case study with a representative test problem

of medium size, and Section IV discusses our proposal with

respect to related work in the context of multistage stochastic

programming. Finally, section V concludes and discusses

directions for further work.

II. METHODOLOGY

We suppose that we have an optimization algorithm to

compute an open-loop generation schedule for a period of time

ahead (typically a few hours) from a model of the considered

generation system and for a given scenario describing the

electric load that has to be served and the availabilities of

the generation units over this time-period. In practice, such

algorithms are routinely used by generating companies to

derive every day the planned operation of their assets for

the next 24 hours.1 In order to handle in real-time deviations

from the forecasted scenario (see upper and middle parts of

Figure 1), operators use so-called recourse strategies, which

are decision rules mapping information obtained about the

actual realization of the scenario at some predefined time

steps (e.g. at times t1 and t2 in the lower part Figure 1)

towards adjustments of the planned generation schedule of the

subsequent time steps.

We propose an approach to compute these recourse strate-

gies from the information available the day ahead, in the same

environment where the operation plan of the units is computed

for the next day and using the same optimization algorithm

1To simplify the presentation, but without loss of generality, we do not
consider the case where the decision making process explicitly implies price-
forecasts and decision variables representing market operations.
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Fig. 1. Top: Forecast (solid) and realization (dotted) of the load curve
(part of the scenario). Middle: Forecast (solid) and realization (dashed) of
the availability of a generation unit (other part of the scenario). Bottom:
illustration of a recourse strategy. The solid curve depicts the planned actions,
the other curves represent the recourses taken at different time steps.
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Fig. 2. Schematic overview of the proposed supervised learning-based
approach for building intra-daily recourse strategies.

that is used to compute this plan. The proposed approach

is depicted schematically on Figure 2. It is composed of the

following main ingredients:

1) the generation of a set of perturbed scenarios around a

reference scenario,

2) the re-optimization of the generation planning for each

perturbed scenario from the instant we take the recourses

(tr) to the end of the optimization period (T ),

3) the processing by supervised learning of the information

contained in the optimally adjusted plannings to build a

near-optimal recourse strategy,

4) the post-processing of the learnt rules to impose feasi-

bility (e.g. dynamic, coupling) constraints,

5) the validation of the learnt and/or post-processed rules

on an independent set of scenarios.

These steps are further described in the following subsections.

A. Generation of perturbed scenarios

We need a way to generate a set of demand and availability

scenarios representing the range of deviations from the forecast

that we want to cover with our recourse strategies. In practice,

there are essentially two approaches to gather a set of such

scenarios, namely their collection from actual operation of

the system or the use of a Monte-Carlo simulation approach

exploiting a probabilistic model of possible deviations from

forecasts. In our approach, we can use either of these two

approaches, or even a combination of them, since the input to

the next step is merely a set of time series representing the

deviation of load from the forecast and the moments at which

a particular generation unit becomes unavailable.

In our case study, we start from the scenario containing the

day ahead load forecast and the generation units availabilities

used to compute a reference schedule. Then we generate

different perturbed scenarios randomly around the reference

scenario (Figure 3(a)) by combining a probabilistic model of

load-forecast errors and a screening of generation outages.

B. Re-optimization of perturbed scenarios

Consider a set D of load patterns, and a set O of generation

units which could become unavailable next day. Let π⋆ be the

optimal planning associated to a reference load scenario D⋆ ∈
D. Suppose that we want to compute an optimal recourse

strategy σ∗
tr

(ξtr
) for a single a priori fixed recourse time tr ∈

{t0, t0 + 1, . . . , T}, i.e. we want to know the modifications

to bring to all the units from time tr + 1 to T once the real

behavior ξtr
of the system between time t0 and tr is known.

Let S be the set of scenarios made of one demand of D and

of a unit outage of O imposed at a time in {t0, ..., tr}. First,

we compute the plannings πs for each scenario s ∈ S by

imposing the planning π⋆ for times t0 to tr and by using the

given optimization algorithm so as to adjust the planning for

time tr + 1 to T .

