

Integrating Renewable Generation: Ontario's Smart Grid Approach

Ken Nakahara Director (A), Strategic Policy and Research Ontario Ministry of Energy

IEEE International Conference on Smart Energy Grid Engineering (SEGE'13) 28-30 August, 2013

Three Part Presentation

- Ontario's Long Term Energy Plan Review
- Renewable Integration
- Smart Grid and Distribution

Ontario (Canada)

- 13 million inhabitants
- GDP of \$638 billion (CAD)
- Energy-intensive industries remain an important part of the provincial economy
- Hybrid market electricity structure
- Home to some of North America's densest urban areas, as well as a number of remote and isolated Northern communities

Ontario's Long-Term Energy Plan Review

- In November 2010 the government released its Long-Term Energy Plan (LTEP), a comprehensive direction for Ontario's energy future on all aspects of Ontario's electricity system, including conservation, generation, transmission, distribution, and emerging technologies such as energy storage.
- On April 16, 2013, Minister Chiarelli announced a formal review of LTEP to be completed within six months. He noted that the review process would include:
 - A strong and transparent consultation process with the public, municipalities and the energy sector;
 - Consultation sessions being held in every region of the Province;
 - Engagement with Aboriginal communities and leaders; and
 - Opportunity for the public to comment through the web.

Ontario's supply mix has changed over the years

As the Portfolio evolved, the amount of energy produced from different sources has also changed

<u>Energy</u>	2003		2013 (est.)	
Nuclear	63 TWh	43%	89 TWh	54%
Hydro	35 TWh	23%	36 TWh	22%
Wind			6 TWh	3%
Bioenergy	1 TWh	<1%	2 TWh	1%
Solar PV			1 TWh	<1%
Natural Gas	12 TWh	8%	20 TWh	12%
Coal	37 TWh	25%	3 TWh	2%
Efficiency	0 TWh	0%	8 TWh	5%
Total	148 TWh	100%	164 TWh	100%
Imports	7 TWh		3 TWh	
Exports	4 TWh		16 TWh	

Greenhouse gas emissions are much lower

Total costs for electricity service in Ontario have increased, but less than projected in 2010; future costs depend on choices subject of this consultation

Households are increasing, energy efficiency is increasing

10

Energy demand is expected to grow slower than forecast in 2010, efficiency and end-use will reduce growth even further

Peak Demand is lower than project into 2010, efficiency and demand reduction measures will reduce it even further

Gross Peak Demand Forecast 2003 - 2031

The assumptions about efficiency reduce the expectations for demand of electricity - how best to achieve this efficiency is subject of this consultation

Ontario has surplus generation in the near term, needs begin to emerge in 2018; options are part of our consultation

Notes:

Resource requirements is comprised of demand plus planning reserve as required by reliability standards. Contracted resources include contracted renewables and contracted natural gas.

Different scenarios may unfold that result in different electricity demands and consequent infrastructure needs

Notes:

Resource requirements under low, medium and high scenarios are comprised of demand plus planning reserve as required by reliability standards.

ntario

Contracted resources include contracted renewables and contracted natural gas.

Three Part Presentation

- Ontario's Long Term Energy Plan Review
- Renewable Integration
- Smart Grid and Distribution

Integrating Renewables: A Global Challenge

- Achieving very high shares of renewable energy requires proactively addressing challenges shared across jurisdictions:
 - Managing intermittency and variability.
 - Balancing supply and demand.
 - Addressing power quality issues leading to connection constraints.
- Jurisdictions around the world are increasing the presence of distributed renewable generation on their electricity systems
- Ontario is moving forward with an aggressive expansion of smart grid technologies in order to enable its renewable energy ambitions.
- Ontario is looking to share experiences and learning with other jurisdictions.

Off-Peak Generation

Source: Ministry of Energy

Output Variability

Daily Wind Output for One Month

Surplus Baseload

Notes:

This diagram illustrates the components of non-hydroelectric renewables. The pace of development depends on how each of these categories evolves.

