

Smart Grid Frequency Monitoring Architecture and Applications

Speaker: Prof. M. M. Eissa

This tutorial will be presented in SEG13 Conference "IEEE International Conference on Smart Energy Grid Engineering (SEGE'13) Held from 28-30 August, 2013 UOIT, Oshawa, Canada"

IEEE International Conference on Smart Energy Grid Engineering (SEGE'13)

Prof. Moustafa Eissa Project PI, Helwan University

Dr. Mahmoud El-Mesalawy IT Team Leader, Helwan University

Egyptian Electricity Holding Company (End User)

9/12/2013

2

Project Team

3

Faculty of Engineering at Helwan Project Jeam

<u>Summary</u>

.

4

Tutorial Outlines

- 1- Wide Area Monitoring System (WAMS)
- 2- Egyptian Wide Area Monitoring System (EWAMS)
- **3- EWAMS Architecture**
 - **3-1 EWAMS layout**
 - **3-2 FDR Deployment for EWAMS**
 - **3-3 FDR design for EWAMS**
 - **3-4 Communication Infrastructure for EWAMS**
 - **3-5 HUHS Data management and Analysis**

4- EWAMS (device installation and software)
4-1 FDRs setup in power station
4-2 Network configuration for FDRs devices
4-3 Snapshots for FDR and Router installation process
4-4 EWAMS Software Installation
4-5 Logical structure of Egyptian WAMS

5- EWAMS Applications

9/12/2013

5

1-Wide Area Monitoring System (WAMS)

□ Wide Area Monitoring System (WAMS) is an integral part of power system operation today.

- ❑ WAMS Utilizing synchrophasor measurements enable the monitoring of power systems and provide critical information for understanding, forecasting, or even controlling the status of power grid stability in real-time.
- □ In recent years, more and more WAMSs have been built around the world to meet the growing needs for all kinds of system-stability-related applications.
- A wide-area Frequency Monitoring Network (FNET) utilizing a family of PMU called FDR was developed by Virginia Tech in North America.

Wide Area Monitoring System (WAMS)

□ More than 80 FDRs are installed in the United States and about 40 installed worldwide.

				Big Is	land, Hav	waii			F ()	
UTC Time	22:14:57	22:14:53	22:14:49	22:14:45	22:14:41	22:14:37	22:14:33	22:14.	25	22:14:21
Unit #711	59.9894	59.9954	59,9949	59.9912	59.9944	59.9900	59.9924	59.9983	37.9870	59.9883
				Oal	hu, Hawa	ii				
UTC Time	22:14:57	22:14:53	22:14:49	22:14:45	22:14:41	22:14:37	22:14:33	22:14:29	22:14:25	22:14:21
Unit #699	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data
Unit #700	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data
				Gra	nd Bahar	na				
UTC Time	22:14:57	22:14:53	22:14:49	22:14:45	22:14:41	22:14:37	22:14:33	22:14:29	22:14:25	22:14:21
Unit #1026	60.0654		60.0441	60.0165	60.0172	60.0386	60.1180		60.1250	60.1391
					Brazil					
UTC Time	22:14:57	22:14:53	22:14:49	22:14:45	22:14:41	22:14:37	22:14:33	22:14:29	22:14:25	22:14:21
Unit #802	59.9901	59.9794	59.9692	59.9657	59.9640	59.9647	59.9667	59.9769	59.9813	59.9758
_				Ja	pan - We	st				112
UTC Time	22:14:57	22:14:53	22:14:49	22:14:45	22:14:41	22:14:37	22:14:33	22:14:29	22:14:25	22:14:21
Unit #1091	59.9518	No Data	No Data	59.9495	59.9492	No Data	No Data	59.9617	No Data	No Data
				Quebec	Intercon	nection				
UTC Time	22:14:57	22:14:53	22:14:49	22:14:45	22:14:41	22:14:37	22:14:33	22:14:29	22:14:25	22:14:21
Unit #693	60.0091	60.0114	60.0095	60.0045	59.9994	60.0072	60.0185	60.0260	60.0234	60.0113
Unit #870	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data
Unit #917	60.0073	60.0184	60.0264	60.0232	60.0110	60.0016	59.9963	59.9862	59.9882	59.9932
				So	uth Kore	a		0		
UTC Time	22:14:57	22:14:53	22:14:49	22:14:45	22:14:41	22:14:37	22:14:33	22:14:29	22:14:25	22:14:21
Unit #927	60.0422	60.0433	60.0340	60.0356	60.0433	60.0488	60.0408	60.0435	60.0438	60.0423
	F	requenc	y Color S	cheme (Deviation	from no	ominal va	lue, Hz)		
F-0.09.	1-0:07.	[-0.0	5. [-(0.03.	[-0.01,	[0.01,	10.03;	[0.05	10.0	7. 10.0