The difference πs −π⋆ illustrates the impact of the demand

variation and the unit outage of scenario s on the generation

schedule (Figure 3(b)). This adjustment actually represents the

difference between the open loop plan computed the day ahead

from the forecasts and the optimally adjusted plan if at time

tr perfect information became available about the realization

of the scenario for the whole period t0 to T . Notice that

in real-time operation the information available at time tr
to take the recourse decision is not so strong; while it may

perfectly describe the realization up to tr it will in general

only reduce, but not totally remove, the uncertainty about the

future realization of the process during (tr, T ).
Therefore, the re-optimization of the perturbed scenarios

provides a database of generation adjustments which are

optimistically biased because they assume perfect information

about the behavior of the system at subsequent time steps. This

over-fitting of the sample of perturbed scenarios is however

partially countered by the application of supervised learning

at the next step of the proposed approach which enforces

the projection of this information on a set of non-anticipative

decision strategies which are only function of the information

available at time tr.

C. Supervised learning application

1) Supervised learning background: Machine learning is

a sub-field of artificial intelligence in which algorithms are

designed to make a computer able to learn from data. Among

the different fields of machine learning stands supervised

learning. In the supervised learning (SL) paradigm, the data is

organized as a collection of N objects {(xi, yi)}
N
i=1. Classi-

cally, each object i is described by a vector of input features2

xi = (x1
i , . . . , x

n
i ) ∈ X and an output value yi ∈ Y . The

2Subsequently in this paper, we will use subscripts i to denote samples,
while we will use superscripts k to denote specific features, while denoting
input and/or output information.
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Fig. 3. The main steps to compute an approximation of σ∗

tr

(ξtr
).

goal is to find a mapping f : X 7→ Y between the features

and the output values. Ideally we would like f to minimize

the expected loss L = Ex,y{ℓ(f(x), y)} (according to a

predefined loss function ℓ : Y × Y 7→ R+) over the whole

input-output space. As we usually do not know the distribution

p(x, y), most supervised learning algorithms actually search

for a function f which minimizes an estimate of L (e.g. the

empirical loss 1

N

∑N
i=1

ℓ(f(xi), yi)).
2) Supervised learning problem formulation: We want to

exploit the simulations of section II-B to formulate a super-

vised learning problem in order to derive an approximation

of σ̂∗
tr

(ξtr
) that will serve as a recourse strategy mapping the

information available at tr to generation adjustments at sub-

sequent time steps. The direct formulation of this supervised

learning problem would consist in using as output space Y a

set of multi-dimensional time-series representing the possible

power level evolutions of all generation units for t > tr, with

the goal of approximating these latter as a function of the

state of the generation system at time tr and the information

about the realization of the load and generation availability

scenario collected until tr (which are also time series). This

is schematically depicted in Figure 3(c).

In order to apply standard supervised regression algorithms,

which operate with a scalar (i.e. one-dimensional) output

space, we simplified this problem by reducing it to a set of

elementary supervised learning problems, one for each gener-

ation unit. This yields, for each individual unit, a supervised

learning problem, where the output is now a one-dimensional

time-series describing the adjustments of this particular unit.

Furthermore, in order to tackle the temporal dimension of

the outputs, we used a supervised learning formulation where

the temporal dimension is explicitly represented in the input

features. Thus, if the original problem is formulated over

M units, our decomposition yields M elementary regression

problems, where the input space is the Cartesian product of

the original input space X and the recourse time interval, and

where the output is a real-number representing the generation

level of a specific unit as a function of the information gathered

at time tr and the considered prediction time-step tp > tr.

The overall description of the supervised learning of re-

course strategies is summarized in Tables I and II.

TABLE I
AN ITEM OF THE LEARNING SET FOR A GENERATION UNIT RELATED

SUB-PROBLEM

Inputs output

• state of the system at time tr
• observed demand deviation from

forecasting until time tr ,
• unit(s) outage before time tr ,
• prediction time tp,

power of the unit at time tp.

TABLE II
CONSTRUCTION OF A RECOURSE STRATEGY.

Input: an optimal planning π⋆ associated to a reference demand scenario
D⋆ ∈ D.
Output: a recourse strategy σ̂tr

(ξtr
) associated to π⋆ for the recourse

time tr .