22

Options work together in an integrated fashion to meet customer needs

System needs and resource attributes must be taken into account when making supply decisions:

Resources must reliably and efficiently be available to balance supply and demand:

Integrating Renewable Assets

- Currently, system operators cannot see the performance of embedded distributed generators. This makes it difficult to accurately predict how these resources will perform on any given day.
- Expanding the capabilities of Ontario's utilities in these areas is vital to effectively integrating renewable generation assets, and reducing the negative impacts of intermittency, variability, and surplus baseload.
- Ontario's Independent Electricity System Operator (IESO) is implementing an integration plan that expands its forecasting, visibility, and dispatch capabilities for renewable generation resources.

Forecasting	Visibility	Dispatch
Ability to predict output from variable resources is essential for maintaining system reliability and market efficiency	New processes such as direct telemetry and reporting may be needed to ensure visibility of large-scale embedded wind and solar generators	Integration of renewables into economic dispatch model should help resolve issues like surplus baseload generation

Three Part Presentation

- Ontario's Long Term Energy Plan Review
- Renewable Integration
- Smart Grid and Distribution

Renewable Integration at the Distribution Level

- Achieving Province's renewable integration and conservation goals requires a smart grid and its associated technologies, like storage.
- Already the case for conservation, increasingly more of the renewable impact will be felt on the distribution grid (see right)
- In addition, storage itself can help mitigate potential issues on both the DX/TX system related to power fluctuations in the grid from very high shares of renewable energy

Smart Grid: Integration Through Communication

Ontario's Push for Smart Grid

- Ontario has seized the opportunity to become a leader in smart grid to support achievement on various key provincial priorities:
 - Aggressive integration of renewable, distributed generation into the distribution grid
 - 2. One of North America's most ambitious conservation targets
 - 3. One of the largest smart meter and time of use rollouts globally
 - 4. Significant effort to create conditions for accelerated electric vehicle adoption
 - 5. Economic benefits being created from the opportunity to leverage existing leading edge assets in manufacturing, research, and electricity distribution systems

A Framework for Smart Grid

The Green Energy Act has provided guidance on smart grid for Ontario. Our energy regulator is undertaking a regulatory review exercise to respond this policy framework.

Focus Area

Expected Outcomes

ONTARIO'S ELECTRICITY DISTRIBUTION SYSTEM LOCAL DISTRIBUTION COMPANY SERVICE AREAS

Ontario has 80 LDCs

	Smart Meters							
	 What do Smart Modernize outdated meter infrastructure Enable time-of-use pricing and conservation Provide basis for smart grid / smart homes 							
		-						
	Ontario's Unique Rollout:	Ontario's Advantages:	Progress:					
Smart Meters	 1st in North America to implement (beginning in 2004) 5 different AMI systems (Trilliant, Elster, Sensus, Silver Springs, Tantalus) Integration with Meter Data Management/Repository 	 Attractive as a test bed for emerging technology development Early mover advantage: ready for next steps Enhanced access to interval data improves broader system planning 	 4.7 million deployment complete 					
TOU Pricing	 1st in the world to mandate for all residential and small business customers (2010) Prices set independently by Ontario Energy Board Implemented following successful pilot studies across a variety of utilities 	 More incentive to respond to usage information opt-in programs Real opportunities for businesses to shift loa and reduce cost Opens the door to various energy storage business models, based on buying low and selling high 	tion > 4.5 million					

