

uOttawa

Low-Latency Smart Grid Asset Monitoring for Load Control of Energy-Efficient Buildings

IRFAN S. AL-ANBAGI, MELIKE EROL-KANTARCI, HUSSEIN T. MOUFTAH UNIVERSITY OF OTTAWA OTTAWA, ON, CANADA EMAILS: {IALAN055, MELIKE.EROLKANTARCI, MOUFTAH}@UOTTAWA.CA

Outline

2

Introduction

• Priority and Delay Aware Medium Access in WSNs

- o Delay Estimation
- MAC Layer Configuration
- Performance Evaluation
- Conclusions

Introduction(1)

• WSNs offer many advantages;

- Ability to work in extreme environmental conditions
- Enhanced fault tolerance
- Low power consumption
- Self configuration
- Low cost
- WSNs have low data rate and limited energy resources
 - Performance bottleneck
 - Delivery of time-critical data becomes a significant challenge
- Thus data prioritizing techniques becomes essential in WSNs

Introduction(2)

- In the smart grid, a fault occurring in any of its assets may trigger load control actions in various locations.
- The status of the smart grid assets needs to be monitored in near real-time.
- Transmitting delay-critical data in the smart grid via WSNs needs data prioritization and delay-responsiveness.
- We evaluate the performance of two schemes,
 - Delay-responsive, cross layer (DRX) data transmission scheme
 - Fair and delay-aware cross layer (FDRX) data transmission scheme

Priority and Delay Aware Medium Access in WSNs (1)

Delay Estimation

- Estimate the delay using an analytical model of the slotted CSMA/CA mechanism of IEEE 802.15.4
- The model is based on a WSN having a PAN coordinator with *N* nodes
- Each node uses beacon-enabled mode
- The model uses Markov chain to model the behavior of a single node
- The main idea behind the model is that
 - × Sensor nodes can estimate the busy channel probabilities
 - × Depending on first and second CCA's.

Priority and Delay Aware Medium Access in WSNs (2)

• MAC Layer Configuration

- DRX scheme includes a data prioritization cross layer adaptive scheme
- FDRX scheme includes an improvement to the DRX scheme
- Both DRX and FDRX scheme enables the interaction of the application layer with the MAC and physical layers of the IEEE80.15.4 protocol stack
- DRX achieves more aggressive delay reduction in highly critical smart grid monitoring applications.
- FDRX scheme achieves the delay reduction and allow other nodes to transmit in a timely manner.

Fairness in Delay-aware Cross Layer Data Transmission Scheme (FDRX) (3)

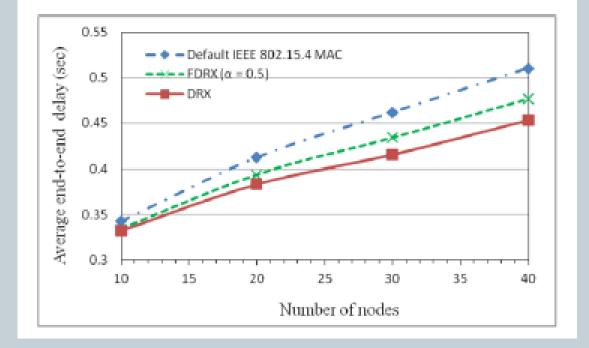
- Both the DRX and the FDRX schemes initially implements the delayestimation algorithm
- The MAC layer responds to the delay requirement of the application
- If the estimated delay is found higher than a predefined threshold
 - The application layer inserts a flag indicating that lower layers should treat the packet accordingly
 - The MAC layer makes changes to the parameters of the physical layer
- DRX changes the CCA duration for the entire session
- The FDRX schemes yields to other nodes periodically to allow them to transmit

Fairness in Delay-aware Cross Layer Data Transmission Scheme (FDRX) (4)

- The algorithm is implemented as follows;
 - Application layer evaluates criticality of the captured data
 - The algorithm invokes the delay estimation process
 - In DRX, the CCA duration is divided by 2 for the entire beacon interval
 - In FDRX, the CCA duration is divided by 2 for duration of η_y and then inverts back to default setting for the next η_y duration
 - If the estimated delay is within allowable limit of a particular application
 - The algorithm does not make any changes in the MAC or physical layer parameters

- We use QualNet network simulator
- We use a star topology having *N* nodes and a coordinator
- All nodes are operating in the 2.4 GHz band with a maximum bit rate of 250 Kbps
- The transmission range was set to 40m and all the nodes are in the same PAN
- Each result represents an average of 10 runs

10

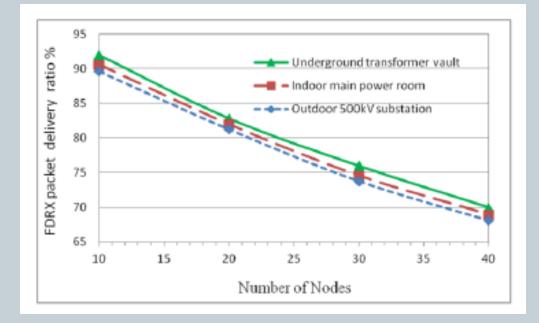

 TABLE II

 ACTUAL CHANNEL PROPAGATION PARAMETERS

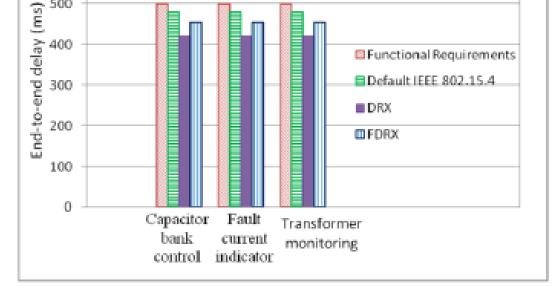
 opagation Environment
 Path loss
 Shadowing

Propagation Environment	Path loss	Shadowing deviation
Outdoor 500-kV substation	3.51	2.95
Indoor main power room	2.38	2.25
Underground transformer vault	3.15	3.19

11



Average end to end delay


Performance Evaluation 12 95 ratio % Underground transformer vault 90 - Indoor main power room delivery - Outdoor 500kV substation 85 80 DRX packet 75 70 20 1015 25 30 35 40 Number of Nodes

Data delivery performance of DRX

13

FDRX packet delivery ratio

End-to-end delay for different smart grid applications.

Conclusions

15

• The presented schemes achieve delay-responsiveness by modifying the parameters of the physical layer of the IEEE 802.15.4 protocol.

- DRX and FDRX schemes succeed in reducing the delay for high priority data and maintaining satisfactory packet delivery ratios.
- Smart grid specific results show that the DRX scheme has a higher effect on the end-to-end delay reduction compared to the FDRX.
- FDRX shows more flexible results and provides fairness to other nodes in the WSN.
- This delay reduction will enhance the smart grid operation in situations where sudden changes in loads or the generation cycle