1. Let S be the set of scenarios made of one demand of D and of a
unit outage event,

2. compute a planning πs adjusted from tr +1 to T for each scenario
s ∈ S by imposing the planning π⋆ for times t0 to tr ,

3. solve a set of M supervised learning problems in order to derive an
approximation σ̂∗

tr

(ξtr
) of the optimal recourse strategy for time

tr , ξtr
being the state information available at time tr .

Once the overall problem has been reduced to a number of

standard regression problems, one could in principle apply any

available supervised regression algorithm. In our preliminary

investigations, we have applied several such algorithms, in par-

ticular the so-called ε−support vector machines for regression

(ε-SVR) [2], and a variety of methods based on regression

trees [3]. In these investigations, we found that the so-called

Extra-Trees supervised learning method [4] yielded in general

the best compromise between accuracy and computational

efficiency, so we decided to stick to this method in our case

study reported below. For the sake of completeness, we recall

in the next subsection the rationale and the main features

of this method. The reader who is already familiar with this

material, may skip this section.

3) The Extra-Trees supervised learning method: In this sec-

tion we recall the main principles of the so-called Extra-Trees

supervised regression method by stressing its characteristics

of interest in our application. Note that this section is very
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similar to the section II.B of [5].

Tree-based supervised learning is well known for its com-

putational efficiency, interpretability, robustness to outliers,

and its capability to cope with high-dimensional problems

with a large number of irrelevant input features. The idea

is to recursively split the training set, thanks to tests on the

value of the features, in several subsets in order to decrease a

measure of impurity until the subsets are composed of object

sufficiently similar in the output space. In regression trees, a

usual impurity measure of a subset is the variance of the output

variable y: the higher the variance of y in a subset of objects,

the more heterogeneous its objects.

A classical single tree induction algorithm thus works as

follows. First the training sample TS is attached to the top

node of the tree. Then for each node, three steps are applied:

• evaluation of the necessity to split the node,

• if no, the node becomes a terminal node (a leaf) and a

label defining the output value is assigned to this node,

• otherwise, the node becomes an internal node (a test

node), and the feature and its cut-off value that define

together how to split the node are determined, so as to

partition its associated set of objects in two subsets which

will correspond to two new nodes of the tree that form

the two children of the considered test node.

If we use the mean square error criterion to estimate the

accuracy of the tree predictor, it turns out that assigning the

mean value of the outputs of the objects constituting a terminal

node is optimal with respect to empirical prediction error.

To split a node, a test is defined by a feature xk (k ∈
{1, . . . , dim(X )}) and a cut-off value (vk). All the objects

satisfying the test xk > vk are assigned to the right descen-

dant node and the remaining ones are assigned to the left

descendant node. To find the best test, a score is computed

for every input feature and for every possible cut-off value.

For regression trees, a typical score is the decrease of output

variance in the two descendant nodes with respect to the output

variance of the current node. The test with the highest variance

reduction is thus chosen. Notice that, if the mean square error

is chosen as error criterion, the split with the highest output

variance reduction turns out to be the split that is optimal in

terms of the reduction of the empirical prediction error.

It is more complicated to assess if a node should be split.

A classical way is to stop splitting when the number of

objects in a node is below a threshold value nmin, but many

other techniques have been developed to identify the tree of

optimal complexity (pruning methods). For a more complete

description of these pruning algorithms see for example [3].

While the learning of single regression trees is computa-

tionally very efficient and often leads to highly interpretable

decision rules, is has however been shown that single tree-

based methods have a high learning variance3 [6], which

implies that they are often suboptimal in terms of accuracy,

3The learning variance of a learning algorithm quantifies the dependence of
the models that this algorithm produces with respect to the random nature of
the training sample. In practice, high learning variance implies low accuracy.
This type of variance should not be confused with the variance of the output
variable used in splitting procedure to develop the regression trees.

specially on problems where the information is spread among

a large number of equally relevant features.