MINISTRY OF ENERGY Examples of Ontario Research Activities

Focus Areas	High Profile Researchers	Centres*	% Research Centres, Laboratories, and Initiatives* Established in Ontario		
Grid	Queen's: Power Systems (P. Jain)		2006 - 2011	2000 - 2005	1999 and Earlier
Auto-	LIWO: Grid Connection (R Varma)	14	58%	20%	23%
mation	McMaster: Vehicle-to-grid (A. Emadi)	14	0070	Total	85
Data	List Link well date menerate (D. Miller)				
Data Mgt.	Waterloo: Database structures (F. Tompa)	4	Federal and Provincial Research Funding		
Wind	Waterloo: Aerodynamic (D. Johnson)	6	Funding Source	Year of Funding	Amount (in million)
Eperav LIM	LIWO: Grid connection (R. Varma)		NSERC	2011 – 2015	\$5.3
Energy	owo. ond connection (iv. variat)		MEDI (MRI) to	2006 2012	¢12.7
Behind Wa the Der Meter McI	Waterloo: Energy Efficiency (I. Rowlands), Demand-side Management (D. Mountain) McMaster: Modeling & Simulation (S. Chidiac)		establish CONII	2000 - 2012	φ13.7
		3	Knowledge		
			Infrastructure	2009 - 2013	\$122.3
AMI	Waterloo: Energy Management (I. Rowlands)	3	Program		
	0, 0 ()	-	Ontario Research	2000 2012	¢250
Solar PV	McMaster: Ultra-high efficiency PV	18	Fund **	2000 - 2013	\$200
	(R. Kleiman)				
	Color Collo (T. Bonder, D. Safaras)		NSERC Canada	Excellence Resear	rch Chair (CERC),
	Solar Cells (T. Berlder, D. Seletos)		Research Chair (C	RC) and Industry F	Research Chair (IRC)
PEV	McMaster: Vehicle to Grid (A. Emadi)	13	Type of Chair	# of Rese	arch Chairs
	UWO: Grid Connection (R. Varma)		CERC		1
	Waterloo: Power Systems (C. Canizares),		CRC		26
	Battery Storage for PEV (L. Nazar)		IRC		14
	Queen's: Fuel cell (B. Peppley),	14	* Most research centres ar	e active in multiple areas	
Storage	Waterloo: Fuel cell reliability (M. Fowler),		** Program funds other no	n-related energy research	
	Materials (L. Nazar)				

Source: Ontario Centres of Excellence

Smart Grid Fund

- The Smart Grid Fund is a \$50M competitive grant program designed to leverage Ontario's advantages in the energy sector and build the smart grid industry.
- SGF is currently sponsoring 11 projects in the areas of behind the meter, integrating distributed energy resources, regional integration, data management, and grid automation.
- The SGF launched Round 2 on July 2nd, 2013. Applications close on September 6th.

Conclusions

- 1. The global push for a cleaner and more reliable electricity system is resulting in a number of technical challenges, and Ontario is not unique in this regard.
- 2. Ontario's position as a world leader in Smart Grid is allowing it to take a proactive role in integrating distributed renewable generation through expanded forecasting, visibility, and dispatch capabilities.
- 3. The Ministry is in the process of reviewing Ontario's Long-Term Energy Plan. Please contribute to the discussion by submitting comments to Ontario's Environmental Registry or by filling out the online survey.

APPENDIX: Helpful Links

- Making Choices: Reviewing Ontario's Long-Term Energy Plan: <u>http://www.energy.gov.on.ca/en/ltep/</u>
 - Environmental Registry: <u>http://www.ebr.gov.on.ca/ERS-WEB-</u> <u>External/displaynoticecontent.do?noticeId=MTE5OTg3&statusId=MTc5NTIx&languag</u> <u>e=en</u>
 - Long-Term Energy Plan Survey: <u>http://www.energy.gov.on.ca/en/ltep/ltep-survey/#</u>
- Ontario's Long-Term Energy Plan: <u>http://www.energy.gov.on.ca/en/ltep/ontarios-long-term-energy-plan/</u>
- FIT Program 2-year report: <u>http://www.energy.gov.on.ca/en/fit-and-microfit-program/2-year-fit-review/</u>
- Smart Grid Fund Projects: <u>http://www.energy.gov.on.ca/en/smart-grid-fund/</u>
- Ontario Smart Grid Forum:
 <u>http://www.ieso.ca/imoweb/marketsandprograms/smart_grid.asp</u>
- IESO Renewable Integration Initiative: <u>http://www.ieso.ca/imoweb/consult/consult_seg1.asp</u>
- Videos Highlighting Ontario's Smart Grid Progress: <u>http://canmetenergy.nrcan.gc.ca/news/varennes/3131</u>

