IEEE ICRA 2005 Planetary Rover Workshop

1

Asteroid Exploration Rover

Takashi Kubota, Testuo Yoshimitsu Institute of Space and Astronautical Science Japan Aerospace Exploration Agency

Contents

- 1. Introduction
- 2. Small Body Exploration
- 3. MUSES-C Asteroid Sample Return Mission
- 4. Asteroid Exploration Rover MINERVA

Exploration of Small Body

NEAR (NASA, 2001)

Stardust (NASA, 1997-2006)

MUSES-C (ISAS, 2003-2005-2007)

Rosetta (ESA, 2004-2006-2011)

Asteroids or comets would give us a lot of hints to throw a light on the origin and evolution of the solar system.

Small Body Exploration

Sample return missions make it possible to make the composition and origin of a number of small bodies clear.

Minorbody Investigation

Vesta Crater Exploration Family Asteroid Exploration

Radar Sounder /Tomography Seismic Network, Landing Radar

Boulder or Groove Rover In-situ Fixed Lander In-situ

Sample Return (Core Boring) Sample Return (Regolith) In-Situ Microscopic Camera Micro-tomography

Subsurface exploration is the key way to know the evolution process.

Small Body Exploration Missions

1999

2002

2003

Stardust (USA) Comet FB&SRx1(2006)

2004

CONTOUR (USA) **Comet FBx2(2003, 6)**

2006

(USA)

Dawn

FB= Fly-by SR=Sample Return R=Rendezvours L=Landing **I=Impactor**

Italics=Asteroid Visit NE= Near Earth MB Asteroid Rx2(20010,14) NE Comet R&SRx3(2010) MB= Main Belt

Observed Asteroids

Mathilda

Gaspra

NEAR Approach to Eros

Range = 1800 km

MUSES-C Mission

MUSES-C Mission (ISAS)

Engineering test spacecraft for sample and return Technologies

aiming at demonstrating four key technologies

- Electric Propulsion for Interplanetary Cruise
- Autonomous Optical Navigation and Guidance
- Automated Sampling Mechanism
- Direct Reentry of Recovery Capsule

MUSES-C Mission (ISAS)

also demonstration of other new technologies

- Hopping Rover Exploration
- Multi-Junction Solar Cell
- Lithium Ion Re-chargeable Battery
- Duty Heater Control
- Bi-Propellant Small Thruster RCS
- X-band Up/Down Communication
- CCSDS Packet Telemetry
- Wheel Unloading via Ion Engines
- PN-Code Ranging, etc.

MUSES-C Spacecraft Launch

MUSES-C Spacecraft was launched at Kagoshima Space Center on May 9th 2003 by ISAS M-V rocket.

MUSES-C Spacecraft [Hayabusa]

Falcon

MUSES-C Mission (ISAS)

Target asteroid : 1998SF36 Launch : 2003.5.9 Arrival

- : 2005.9.
- Earth return : 2007.6.

MUSES-C Spacecraft

Launch weight : 510kg
Chemical Fuel : 67kg
Xenon propellant : 66kg

- Attitude Control : three-axis stabilize
- Communication : Xband (max:8kbps)
- Solar Cell Paddle : 2.6 kW at 1 AU
- Chemical propellant : 12 RCS (Isp:290sec)
- Electric propellant : 4 IES (Isp:3200sec)
- Payloads

Telescope cameras, Near Infra-red Spectrometer,

X-ray Spectrometer, Sampling Mechanism,

Laser Altitude-meter, Reentry Capsule, Small Rover

Asteroid Exploration Rover

Small Body Exploration Rover

In-situ surface observation by robots would be a promising method to explore the target body.

Gravity acceleration \longrightarrow very small $10^{-3} \sim 10^{-7} G$

Mobility system of robot is important

Asteroid Exploration Robot Surface gravity : $0.0001G \sim 0.00001$ G

Wheeled type robot cannot move on the surface of small body, because it is easy to lift-off.

Asteroid Exploration Robot

Why hopping mechanism?

Suppose the asteroid size of about 1[km] (diameter), its surface gravity would be 10-100[μ G], its escape velocity from the surface would be 20-80[cm/s]

(1) easily away from the surface

(2) extremely low speed

 $f_x = \mu f_y$ $f_x : \text{traction to move horizontally}$ $f_y : \text{contact force}$ $\mu : \text{friction coefficient}$

To make f_x larger, either f_y or μ has to be increased

- μ : can not be controlled.
- $f_{\rm y}$: can be increased by artificially pushing force of hopping mechanism

Proposed Hopping Robots

PROP-F (Soviet Union)

MINERVA (ISAS/JAXA)

SSV (NASA/JPL)

Frog type (NASA/JPL)

Legged typeIron-Ball type(Tohoku Univ.)(Univ. of Tokyo)

Legged type (Kyushu Univ.)

Novel Hopping Mechanism

Simulation Analysis

Hopping Experiments on Rocks

Micro G test by Drop Tower

Hopping Experiments on Sand

Micro G test by Drop Tower

Asteroid Exploration Robot MINERVA

(MIcro Nano Experimetal Robot Vehicle for Asteroid)

- Asteroid Surface Explorer
- Novel Mobility by Hopping
- Surface Observation by Stereo Vision
- Temperature Measurement
- Surface Gravity Estimation
- Autonomous Behavior Functions

Flight Model of MINERVA and OME

MINERVA Specification

body size	Cylinder (hexadecagonal pole) Diameter: ϕ 120[mm] Height: 100[mm]
weight	591[g]
actuators	two DC motors(2.6[w])
sensors	3 CCD cameras Photo Diodes Thermometers
com.	9600[bps]

Rover Onboard Sensors

29

• Another four thermometer are installed to monitor the temperature inside.

Autonomous Exploration

Navigation System

do not pursue the precise localization do not pursue the reachablity to the specified location. get the images/data at as many different places as possible

"Observe and hop" is repeated.

Exploration on the Surface

Summary

- Small Body Exploration
- Outline of MUSES-C Mission
- Asteroid Exploration Rover

- Post MINERVA is under study for the next small body mission, which has localization and reachbility
- Lunar or Planetary rover is also under study in JAPAN