Therefore, tree-based ensemble methods have been intro-

duced to decrease variance and to allow them to cope with very

complex tasks such as image, text and time-series classifica-

tion. The general idea behind these methods is to avoid giving

a single tree the capability of modeling the whole training

set. This can be achieved either by perturbing the training set,

either by perturbing the construction algorithm, in order to

build from a training set an (often) very large set of different

trees, and by deriving the prediction h by aggregating in some

fashion (e.g. by voting or by averaging) the predictions derived

from each tree in the ensemble.

A major cause of learning variance of regression trees is

the sensitivity of test nodes cut-off value to the content of

the training set. The main aim of the Extra-Trees [4] is to

mitigate this behavior by randomly perturbing the structure of

the trees, thus decreasing their dependence on the training set.

During the construction phase of a single tree in this method,

the search for the best feature and the best threshold at each

node is somewhat randomized. The level of randomization

is related to the size of the subset of input features which

are considered in the search of the best split according to a

given score measure. This is controlled through the parameter

K. In addition, for each feature of the subset the threshold

is also randomly chosen in its variation interval. Except for

the above, each of the T trees is built on the whole training

set using a classical top down induction algorithm, without

pruning. Because all the trees are built independently and

because the induction procedure is simplified, this algorithm is

computationally very efficient. The prediction of the ensemble

is obtained by averaging the prediction of the single trees. With

respect to classical single trees, the accuracy of this method

is in general dramatically increased.

Notice that in addition to producing fast and often very

accurate decision rules, the Extra-Trees method produces as

a byproduct a scoring of the input features in terms of their

usefulness to predict the output information. These so-called

variable importances may be used in practice to analyze the

impact of the different features and hence to better understand

the problem under consideration. We will use these importance

measures in our case study to analyze the impact of different

features on the recourse decisions. We refer the interested

reader to [7] for further information about the computation

and nature of these variable importances.

D. Post-processing of predicted recourses

Given the way we have formulated the supervised learn-

ing problems, we expect to obtain recourse strategies which

are close to optimal, but which do not necessarily satisfy

coupling constraints among generating units and which may

also not satisfy some of the individual operating constraints

of each unit (e.g. dynamic constraints limiting ramping or

start-up/shut-down times, or non convex constraints defining

the range of admissible power levels). Therefore, a post-

processing stage must be applied to these strategies.

We first notice that data on which the learning is done

satisfies coupling constraints and also the individual dynamic
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and operating constraints for each unit (see section III-C). For

example, the generation interval of a unit is non-convex: it

is either 0 MW, either between Pmin and Pmax, a unit must

stay on for a certain amount of time once it has been started,

... . However, the Extra-Trees algorithm produces decision

strategies which are essentially convex combinations of the

output values of the training sample, and which in general do

not satisfy all constraints.

In the current version of our approach, we decided to post-

process the decisions produced by the learning algorithm for

a given generation unit, so that they satisfy the individual

dynamic and operating constraints of this unit, so as to yield

a feasible operating strategy. On the other hand, we decided

to not enforce the coupling constraints, hence if the adjusted

generating plan leads to a gap between the total generation

and the total load, this gap is compensated by reserve energy

purchase and is (strongly) penalized when evaluating cost

induced by this strategy. As we will see however in our case

study, the resulting increase of cost is in practice rather small

and hence does not jeopardize the interest of the approach.

To ensure the satisfaction of real-time feasibility constraints

of a given unit, we impose them a posteriori, at the moment

where the recourse action is applied. First we compute a

recourse based on the information gathered in ξtr
and the

decision rules built by supervised learning. Then we modify

these recourses and impose constraints unit by unit. To do this,

we compute the closest recourse that satisfies the constraints of

the unit, by formulating a simple optimization problem which

may be solved quickly and independently for each unit.

E. Validation of the recourse strategies

In order to validate the recourse strategies computed by

supervised learning, we use an independent set of scenarios in

the following way. First, each scenario is solved optimally, in

the same fashion as we computed the recourse decisions for

the learning sample. This yields for each validation scenario

a generation schedule that minimizes the costs of operation

under the hypothesis of perfect information. Then, for each

scenario the recourses are computed by using the Extra-

Trees based decision rules, by post-processing them, and

by computing the overal induced operating costs, including

the penalization of the possible violation of the coupling

constraint. Finally, by comparing the resulting costs, we may

measure the distance between the inferred strategies under

different conditions (e.g. using different settings of the Extra-

Trees method, different sets of input features, or different sizes

of learning samples) and assess them also with respect to

the (admittedly unreachable) ideal strategy based on perfect

information, or any other candidate strategy.