-0.01

Wide Area Monitoring System (WAMS)

• Egypt is one of the recognized nations in the WAMSs world

2- Egyptian Wide Area Monitoring System (EWAMS)

EWAMS was constructed through our project "Smart Grid Frequency Monitoring Network Architecture and Applications" by installing 10 FDRs in various power stations in Egyptian Electric power grid.

Egyptian Wide Area Monitoring System (EWAMS)

□ EWAMS is an Internet based wide area monitoring system that is constructed using 10 FDRs connected to the VT output in 10 power stations distributed over the Egyptian power grid.

□ EWAFMS is a power grid situational awareness tool that collects real-time, Global Positioning System (GPS) time-stamped measurements with high precision at the transmission level.

□ EWAMS made the synchronized frequency, voltage angle, and voltage magnitude observation of the entire Egyptian power grid possible with reasonable cost for the first time.

□ The following figure shows the developed Internet-based WAMS architecture for the Egyptian power grid.

3- EWAMS Architecture

3-1 EWAMS layout

The developed EWAMS architecture consists of parts:

The Selected Power Stations from the Egyptian Electrical Grid for FDR deployment

The Frequency Disturbance Recorders (FDRs)

The Communication Infrastructure (Internet)

Helwan University Host Servers (HUHS) for Data Management and Analysis

12

3-2 FDR Deployment for EWAMS

□ The locations of the 10 FDRs are decided to provide full observability of the Egyptian electric power grid for different monitoring and control applications.

^{9/12/2013}

3-3 FDR design for EWAMS

Special design for Egyptian power grid

3-4 Communication Infrastructure for EWAMS

Communication Infrastructure (Internet)

□ ADSL Internet access connections

UMTS Internet access connection

3-5 HUHS for Data Management and Analysis

Data Concentrator Server (DCS)

- Collect data from FDRs
- Align the data by time stamps
- o provide synchronized outputs for application software
- Database Operation Service

HUHS for Data Management and Analysis

Real Time Application Server (RTAS)

- Frequency monitoring application
- Phase angle monitoring application
- Event detection
- Event type diagnosis
- Event location
- Oscillation trigger

Non-Real Time Application Server (NRTAS)

- Event visualization
- Oscillation modal analysis
- Web service

Data Storage Server (DSS)

• Store all historical data

EWAMS (device installation and software

4- EWAMS Device and Software Installation

Two levels for EWAMS installation

Five steps for installing FDR and Router in power station

4-2 Network configuration for FDRs devices FDR Transmission Protocol: TCP/IP **Network Enabler Administrator Operating Mode** 1 Port(s) Selected. 1st port is Port 1 Moxa NE-4100T Operating Mode TCP Client Mode Real COM Mode TCP Server Mode TCP Client TCP Client Mode Settings miscellaneous (Optional) Connect Mode Startup TCP Alive Check Timeout 1 **Destination Host** (0-99 min) Port 192,249,11.38 -9426 192.168.1.50 4001 Inactivity Timeout www.fnetworld.com з 9426 0 (0-65535 ms) 4 www.fnet2020.com 9426 FDR Data Packing (Optional) Delimiter 1 (0-ff, Hex) 00 may Deturbance Person Delimiter 2 00 (0-ff, Hex) Force Tx Timeout (0-65535 ms) 0 ENNESSEE **V** OK 💢 Cancel

FDR installation on 220kV/500kV Cairo Zone 22

Wadi-Hof Installation (500kV/ 220kV Cairo Zone Grid)

Wadi-Hof Installation (500kV/ 220kV Cairo Zone Grid)

