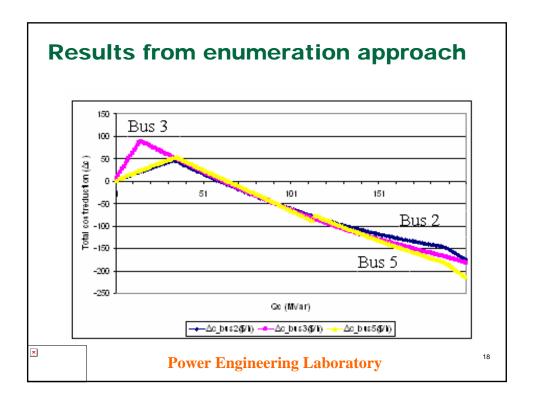
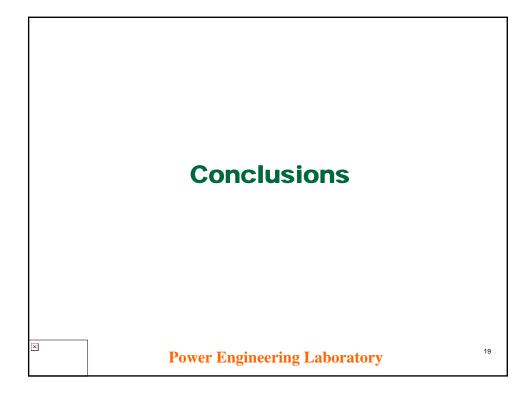
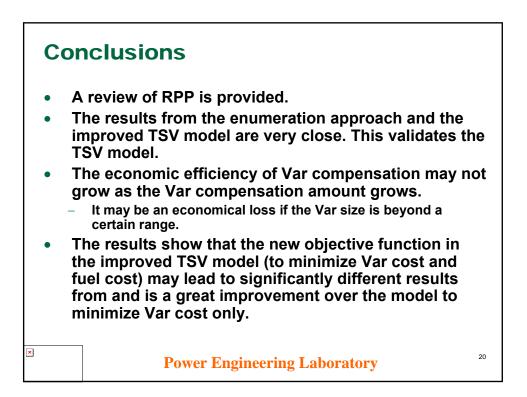


	$\sum y_i = k$ (Number of Var compensator installations)					
Constraints	$P_{Gai} - P_{Lai} - P(V_a, \theta_a) = 0 \qquad (Red$	ıl power balance)				
	$P_{\mathcal{C}^{*,i}} - P_{\mathcal{L}^{*,i}} - P(V_*, \Theta_*) = 0$					
applicable	$Q_{\text{clost}} + Q_{\text{cl}} - Q_{\text{Lot}} - Q(V_{\text{o}}, \theta_{\text{o}}) = 0 (\text{Reactive})$	e power balance)				
to both of	$\mathcal{Q}_{\mathcal{Q}^{*,i}} + \mathcal{Q}_{\mathcal{Q}^{*,i}} - \mathcal{Q}_{\mathcal{L}^{*,i}} - \mathcal{Q}(\mathcal{V}_{*}, \theta_{*}) = 0$					
the normal	$P_{Gl}^{\min} \leq P_{Gol} \leq P_{Gl}^{\max} \qquad (Generation real power limits)$					
operating	$P_{GI}^{\min} \leq P_{G^{*I}} \leq P_{GI}^{\max}$					
point and	$Q_{Gi}^{\text{true}} \leq Q_{Goi} \leq Q_{Goi}^{\text{true}}$ (Generation reactive power limits)					
	$Q_{Gi}^{\min} \leq Q_{G^{*i}} \leq Q_{Gi}^{\max}$					
PoC	$V_i^{\min} \leq V_{\alpha i} \leq V_i^{\max}$	(Volta ge limits)				
	$V_i^{\min} \le V_{*i} \le V_i^{\max}$					
	la	w thermal limits)				
	$ LF_{p} \leq LF^{max}$					
	$\sum_{i \in I_{\ell}} S_{i\ell} - \sum_{i \in I_{\ell}} S_{i\ell} (Tie \ line \ MVA \ TTC)$	c security margin)				
	$SM = \frac{\sum_{i \in I_{i}} S_{i} - \sum_{i \in I_{i}} S_{i}}{\sum S_{i}} $ (<i>Tie line MVA TTC</i>)					
	ie Li					
	$SM \ge SM_{spect}$ (Sec	urity margin limits)				
×	$Q_{el}^{\min} \le Q_{el} \le Q_{el}^{\max}$ (C)	ompensation limits) ¹³				

Results from VSCOPF model with the proposed TSV approach


		.46 r iables o u 3	·*	1519	93.44								
			·*										
	2	3				Variables output							
			4	5	6	7							
		14.54											
		1											
5			200		300	196							
1			100		52	55							
	100	190	150	200	50	80							
	40	75	50	60	20	40							
.05	1.01	0.99	1.00	0.97	1.04	1.01							
369.54													
0			200		300	300							
3			100		98	100							
	113	215	170	226	50	80							
	47	87	60	73	20	40							
.02	1.00	0.95	0.97	0.97	1.05	1.03							
92.73	3												
	0 3 .02	100 40 .05 1.01 :69.54 :0 :3 113 47	100 190 40 75 .05 1.01 0.99 .69.54	100 190 150 40 75 50 .05 1.01 0.99 1.00 i69.54 200 3 100 113 215 170 47 87 60 .02 1.00 0.95 0.97 0.97 0.97	100 190 150 200 40 75 50 60 .05 1.01 0.99 1.00 0.97 .69.54	100 190 150 200 50 40 75 50 60 20 .05 1.01 0.99 1.00 0.97 1.04 i69.54 200 300 300 300 :3 100 98 113 215 170 226 50 47 87 60 73 20 .02 .02 .02 .02 .095 0.97 1.05							


Power Engineering Laboratory


×

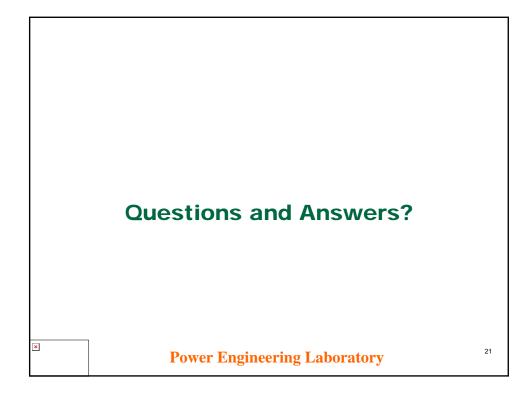

16

Table IV. Results comparison of three models: Enumeration, TSV Model I, and TSV Model II.					
	Enumeration approach	TSV model to minimize Var cost only (TSV Model I)	TSV model to minimize fuel cost + Var cost (TSV Model II)		
Running time (s)	81	0.156	0.328		
Fuel cost (\$/hr)	15169.13	15515.86	15168.98		
Varcost(\$/hr)	25.21	0.00	24.46		
Total cost (\$/hr)	15194.34	15515.86	15193.44		
Var location	Bus 3	None	Bus 3		
Var size (MVar)	15	0.00	14.54		
TTC_(MVA)	369.46	304.39	369.54		
TTC (MVA)	492.61	464.28	492.73		
SM	25%	34%	25%		