III. CASE STUDY

A. Test system

The medium-sized test system we use is composed of eight

thermal units of different capacities, generation costs and tech-

nical characteristics, and three hydroelectric valleys. It comes

from real data provided by Electricité de France (EDF). The

simulations follow EDF’s industrial practice : to compute the

reference planning for the next day the optimization horizon

is of two days and is divided into 48 periods of 30 minutes.

The corresponding optimization model contains 30, 000
variables, one half of them being binary, and 40, 000 con-

straints [8]. The optimization problems are solved using the

branch-and-cut algorithm implemented in CPLEX [9].

We then consider a single recourse stage tr located at 6

AM and apply our framework to compute the recourse strategy

on a half-hourly basis until the end of the day, based on the

deviations observed between 0 and 6 AM.

B. Scenario generation

The load scenario generator uses a statistical model of the

load derived from three years of historical data, gathered in a

vector d = (d1, ..., dN ), where N is the complete horizon.

Each day contains T samples of the historical load. Each

component of this vector is decomposed in a seasonal part

plus a daily mean-corrected part:

dn = d̄i + di,τ , n = 1, ..., N.

In this expression, i is the day corresponding to the time step

n, i = ⌈n/T ⌉, and τ is the time step inside this day:

τ = n − (i − 1) × T.

The seasonal part is obtained by taking the average load for

each day: d̄i = 1/T
∑

n:⌈n/T⌉=i dn. The daily part is gathered

in a matrix D ∈ R
⌈N/T⌉×T . We then assign a category

function of the load profile to each row of D, i.e. to each

day record. For clustering we used an algorithm similar to

the k-means called pam, which is based on the medoids

instead of the means [10], and chose the value of k = 4
by experiment. Roughly, this value of k divides days in the

following categories: working and week end days for the

two daily saving time periods. We then use classical time

series modelling tools to obtain an auto regressive model of

the error between the forecast and the realization in each

category. These models allow us to generate perturbations

around a given scenario. We finally add a constant offset to

each generated signal using the distribution of the daily mean

load for the corresponding cluster.

As concerns unexpected outages of generation units, we

consider that only a single unit may be outaged in each

scenario between 0 and 6 AM and may not be restarted until

12 PM of the same day.

C. Mathematical optimization model

For the sake of completeness we provide a synthetic descrip-

tion of the generation scheduling model that we used, more

details may be found in [8], and a discussion of similar models

in [11] or [12]. Here we merely provide an enumeration of the

decision variables for each type of generation unit, of the type

of constraints that apply to their dynamics and of the coupling

constraints. The overall problem is then stated as a Mixed

Integer Linear Program. As already mentioned, although we

focus on one day ahead planning, the optimization is run over

two consecutive days so as to avoid side effects at the end of

the first day.
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1) Thermal units: At each time step the power generated

is either 0 MW or a value in the range [Pmin, Pmax], where

Pmin > 0 MW. Hence both a binary and a real variable

are needed to model the power of a unit. Also two variables

are needed to model the contribution of a generation unit to

primary and secondary reserves and some constraints restrict

the power that is actually generated to fulfill these reserves.

Two additional variables represent start-ups and shut-downs,

and a last one the start-up cost which is a function of the shut-

down time. Additional constraints model the minimum up and

down times respectively, as well as maximum ramp rates. A

fixed cost as well as a cost proportional to the power generated

are incurred when the unit is on.