Wadi-Hof Installation (500kV/ 220kV Cairo Zone Grid)

South-Cairo Installation (500kV/220kV Cairo Zone Grid)

South-Cairo Installation (500kV/220kV Cairo Zone Grid)

South-Cairo Installation (500kV/220kV Cairo Zone Grid)

220kV /500kV board FDR installation

Part of the wiring connection

Wiring Diagram layout

4-4 EWAMS Software Installation

EWAMS Architecture

4-5 Logical structure of Egyptian WAMS

HUHS Software components

- Window Server 2008 R2
- o Nova Backup Server
- Microsoft Forefront Endpoint Protection
- TeeChart: Charting and graphing library
- MYSQL Server
- MySQL Workbench
- Microsoft Access
- PHP "Personal Home Page"
- o IIS "Internet information services"
- FNET Server Application
- Applications: Event trigger, Oscillation Trigger, ...

Data Flow Paths and Application Hierarchy

Data Flow Paths and Application Hierarchy

Data Flow Paths and Application Hierarchy

EWAMS Server Application

Snapshot from the EWAMS Database

EWAMS Web Display

Synchronized Frequency Measurements

41

Frequency Color Scheme (Deviation from nominal value, Hz)

(-*, -0.09) [-0.09, -0.07) [-0.07, -0.05) [-0.05, -0.03) [-0.03, -0.01) [-0.01, 0.01) [0.01, 0.03) [0.03, 0.05) [0.05, 0.07) [0.07, 0.09) [0.09, -] NO DATA

** The frequency values displayed here on the public website are fed from a set of sample data and do not represent the current system frequency.

		Egypt										
	UTC Time	03:52:31	03:52:27	03:52:23	03:52:19	03:52:15	03:52:11	03:52:07	03:52:03	03:51:59	03:51:55	
WadiHof (57.7v)	Unit #1083	50.0817	50.0580	50.0205	50.0155	50.0152	50.0194	50.0213	50.0197	50.0165	50.0187	
	Unit #1084	No Data										
SouthCairo (57.7v)	Unit #1107	50.0213	50.0197	50.0165	50.0187	50.0193	50.0181	50.0146	50.0092	50.0028	49.9969	
WadiHof(100v)	Unit #1111	50.0943	50.0956	50.0911	50.0817	50.0580	50.0204	50.0155	50.0152	50.0194	50.0213	
	Unit #1112	50.0896	50.0774	50.0516	50.0157	50.0158	50.0165	50.0197	50.0218	50.0192	50.0164	
Tebeen500 (57.7v)	Unit #1113	No Data										
	Unit #1114	No Data										
	Unit #1115	No Data										
SouthTebeen(57.7v	Unit #1116	50.0194	50.0213	50.0197	50.0165	50.0187	No Data	50.0148	50.0145	50.0092	50.0027	
Constant (Constant)	Unit #1117	No Data										
	Unit #1119	No Data										

5-EWAMS Applications

FDR Deployment using novel idea

^{9/12/2013}

EWAMS Applications

Real Time Applications

Online Visualization

Instability Detection

Event Identification

Non-Real Time Applications

Event Location Estimation

Smart Load Shedding

Adaptive Dynamic Modeling

ON-line Visualization based diagnosis

Effective visualization helps viewers to understand and interpret power system dynamic situation more easily and rapidly to improve situational awareness. The visualization tool will receive measurements from FDRs and visualize it online as shown.

Adaptive Dynamic Model Based on WAMS Using Harmony Search Technique

Problem Formulation

Outline

Application-3

Generator Trip Identification Using Minimum Distance Classifier Technique

Outline

Testing Cases

57

Testing Case I:

Tebeen Station Trip

Topology:

disconnecting two lines between Cairo-South bus and Ain-Sera and removing a load of 349 MW at North Cairo bus

Event Location Estimation

Smart Load shedding

Smart Load Shedding

The team gratefully acknowledge funding and support from **National Telecom Regulatory Authority** (**NTRA**), Egypt (<u>http://www.ntra.gov.eg</u>) to implement the EWAMS architecture presented in this work. More details about project activities are given in <u>www.helwan-ntra.com</u>.

Thank you for your attention