2) Hydro-electric generation: A valley is considered as a

single generation unit, with water levels of reservoirs con-

strained in an acceptable range. We model the possibility to

spill some water when a reservoir is full. Valleys may contain

pumped storage. Generation plants have a piecewise linear

power-water flow curve to model the sequential activation of

turbines. The contribution to primary reserve is a percentage

of the power generated and some secondary reserve levels are

associated to break-points in the piecewise linear curve. The

actual secondary contribution is interpolated from these values

and the value of the water flow. Thus a valley is represented

as a graph where reservoirs and plants are nodes, and we must

decide the amount of water that flows (real variables) along the

edges and hence the number of turbines or pumps to activate

in each plant (binary variables) at each time step. From these

variables we express the other variables: the generation level,

the primary and secondary contributions and the level of the

reservoirs. An opportunity cost is assigned to the water of

some reservoirs to penalize (or reward) the use of water.

3) Coupling constraints: Load as well as ancillary services

fulfillment constitute constraints linking all the generation

units. In each such constraint a slack variable compensates

lack or surplus of generation or reserve.

4) Objective function: The objective function gathers the

thermal and hydro-electric generation costs as well as the

penalization of the slack variables of the coupling constraints.

Except for the surplus of reserve which are not penalized, a

piecewise linear and convex penalization function is used with

slope values depending on the type of slack variable.

D. Evaluation of the approximate recourse strategies

We have treated the sub-problems (cf. Table I) related to

the approximation of a recourse strategy for each generation

unit. The Extra-Trees clearly outperformed the ε-SVR on these

problems, and we thus only report on their results.

We have analyzed the optimality in terms of generation costs

of the plannings yielded by the recourse strategies approxi-

mated with the Extra-Trees and after the post-processing stage.

For each sub-problem we built an ensemble of 100 trees using

default settings for nmin and K (see [4]).

Figure 4 shows the obtained results on a set of about 400

independent test scenarios: each point refers to a scenario of

deviations combining the loss of a generation unit before 6

AM and a deviation of the load curve from its forecast. Over
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Fig. 4. Scatter plots of the planning cost during the recourse period vs. the
cost of the planning adjusted having a full knowledge.

the horizontal axis, these scenarios are sorted according to the

total cost associated to them if perfect (full) knowledge of the

scenario is exploited to re-optimize the generation plan; over

the vertical axis they are sorted according to the actual incurred

cost depending on the adjustment strategy. For each scenario,

three different adjustments have been evaluated, corresponding

to three different points at the same horizontal coordinate:

• the first strategy consists in applying no recourse action

at all (the corresponding points are depicted using red +
symbols). In this case the loss of the generation unit and

the deviation of the load are compensated by purchasing

rather expensive reserves (their price is modeled by

a piecewise linear and convex function). This strategy

constitutes the worst case behavior;

• the second strategy (represented by black • symbols)

corresponds to the perfect information case. In this case

the points are located on the line y = x; their cost on

the vertical axis represent a lower bound for all possible

recourse strategies;

• the last strategy is the one built using the proposed

procedure as described in Table II to build an approximate

strategy (AS) (it is represented by blue × symbols).

We note that our approximated plannings yield costs which

are often much lower than the not-adjusted reference planning

and quite close to those assuming perfect knowledge.

Figure 5 is another representation of the information con-

tained in Figure 4. It is a cumulative histogram of the addi-

tional cost induced by the strategies compared to the cost of

the plannings deterministically optimized knowing a perfect

forecast of the system conditions. The red curve corresponds

to the red + symbols of Figure 4, while the black curve

corresponds to the × symbols. The last (green) curve illustrates

the reduction of the performance of approximate strategy when

a ten times smaller number of training simulations are used for

learning it (in this case 43 training scenarios are used instead

of 432).

To analyze the influence of input features on the recourse

decisions, we show their variable importances in Figure 6,
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where the horizontal axis corresponds to the different input

features and the vertical axis to their relative importances. For

each feature, a box plot represents the distribution of its impor-

tances over the decision rules corresponding to the different

generating units. We observe that the most important variable

is the prediction time (denoted by PT ) while the next most

important ones correspond to the size of the generating unit

that is lost (denoted by LUMAX and LUMIN respectively).

The variables denoted by Ci correspond to the deviation of the

load scenario with respect to the forecast.

Finally we illustrate on Figure 7 results obtained when

building recourse strategies to cover only load deviations. We

observe that in this case there is no scenario for which the

approximate strategies yield costs equal to the cost of the full

knowledge strategy. This results from the fact that from the

sole observation of the load deviation during the interval 0 to

6 AM it is actually not possible to perfectly predict its sub-

sequent values and hence the generation schedule computed

by assuming full information is not non-anticipative. As we

observe from Figure 7 there seems to be a cost gap of about

5 × 105 between the full knowledge strategy and our non-
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Fig. 7. Cumulative histogram of the additional cost compared to the optimally
adjusted plannings when considering only load deviations.

anticipative approximated strategy.

Conversely, if one considers scenarios corresponding to the

loss of a very large generation unit, it becomes possible to

predict almost exactly the prefect knowledge reschedule from

the sole information gathered at time tr. This may be observed

on Figure 4, where the right-most scenarios (which correspond

to the loss of a very large unit together with a strong increase

of load) lead to almost identical costs for the approximate

strategy and for the strategy assuming perfect knowledge.

The optimal recourse for these scenarios consists roughly in

starting up as soon as possible a standby unit and by ramping

up to their maximum level the already running ones.

IV. RELATION WITH STOCHASTIC PROGRAMMING

A closely related framework, which has already been stud-

ied in the literature ([13], [14]), is the multistage stochastic

programming (SP) framework. In this approach one also

makes use of scenarios to represent realizations of the uncer-

tain processes. The two-stage case has a single recourse stage

like in our approach: the first stage decision corresponds to the

scheduling from time t0 to time tr, while the recourse corre-

sponds to the scheduling from time tr+1 to time T and may be

adjusted according to the realization of ξtr
. This paradigm thus

consists in optimizing jointly the first stage decision and the

recourses, which leads to the statement of a huge optimization

problem comprising decision variables and constraints for all

the scenarios and where the objective is to minimize the aver-

age cost over the set of scenarios. Moreover, non-anticipativity

constraints need to be imposed, in order to enforce a single

first stage decision and to enforce recourse decisions which

depend only on the information in ξtr
. On the other hand,

our method assumes that the first stage decision is computed

beforehand and is the starting point to compute the recourse

strategy. Then the non-anticipativity of recourse decisions is

imposed during the learning phase and dynamic constraints are

imposed by post-processing the resulting recourse decisions.



8

Thus recourse decisions are optimized according to the first

stage, but the converse is not true. However, our approach

may also be valuable to compare different first stage decisions

because it makes it practically possible to construct explicit

decision strategies4 and to evaluate them by Monte-Carlo

simulation with reasonable computing resources. Remember

that the different scenarios are solved independently, leading to

a set of tractable optimization problems which may be solved

in parallel with existing unit-commitment software packages.

V. DISCUSSION

In this paper we have proposed a novel approach based

on Monte-Carlo simulations and supervised learning for the

systematic and essentially automatic design of near-optimal

recourse strategies for intra-daily generation management. The

approach is intrinsically scalable to large scale generation

management problems, and may in principle handle all kinds

of uncertainties and practical constraints. It also provides inter-

pretable information in the form of explicit decision strategies

and measures of influence of different parameters on the

decision strategies. This approach has been evaluated through

a detailed case study on a medium size generation scheduling

problem representative for a single intra-daily recourse stage

involving a mixed hydro-thermal unit commitment. Our results

show the feasibility of the approach and are also very promis-

ing in terms of economic efficiency of the resulting strategies.

Immediate further work will aim at extending the approach

to multiple recourse stages, to improve the treatment of dy-

namic and coupling constraints in the post-processing module,

to cover other kinds of uncertainties, and to further validate

the approach on other instances of the problem.

Over the longer term, we plan to apply similar approaches to

other contexts in sequential decision making under uncertainty

and also to couple the construction of the reference decision

strategy with the construction of the recourse strategies. In-

deed, ideally the reference schedule should be computed in

such a way that the optimal recourses strategies are of maximal

economic efficiency and safety, while satisfying the practical

(context dependent) constraints.

4Contrary to the output of SP which is a set of decisions attached to the
nodes of the scenario tree.
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